ИНДУЦИРОВАННАЯ МАГНИТНАЯ АНИЗОТРОПИЯ ПЛЕНОК ФЕРРИТОВ-ГРАНАТОВ, ВЫРАЩЕННЫХ НА ПОДЛОЖКАХ (210)

Е. Н. Ильичева, Е. И. Ильяшенко, А. В. Клушина, Н. Б. Широкова

(кафедра общей физики)

Предложен осциллографический метод измерения полей неоднородного зародышеобразования Hⁿ для пленок ферритов-гранатов, выращенных на подложках (210). Метод основан на использовании двух ортогональных магнитных полей, одно из которых является насыщающим; оно поддерживает исходное состояние намагниченности в процессе перемагничивания другим полем. Анализ полученных азимутально-полевых зависимостей критических параметров перемагничивания и результаты измерений угла однородного вращения вектора намагниченности свидетельствуют о наличии ромбической магнитной анизотропии во всех исследованных образцах.

Введение

Эпитаксиальные феррит-гранатовые пленки, выращенные на монокристаллических подложках, наряду с магнитокристаллической обладают анизотропией, индуцированной в процессе роста пленки. В случае, когда нормаль к плоскости пленки не совпадает ни с одной из главных кристаллографических осей, в процессе роста пленки формируется орторомбическая магнитная анизотропия из-за понижения При феноменологическом подходе для адекватного описания полной магнитной анизотропии требуется достаточное количество параметров, поэтому необходима разработка методов их измерения. Наряду с традиционными (методы ферромагнитного резонанса, крутящих моментов и др.) в настоящее время наиболее распространены косвенные магнитооптические методы измерения параметров анизотропии. Это основанный на наблюдении однородного зарождения доменной структуры метод фазовых переходов [1, 2], а также метод определения ориентации вектора намагниченности насыщения \mathbf{M}_S относительно поля \mathbf{H} , значительно превышающего поле анизотропии, по измерению угла вращения плоскости поляризации [3].

Предлагаемая работа является продолжением цикла [4–6], в котором разработан ряд методов определения магнитных параметров Ві-содержащих эпитаксиальных феррит-гранатовых пленок, выращенных на подложках с кристаллографической ориентацией (210). Для определения параметров анизотропии используются азимутально-полевые зависимости критических полей неоднородного зародышеобразования.

Образцы и методика исследования

Исследования проводились на пленках (BiLu)₃ (FeGa)₅ O₁₂, эпитаксиально выращенных на немагнитных подложках (GdCa)₃ (GaMgZr)₅ O₁₂ и Gd₃ Ga₅ O₁₂ с ориентацией (210). Все исследованные образцы можно считать квазиодноосными [5, 6], ось легкого намагничивания (ОЛН) которых лежит в плоскости (zOx) и отклонена от оси Oz на угол θ_0 (рис. 1).

Рис. 1. Система координат, используемая в работе

Для удобства описания кристаллографических и магнитных свойств выбрана система координат x, y, z, оси которой ориентированы так, что $\mathbf{x} = (1/\sqrt{5})(\overline{1}, 2, 0), \ \mathbf{y} = (0, 0, 1), \ \mathbf{z} = (1/\sqrt{5})(2, 1, 0).$ Единичный вектор намагниченности $\mathbf{m} = \mathbf{M}_S/M_S =$ $= m_x \mathbf{x} + m_y \mathbf{y} + m_z \mathbf{z}.$ В равновесном состоянии $m_y = 0$ и полосовая доменная структура ориентирована вдоль направления Ox. В лабиринтной структуре прослеживались направления [$\overline{120}$], [$\overline{121}$], [001]. Значения θ_0 и M_S определялись по восприимчивостям χ_{zz} и χ_{zx} процессов смещения стенок полосовых доменов [5]. Для исследованных магнитных пленок $\theta_0 = 5 \div 30^\circ$ и $4\pi M_S = 50 \div 70$ Гс. Отклонение оси [210] от нормали к плоскости пленки по данным рентгенографических измерений составляло менее 1° , и его можно не принимать во внимание.

Измерения были проведены на магнитооптической установке, описанной в работе [4]. Образец располагался в зазоре электромагнита, формирующего плоскостное постоянное магнитное поле с напряженностью $H_p \leq 3$ кЭ. Напряженность поля смещения H_z вдоль нормали **n** не превышала 100 Э. Азимутальный угол φ отсчитывался от оси Ox к направлению поля H_p (см. рис. 1).

