УДК 537.84

ЭВОЛЮЦИЯ НЕУСТОЙЧИВЫХ КОНФИГУРАЦИЙ МАГНИТНОГО ПОЛЯ В ЗАДАЧЕ ДИНАМО СРЕДНИХ ПОЛЕЙ В ТУРБУЛЕНТНОЙ СРЕДЕ

А. А. Быков, В. Ю. Попов

(кафедра математики)

Выведены приближенные выражения для скорости дрейфа переходного слоя и времени жизни нестационарной контрастной структуры в задаче генерации магнитного поля в турбулентной среде.

Введение

В соответствии с общепринятыми представлениями магнитное поле в спиральных галактиках создается за счет действия процесса галактического динамо [1, 2]. При этом часть кинетической энергии хаотического движения проводящего вещества преобразуется в энергию магнитного поля. В тонком галактическом диске вектор магнитного поля может быть представлен в виде $\mathbf{B} = \mathbf{b}(\mathbf{r})u(\mathbf{r},t)$. Векторная функция $\mathbf{b}(\mathbf{r})$ задает направление магнитного поля, а скалярная функция $u(\mathbf{r},t)$ определяет напряженность. Функция $u(\mathbf{r},t)$ определяется из уравнения диффузии, в котором присутствуют дополнительные члены, отвечающие за перенос поля вместе с движением вещества и генерацию:

$$u_t + \mathbf{V} \bigtriangledown u = \mu \bigtriangleup u + \gamma(u)u.$$
 (1)

Если плотность энергии магнитного поля оказывается сравнимой со средней плотностью кинетической энергии, коэффициент размножения $\gamma(u)$ становится равным нулю, поэтому выражение для коэффициента размножения $\gamma(u) = \gamma_0 \left(1 - u^2 / U^2 \right)$ можно принять в качестве достаточно хорошей аппроксимации, если не учитывать в (1) другие эффекты, и в частности нелокальный перенос поля за счет выхода силовых линий за пределы галактического диска. Для типичных галактик (например, M51 и M81) μ практически равно 0,0016, если измерять время в миллиардах лет, расстояние в килопарсеках. Коэффициент генерации γ_0 порядка 2–5 [3, 4]. Характерный размер неоднородностей крупномасштабного магнитного поля $\delta = \sqrt{\mu/\gamma_0}$ примерно на два порядка меньше диаметра диска, поэтому уравнение (1) проявляет специфические свойства уравнений с малым параметром при старших производных и его решение относится к классу функций, которые принято называть контрастными структурами [5, 6].

Контрастные структуры (КС) — это своеобразные конфигурации, которые могут образовываться в процессе эволюции физических полей различной природы в нелинейном режиме. В КС обширные области медленного изменения поля (мы их для краткости называем пятнами) разделяются малыми по объему областями быстрого его изменения. Большой интерес с теоретической и практической точек зрения представляют КС, образующиеся в результате ограничения поля определенным уровнем насыщения, как это

имеет место для магнитного поля в спиральной галактике. В типичной ситуации положительное или отрицательное поле возрастает по модулю до уровня насыщения, а на границе положительного и отрицательного полей образуется тонкий внутренний переходный слой (ВПС), внутри которого поле меняет знак. Переходный слой медленно перемещается в результате совместного действия диффузии, переноса, генерации. В настоящее время детально изучены стационарные КС и разработаны методы анализа их устойчивости [5-7]. В то же время наблюдения галактик и компьютерный эксперимент [3, 4] убеждают в существовании долгоживущих нестационарных КС, которые в процессе эволюции могут постепенно трансформироваться в стационарное состояние или разрушаться. Законы эволюции неустойчивых КС практически не изучены. Эволюция КС определяется конфигурацией пятен различной полярности, неоднородностью уровня насыщения, кривизной ВПС и т.д.

Цель настоящей работы — исследовать влияние соотношения размеров пятен КС различной полярности на время жизни неустойчивых нестационарных контрастных структур магнитного поля в спиральных галактиках. Мы вычислим приближенно скорость дрейфа ВПС и время жизни КС с заданной начальной конфигурацией. Поскольку уравнение (1) адекватно описывает не только магнитное поле в спиральных галактиках, но и поле в турбулентной проводящей среде, некоторые задачи химической кинетики, динамику популяций и т.д., полученные далее результаты имеют достаточно общий характер.