Установка позволяла визуально наблюдать доменную структуру; осциллографировать петли гистерезиса $m_z(H_z)$, где $m_z = M_z/M_S = M_S \cos\theta/M_S$; проводить фотометрические измерения интенсивности светового потока, прошедшего через образец, и измерять угол фарадеевского вращения плоскости поляризации. В двух последних случаях для улучшения отношения сигнал/шум световой поток был модулирован по интенсивности лазерного пучка I_0 ; измерения проводились на частоте модуляции.

Величина фотометрического сигнала U зависит от угла α_0 между поляризационными элементами, угла поворота плоскости поляризации $\Phi(\theta)$, интенсивности лазерного пучка I_0 и объемов доменов V_1 и V_2 с противоположной ориентацией z-компоненты намагниченности:

$$U = I_0 \{ \cos^2[lpha_0 + \Phi(heta_1)] V_1 - \cos^2[lpha_0 - \Phi(heta_2)] V_2 \}.$$

Для процессов смещения 180° -стенки $U = I_0 \cos^2 \alpha_0 (W_1 - W_2)/(W_1 + W_2)$, где W_1 и W_2 — ширина доменов с противоположной ориентацией вектора \mathbf{M}_S .

Измерение $\Phi(\theta)$ проводилось с точностью до 0,1°. Выбор значений α_0 и I_0 зависит от конкретной экспериментальной задачи и обсуждается далее.

Неоднородное зародышеобразование

Переход из однодоменного состояния в многодоменное, наблюдаемый в полях $H \ll H_K$, происходит в результате неоднородного необратимого вращения вектора намагниченности \mathbf{M}_S . Этот переход является фазовым переходом I рода и сопровождается скачкообразным изменением намагниченности в критическом поле неоднородного зародышеобразования \mathbf{H}^n , которое определяется следующим образом: $\mathbf{H}^n = \mathbf{H}_z^n + \mathbf{H}_p^n + \mathbf{H}_d$, где \mathbf{H}_d — размагничивающее поле. В однодоменном состоянии поле $H_d = 4\pi M_z$. Это состояние при измерениях создавалось одним из независимых ортогональных полей — \mathbf{H}_{Sz} или $\mathbf{H}_{Sp}(\varphi)$, что позволяло блокировать рост краевых зародышей. Скачкообразное изменение величины $\Delta m_z = \Delta M_z/M_S$ в поле \mathbf{H}^n фиксировалось по петлям гистерезиса [4]. В случае, когда однодоменное состояние задается полем H_{Sz} , плоскостное поле вызывает сдвиг петли гистерезиса вдоль оси абсцисс, т. е. сдвиг по полю H_z (рис. 2, *a*), и поле зародыше-образования H_z^n определяется по скачку намагниченности как для положительной ($m_z > 0$), так и для отрицательной ($m_z < 0$) полярности намагниченности. Для плоскостного поля H_{Sp} сигнал перемагничивания появляется в поле $H_z = H_z^n$ (рис. 2, *b*) только при одной полярности.

Рис. 2. Петли гистерезиса $m_z(H_z)$ при $H_{z \max} = 66$ Э. Образец № 2: толщина пленки h = 13 мкм, $\theta_0 = 26^\circ$, $4\pi M_S = 60$ Гс; $H_p = 53,2$ Э (а) и 148,4 Э (б)

Критические кривые неоднородного зародышеобразования для положительной полярности ($m_z > 0$) одной из (210)-пленок (образец №1) при нескольких азимутальных углах φ представлены на рис. 3. Кривые для $m_z < 0$ идентичны приведенным, симметричны им относительно начала координат. Когда направление поля \mathbf{H}_p отклоняется от оси Ox не более чем на 40°, кривые незначительно отличаются друг от друга. В этом случае наблюдается линейная зависимость $H_z^n(H_p^n)$, которая описывается уравнением $H_z^n + \operatorname{tg} \check{\theta_0} H_p^n = 0$ так же, как и для процесса смещения стенок полосовых доменов при $\varphi = 0$ [5]. Это является следствием постоянства восприимчивости процесса смещения доменных стенок χ и практически неизменной ориентации вектора М_S вдоль ОЛН в процессе зародышеобразования.