1. Одномерная модель

Рассмотрим одномерную по пространству задачу Коши для уравнения диффузии с переносом и размножением:

$$rac{\partial u}{\partial t} = \mu rac{\partial^2 u}{\partial x^2} + \gamma(u)u, \quad -\infty < x < \infty, \quad t > 0, \quad (2)$$

 $\gamma(u) = \gamma_0 \left(1 - u^2/U^2\right)$, с начальными условиями $u(x,0) = u_0(x)$ и граничными условиями при $|x| \to \infty$, обеспечивающими ограниченность решения на всей прямой. Пусть в начальный момент времени в среде имеется хаотическое мелкомасштабное магнитное поле, напряженность которого много

меньше уровня насыщения, $|u_0| \ll U$. За счет диффузионного члена мелкомасштабные неоднородности $u_0(x)$ будут быстро сглажены, и функция u(x,t)примет вид набора хаотически расположенных пятен положительной и отрицательной полярности. Затем за счет процесса генерации величина u внутри пятен вырастет до величины, несколько меньшей уровня насыщения U, на границе пятен положительной и отрицательной полярности образуется ВПС, после чего конфигурация решения в целом может быть описана как КС. В дальнейшем каждый ВПС перемещается, причем направление движения, вообще говоря, таково, что узкие пятна уменьшаются, а широкие увеличиваются.

Проведя линейную замену переменных x, t и функции u, приведем уравнение (2) к безразмерному виду:

$$\frac{\partial u}{\partial t} = \delta^2 \frac{\partial^2 u}{\partial x^2} + u(1 - u^2),\tag{3}$$

где $\delta = \sqrt{\mu/\gamma_0}$ — толщина ВПС. Сначала рассмотрим стационарные решения типа КС.

2. Стационарные контрастные структуры

Напряженность поля в стационарной одномерной КС можно найти из уравнения $\delta^2 d^2 u/dx^2 +$ $u(1-u^2)=0$. Точное решение выражается через неполный эллиптический интеграл первого рода

$$F(\phi,k)=\int\limits_{0}^{\phi}\left(1-k^{2}\sin^{2}\phi
ight)^{-1/2}d\phi$$
 :

$$rac{x-x_0}{\delta} = rac{\sqrt{2}}{a}F(\phi,k),$$

$$\phi = \arcsin\left(rac{u}{b}
ight), \quad k = rac{b}{a},$$
 (4)

 x_0 — координата центра ВПС, $a=\sqrt{1+\sqrt{1-C}}$, $1\leqslant a<2,\;b=\sqrt{1-\sqrt{1-C}},\;0\leqslant b<1,$ константа Cопределяет наклон кривой u(x) в центральной точке: $(du/dx)_{x=x_0} = (1/\delta)\sqrt{C/2}$. Если 0 < C < 1, то u(x) — периодическая функ-

ция, период T равен

$$T = \delta \frac{4\sqrt{2}}{a} K\left(\frac{b}{a}\right),\tag{5}$$

где $K(k) = F(\pi/2, k)$ — полный эллиптический интеграл первого рода. Величина T лежит в пределах $2\pi\delta < T < \infty$, причем $T o \infty$ при C o 1, C < 1 и $T o 2\pi \delta$ при C o 0, C > 0. Максимальное значение $u_{
m max}=b$ достигается при $x-x_0=T/4$, минимальное значение $u_{
m min}=-b$ при $x-x_0=3T/4$.

Пусть ширина положительного пятна W=T/2много больше δ и соответственно $1-C\ll 1$, так что $k \simeq 1$. Используем асимптотическое разложение эллиптического интеграла для случая $k < 1, k \to 1$: $K(k) = \ln \left(4/\sqrt{1-k^2} \right)$ [8]. Подставляя это выражение в (5), получим приближенное выражение для W:

$$W = \frac{T}{2} = \frac{\delta}{\sqrt{2}} \ln \frac{64}{1 - C}.$$
 (6)

Полезно определить диапазон изменения параметров в (6), в пределах которого можно использовать эти соотношения, не нарушая условий существования периодического решения. Минимально допустимое значение C можно вычислить из соотношения для минимально возможного периода $T_{\min} = 2\pi\delta$. Соответствующее значение $C_{\min} = 1 - 64 \mathrm{e}^{-\sqrt{2}\pi} \approx 0,246$. В критическом случае $C=1,\ u(x)$ — монотон-

ная функция, обращающаяся в нуль в одной точке $x=x_0$:

$$u = \operatorname{th}\left(\frac{1}{\sqrt{2}} \frac{x - x_0}{\delta}\right). \tag{7}$$

В соответствии с общепринятой классификацией это решение относится к КС типа «ступенька» [7]. Если C > 1, то решение не ограничено и не представляет интереса.

3. Квазистационарные контрастные структуры

Квазистационарная одномерная КС состоит из последовательности пятен чередующейся полярности (положительной и отрицательной), разделенных ВПС, при этом начальная ширина каждого пятна много больше толщины ВПС. Чтобы оценить время жизни нестационарной КС, рассмотрим эволюцию периодической системы положительных и отрицательных пятен, u(x+T,t)=u(x,t), причем у положительного пятна начальная ширина несколько больше, чем у отрицательного. В пределах одного периода u(x,t) образуются два ВПС, каждый из которых будет медленно дрейфовать в сторону более узкого пятна, в результате чего ширина положительного пятна будет увеличиваться, а изначально меньшая ширина отрицательного пятна будет уменьшаться. Когда ширина пятна становится сравнимой с толщиной ВПС, происходит лавинообразное разрушение КС, которая на этом этапе уже не является квазистационарной.

Возможны разные режимы эволюции КС с широкими ($W>\pi\delta$) пятнами обоих знаков. Рассмотрим только сильно асимметричные КС, для которых ширина положительного пятна много больше ширины соседних с ним отрицательных пятен. Предположим, что внутри ВПС, $x_0 - \delta < x < x_0 + \delta$, в каждый фиксированный момент времени функцию u(x,t) можно приближенно описать выражением (7), причем координата центральной точки будет медленно перемещаться с некоторой скоростью v(t), которая зависит от ширины каждого из пятен: $u(x,t) = f(x-vt), \ x_0 - \delta < x < x_0 + \delta$. Пред-положим, что выражение (4), определяющее стационарное периодическое решение, можно использовать и для непериодического нестационарного решения вне ВПС, т.е. для положительного и отрицательного пятна по отдельности. Для каждого из них будем использовать разные значения константы C,

которая теперь будет функцией t (каждое из этих значений мало отличается от критического значения C=1). Соответствующие значения параметров a,b также будут отличаться. Ширину положительного и отрицательного пятен обозначим $W^{(+)}(t)$ и $W^{(-)}(t)$, причем $W^{(+)}(t)+W^{(-)}(t)=T$. Таким образом, внутри одного периода КС выделены три области, в которых решение представляется разными формулами.

Вычислим скорость дрейфа ВПС. Проинтегрируем (3) по интервалу $x_0 - W^{(-)}/2 < x < x_0 + W^{(+)}/2$, который включает в точности один ВПС. Используя условие $\pi\delta \ll W^{(-)} \ll W^{(+)}$, получим $v \simeq -\delta \cdot 8\sqrt{2} \exp\{-\sqrt{2}W^{(-)}/\delta\}$. Так как уменьшение ширины отрицательного пятна обусловлено одновременным дрейфом двух ВПС навстречу друг другу с равными скоростями, ширину отрицательного пятна можно найти из дифференциального уравнения $dW^{(-)}/dt = -2v$. Нетрудно получить *точное* решение этого уравнения: $W^{(-)}(t) = \delta \cdot 2^{-1/2} \ln \left[-32(t-t_0) \right]$. Выберем t_0 так, чтобы в этот момент времени ширина отрицательного пятна была равна половине критического значения периода $W^{(-)}(t_0)=\pi\delta\colon t_0=(\mathrm{e}^{\sqrt{2}\pi})/32\approx 2{,}657$. Учитывая, что в используемом приближении ширина каждого из пятен не может быть меньше $\pi\delta$, момент времени t_0 можно интерпретировать как момент перехода от медленной стадии эволюции КС к ее лавинообразному расширению. Теперь выражение для зависимости ширины пятна от времени приобретает вид, пригодный для сравнения с компьютерным экспериментом:

$$W(t) = \delta \cdot 2^{-1/2} \ln \left(-32t + e^{\sqrt{2}\pi} \right).$$
 (8)