Полученные закономерности дают возможность определять tg θ_0 по критическим полям неоднородного зародышеобразования: tg $\theta_0 = H_z^n/H_p^n = \chi_{zx}/\chi_{zz}$. Найденные значения ортов вдоль ОЛН $\mathbf{n}_u = (\sin \theta_0, 0, \cos \theta_0)$ совпадают с результатами работы [5].

При $\varphi > 40^{\circ}$ амплитуда петли гистерезиса уменьшается, происходит «размазывание» скачка Δm_z

Рис. 3. Критические кривые неоднородного зародышеобразования на плоскости (H_z, H_p) для различных значений азимутального угла φ . Образец № 1: толщина пленки h = 18,7 мкм, $\theta_0 = 30^\circ$, $4\pi M_S = 65$ Гс; $\varphi = 0$ (1), 55° (2), 84° (3 и 3'), 98° (4 и 4') и 127° (5). Сплошные кривые соответствуют $m_z > 0$, пунктирные — $m_z < 0$

при зародышеобразовании и усиливается роль процессов вращения вектора \mathbf{M}_S при преобладающем влиянии плоскостного поля $H_p.$ Вблизи $arphi=\pi/2$ кривые для $m_z > 0$ и $m_z < 0$ сближаются и при двух значениях угла φ , близких к $+\pi/2$ и $-\pi/2$, сходятся в критических точках при $H_z^n = 0$. Переходы через $\varphi = \pm \pi/2$ сопровождаются переориентацией кривых относительно оси абсцисс (см. кривые 3 и 4 на рис. 3) и изменением направления смещения петли гистерезиса по полю H_z . При $\varphi = \pm \pi/2$ сдвиг петли гистерезиса отсутствует, а визуально наблюдается, что доменная структура зарождается в поле $H_y = 980$ Э (поле $H_y = H_p$ приложено вдоль оси [001]) в результате двустороннего разворота вектора намагниченности \mathbf{M}_S , что приводит к состоянию смешанной полярности.

На рис. 4 представлена зависимость $H_z^n(\varphi)$ при постоянном поле H_p . Эти данные можно получить как из рис. 3, так и путем непосредственных измерений $H_z^n(\varphi)$ при $H_p = \text{const}$ для обеих полярностей намагниченности. Полученная

Рис. 4. Азимутальная зависимость нормальной компоненты H_z^n поля неоднородного зародышеобразования при $H_p = 280 \ni (H_p/H_{Ku} \approx 0.15)$. Образец № 3: $\theta_0 = 14,5^\circ$. Направление кристаллографической оси [001] отмечено стрелкой

простая $\cos \varphi$ -зависимость свидетельствует о решающей роли индуцированной одноосной магнитной анизотропии в процессе неоднородного зародышеобразования, что согласуется с результатами [1], полученными для процессов однородного зародышеобразования доменов.

Определение параметров анизотропии

В результате отклонения ОЛН образцов от нормали к поверхности пленки **n**, в плоскости пленки возникает магнитная анизотропия. На основе выполненных измерений можно выделить предельные случаи для намагничивания образца плоскостным полем H_p : $\varphi = 0$, $\varphi = \pi$ и $\varphi \approx \pm \pi/2$. Для этих углов φ рассмотрим процесс однородного вращения вектора \mathbf{M}_S из исходного состояния (вдоль ОЛН) к направлению поля H_p . Исходное однодоменное состояние задавалось полем $H_{Sz} \approx 25$ Э. В режиме модуляции интенсивности I_0 излучения лазера были проведены измерения сигнала U, пропорционального M_z -компоненте намагниченности.

Расположение поляризационных элементов выбиралось так, чтобы отношение $U_{\text{max}} = I_0 \sin^2(\alpha_0 + \Phi(\theta_0))$ к $U_{\text{min}} = I_0 \sin^2 \alpha_0$ было не менее 100. Угол α_0 целесообразно выбирать так, чтобы U_{min} не превышало уровень шума при $\varphi = \pi/2$, когда в поле $H_p = 3$ кЭ вектор \mathbf{M}_S лежит в плоскости пленки.

Зависимость нормированного значения фотометрического сигнала U/U_{max} для образца №1 от плоскостного поля H_p представлена на рис. 5. Кривая 1 соответствует $\varphi = 0$, когда процесс вращения происходит обратимо и вектор \mathbf{M}_S остается в плоскости (zOx). Для сравнения представлена кривая 3, когда поле H_p отрицательно для исходного состояния намагниченности и процесс идет с образованием доменной структуры. Кривая 2 для $\varphi = \pi/2$ получена при увеличении поля H_p до 3 кЭ. В полях H_p от 1 до 3 кЭ сигнал практически не менялся. После этого поле H_{Sz} выключалось и измерялся сигнал $U(H_p)$ при уменьшении поля H_p до нуля (кривая 4). Как видно, U(0) для кривой 4 вдвое меньше, чем для кривой 2, что объясняется возникновением доменной структуры в результате двустороннего разворота намагни-

Рис. 5. Нормированный фотометрический сигнал U/U_{max} , пропорциональный *z*-компоненте намагниченности, в зависимости от плоскостного поля H_p для образца № 1: $\varphi = 0$ (*I*), $\pi/2$ (2 и 4) и π (3)

ченности от оси трудного намагничивания, лежащей в плоскости пленки. Величина поля однородного зародышеобразования $H_{\rm hom}$ в соответствии с приведенными кривыми для образца № 1 с точностью до нескольких процентов составляет $H_{\rm hom} = 980$ Э.

Согласно расчетам [7], в бездефектных кристаллах для случая, когда \mathbf{H}_{\perp} перпендикулярно ОЛН, нестабильность в распределении намагниченности, которая является зародышем обратной фазы, возникает за счет знакопеременных колебаний вектора \mathbf{M}_S в критическом поле \mathbf{H}_{\perp}^n :

$$H^n_\perp = rac{2K_u}{M_S} \Bigl(1 - rac{2}{[Q(1+Q)]^{1/2}} \, rac{\Lambda}{h} \Bigr),$$

где $Q = K_u/(2\pi M_S^2)$ — фактор качества, K_u — константа одноосной анизотропии, $\Lambda = \sqrt{A/(2\pi M_S^2)}$, A — константа обмена.

Поскольку наши образцы обладали большой приведенной толщиной h/Λ и имели фактор качества $Q \gg 1$, поле перехода в многодоменное состояние $H_{\rm hom} = H^n_\perp \cong 980$ Э можно считать равным полю одноосной анизотропии H_{Ku} , и полученная константа одноосной анизотропии $K_u = H_{Ku}M_S/2 = 2550$ эрг/см³.

По результатам измерений U/U_{max} для $\varphi = 0$ (рис. 5, кривая *l*) на основании теории однородного вращения вектора намагниченности [8] были рассчитаны значения равновесных углов отклонения θ вектора \mathbf{M}_S от ОЛН в зависимости от H_p . Для этого использовали значения α_0 , θ_0 и угол фарадеевского вращения Φ . Используя данные эксперимента для $0,1 < H_p/H_{Ku'} < 0,5$ при $\varphi = 0$, находим поле и константу одноосной анизотропии $H_{Ku'} = 890 \pm 90$ Э, $K_{u'} = 2300 \pm 200$ эрг/см³.

На основе полученных данных для исследованных образцов с ориентацией подложки (210) энергия магнитной анизотропии в соответствии с [9] может быть представлена в виде $w = (K_{u'} + \Delta \sin^2 \psi) \sin^2 \theta'$, где $\Delta = K_u - K_{u'}$, ψ — азимутальный угол в плоскости, перпендикулярной ОЛН, направление $\psi = 0$ совпадает с направлением орта $\mathbf{n}_{u'} = (\cos \theta_0, 0, -\sin \theta_0)$, а θ' — угол отклонения вектора \mathbf{M}_S от ОЛН.

Процессы, рассмотренные в этом разделе, происходят вследствие магнитной анизотропии сложной природы, а использование термина «одноосности» подчеркивает, что найденные с помощью осциллографического метода предельные случаи ($\varphi = 0$, $\varphi = \pi$ и $\varphi \approx \pm \pi/2$) намагничивания образца удовлетворяют теориям одноосной анизотропии [7, 8].

Отметим, что предложенный осциллографический метод применим для оперативного, но точного (до 0,1°) определения ОЛН и осей трудного намагничивания пленок ферритов-гранатов с положительной константой одноосной анизотропии, синтезированных на подложках любой ориентации. Из анализа азимутально-полевых зависимостей критических полей неоднородного зародышеобразования определяется ориентация ОЛН, а оси трудного намагничивания соответствуют направлениям плоскостных полей, при которых отсутствует сдвиг петли гистерезиса.

Авторы благодарят А. М. Балбашова, В. П. Клин за предоставление образцов и И. В. Телегину, В. В. Зубенко за проведенные рентгенографические измерения.