Здесь $t\leqslant 0$, и момент времени t=0 соответствует полному разрушению КС. Соотношение (8) можно использовать и для вычисления времени жизни КС с заданной начальной шириной пятна отрицательной полярности W:

$$t = \frac{1}{32} \left[\exp\left\{ \sqrt{2}\pi \right\} - \exp\left\{ \sqrt{2}\frac{W}{\delta} \right\} \right]. \tag{9}$$

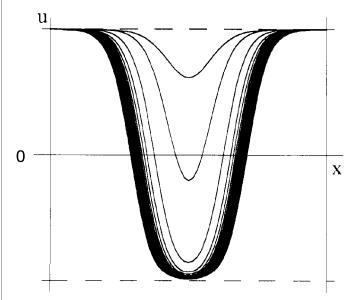
Предполагается, что в начальный момент времени ширина пятна положительной полярности много больше W . То же самое выражение можно, очевидно, использовать и для времени жизни уединенного пятна с начальной шириной W , так как этот случай можно получить предельным переходом $W={\rm const}\,,$ $T\to\infty$.

Поскольку напряженность магнитного поля удовлетворяет уравнению весьма общего вида (3), полученные оценки для скорости дрейфа и времени жизни применимы к широкому классу задач, в которых некоторое физическое поле u(x,t) участвует в процессах переноса, диффузии и размножения, причем толщина переходного слоя мала по сравнению с размерами области.

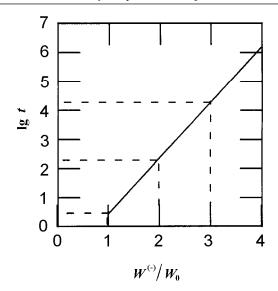
4. Результаты компьютерного моделирования

Для определения пределов применимости формул (9) и (8) мы использовали метод компьютерного моделирования. На рис. 1 показана эволюция несимметричной нестационарной КС, для которой в начальный момент времени $W^{(-)} = 2.5\pi\delta$ и $W^{(+)} = 3.5\pi\delta$. Для простоты мы выбрали параметры $\mu = 1$, $\gamma_0 = 1$. Представлена серия «моментальных фотографий» графика u(x,t) в пределах одного периода. Интервал времени между двумя последовательными снимками $\Delta t = 50$. Полное время жизни пятна равно 1650. Координата x отложена по горизонтальной оси в единицах δ . Горизонтальные линии u=1 и u=-1 соответствуют уровню насыщения. На начальной стадии КС квазистационарна, ВПС медленно перемещается, ширина отрицательного пятна убывает и ширина положительного возрастает. В тот момент, когда ширина более узкого пятна сравнивается с критической ($W^{(-)} \approx \pi \delta$), начинается быстрый процесс разрушения КС.

Зависимость времени жизни асимметричной конфигурации магнитного поля с широким положительным пятном ($W^{(+)} = 10\pi\delta$) от ширины отрицательного пятна показана на рис. 2. По горизонтальной оси отложено отношение ширины отрицательного пятна в начальный момент времени $W^{(-)}(t_0)$ к критическому значению $W_0 = \pi \delta$. Фиксировался момент времени, когда отрицательное пятно полностью исчезает и функция u в пределах одного периода становится положительной. По вертикальной оси отложен десятичный логарифм времени жизни. Очевидно, что график t(W) неотличим от прямой линии. Угол наклона по графику рис. 2 определяется из соотношения $\lg \psi \approx 1{,}912$, где $\lg \psi = (\lg t_2 - \lg t_1)/(W_2/W_0 -W_1/W_0$). Приближенная формула (9) дает значение $\lg \psi = \pi \sqrt{2} / \ln 10 \approx 1,92952$. Таким образом, погрешность, даваемая формулой (9), составляет $\sim 1\%$,



 $\it Puc.~1.$ Эволюция несимметричной контрастной структуры: начальная ширина отрицательного пятна $\it W^{(-)}=2,5\pi\delta$, положительного — $\it W^{(+)}=3,5\pi\delta$



Puc. 2. Время жизни t контрастной структуры с заданной шириной пятна как функция отношения ширины пятна в начальный момент времени $W^{(-)}(t_0)$ к критическому значению $W_0=\pi\delta$

поэтому приближенными формулами для скорости дрейфа ВПС и времени жизни КС можно пользоваться не только для случая широких пятен КС, но и при менее жестких ограничениях: $W^{(+)} \gg W^{(-)}, \ W^{(-)} > \pi \delta$. Более подробный анализ результатов компьютерного моделирования показывает, что погрешность формулы для времени жизни не превышает 1%. Из рис. 2 видно, что КС живет практически бесконечно большое время: $t > 10\,000$, если ширина обоих пятен (положительного и отрицательного) превышает критическую ширину $\pi\delta$ не менее чем в три раза. Если ширина пятна превышает критическую только в два раза, время жизни КС уменьшается в 30 раз. Наконец, пятно с толщиной порядка критической разрушается практически мгновенно. Эти результаты подтверждают предположение о лавинообразном характере процесса разрушения КС на поздней стадии, которая начинается, когда толщина пятна становится сравнимой с критическим значением.

Оценим время жизни КС магнитного поля в спиральных галактиках. Типичные параметры [3, 4] (в единицах длины 1 кпк и времени $5 \cdot 10^8$ лет, галактики М51, М81) $\mu = 0{,}0016, \;\; \gamma_0 = 4, \;$ толщина ВПС порядка $\delta = 0.2$ кпк, что примерно в 100 раз меньше радиуса галактики d = 20 кпк. Формула (9) показывает, что в однородной среде с нулевой скоростью вещества (${f V}=0$) трудно ожидать наличия контрастных образований размером меньше $2\pi \cdot 0.2$ кпк $\simeq 1.2$ кпк (время их жизни меньше времени одного оборота галактики), но вполне возможно существование КС размером порядка $d\geqslant 1$ кпк. Разумеется, направленное крупномасштабное движение вещества, которое в спиральных галактиках представлено дифференциальным вращением, приведет к более быстрому разрушению контрастных пятен магнитного поля за счет вытягивания и истончения, но рассмотрение этого эффекта выходит за рамки данной работы.

Работа поддержана Российским фондом фундаментальных исследований (гранты 95-01-01284a и 98-01-00356).

Авторы благодарны А. Б. Васильевой, В. Ф. Бутузову, Д. Д. Соколову и А. Шукурову за полезные обсуждения.

Литература

- 1. *Краузе Ф., Рэдлер К.-Х.* Магнитная гидродинамика средних полей и теория динамо. М., 1984.
- Ruzmaikin A.A., Shukurov A.M., Sokoloff D.D. Magnetic Fields of Galaxies. Dordrecht: Kluwer Acad. Publ., 1988.
- 3. *Poezd A.D.*, *Shukurov A.M.*, *Sokoloff D.D.* // Month. Not. of RAS. 1993. **264**. P. 285.
- 4. Beck R., Brandenburg A., Moss D. et al. // Astron. Astrophys. 1996. **34**. P. 153.
- 5. *Васильева А.Б., Бутузов В.Ф.* Асимптотические методы в теории сингулярных возмущений. М., 1990.
- Васильева А.Б. // Матем. моделирование. 1991. 3, № 4. С. 114.
- 7. Васильева А.Б. // ЖВМ и МФ. 1995. 35, № 4. С. 520.
- 8. Янке Э., Эмде Φ ., Леш Φ . Специальные функции. М., 1968.

Поступила в редакцию 17.04.98

УДК 530.12

ГРАВИТАЦИОННОЕ ПОЛЕ ПЛОСКОЙ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ В ТЕОРИИ ГРАВИТАЦИИ ВИССЕРА

М. М. Карецкий

(кафедра квантовой теории и физики высоких энергий)

Найдено новое точное решение уравнений теории гравитации с массивным гравитоном в случае, когда источником гравитационного поля является плоская электромагнитная волна.

Можно ли присвоить гравитону массу? Имеет ли вообще смысл говорить о массивном гравитоне? Такие вопросы ставит Виссер (Visser) в своей работе [1]. Как известно из общей тео-

рии относительности Эйнштейна, гравитон должен быть безмассовым. Но астрофизические данные допускают [2] существование гравитона с массой $m_g < 2 \cdot 10^{-29}$ эВ $\approx 2 \cdot 10^{-38} m_{\rm nucl} \approx 3 \cdot 10^{-66}$ кг.