Литература

- Hubert A., Malosemoff A.F., De Luca J.C. // J. Appl. Phys. 1974. 45, No. 8. P. 3562.
- Дикитейн И.Е., Лисовский Ф.В., Мансветова Е.Г., Тарасенко В.В. // ЖЭТФ. 1984. 86, №4. С. 1473.
- 3. Лисовский Ф.В., Мансветова Е.Г., Шаповалов В.И. // Опт. и спектр. 1979. 47, № 6. С. 1082.

- 4. Ильичева Е.Н., Клуишна А.В., Широкова Н.Б. и др. // ЖТФ. 1997. 67, № 6. С. 32.
- 5. Ильичева Е.Н., Шишков А.Г., Балбашов А.М. и др. // ЖТФ. 1993. **63**, № 11. С. 143.
- Ильичева Е.Н., Клуишна А.В., Широкова Н.Б. и др. // Вестн. Моск. ун-та. Физ. Астрон. 1994. № 2. С. 59 (Moscow University Phys. Bull. 1994. No. 2. P. 57).
- 7. Muller M.W. // J. Appl. Phys. 1967. 38. P. 2413.
- Stoner E.C., Wohlfart E.P. // Phil. Trans. Roy. Soc. 1948. A240. P. 599.
- 9. Эшенфельдер А. Физика и техника цилиндрических магнитных доменов. М.: Мир, 1983. С. 124.

Поступила в редакцию 21.04.99

ГЕОФИЗИКА

УДК 551.465+551.466

ТРАНСФОРМАЦИЯ СТРАТИФИКАЦИОННОЙ СТРУКТУРЫ ОКЕАНА ПРИ ПОДВОДНОМ ЗЕМЛЕТРЯСЕНИИ

М. А. Носов, С. Н. Скачко

(кафедра физики моря и вод суши)

Уравнения баланса турбулентной энергии и турбулентного переноса тепла применены для оценки возможности трансформации вертикального профиля температуры в результате подводного землетрясения.

Совместный анализ каталога землетрясений и карт аномалий температуры поверхности Мирового океана позволил выявить несколько случаев образования крупномасштабных (~ 500 км) холодных аномалий температуры поверхности над эпицентрами сильных подводных землетрясений [1, 2]. Принципиальная возможность такого явления впервые обсуждается в работе [3]. Образование упомянутых аномалий, с нашей точки зрения, связано с разрушением теплого верхнего слоя океана и выходом к поверхности холодных глубинных вод в результате интенсификации вертикального турбулентного обмена над областью эпицентра.

Стратификация вод океана — весьма устойчивое образование, поэтому существование эффекта ее разрушения приводит к вопросу о том, какая энергия для этого необходима и как эта энергия связана с энергией подводного землетрясения. Предварительные оценки такого рода уже выполнялись нами ранее в работе [4]. В настоящей работе используется более совершенный подход, значительно повышающий точность оценок. Этот подход основан на численном исследовании системы уравнений баланса турбулентной энергии и турбулентного переноса тепла, в котором учитываются: 1) затраты энергии на работу против сил плавучести; 2) специфическое пространственное распределение энергии турбулентных пульсаций; 3) переходные процессы при «включении» и «выключении» генерации турбулентной энергии; 4) широкий

спектр масштабов турбулентного движения.

Характерный горизонтальный размер области, в которой происходит развитие аномалии, намного превышает глубину океана, поэтому правомерно рассматривать одномерную задачу вдоль оси Oz, направленной вертикально вниз. Начало системы координат расположим на поверхности воды. Базовая система уравнений включает в себя уравнения баланса турбулентной энергии $b \, [M^2 \cdot c^{\perp 2}]$ для стратифицированной жидкости и турбулентного переноса тепла [5]:

$$rac{\partial b}{\partial t} = -rac{g}{
ho_0}K_
horac{\partial
ho}{\partial z} + rac{\partial}{\partial z}K_brac{\partial b}{\partial z} - rac{b^{3/2}}{L} + eta(z,t), \quad (1)$$

$$\frac{\partial T}{\partial t} = \frac{\partial}{\partial z} K_T \frac{\partial T}{\partial z},\tag{2}$$

где g — ускорение силы тяжести, ρ_0 и ρ — средняя и текущая плотность жидкости, L — масштаб турбулентного движения, K_{ρ} , K_b и K_T — турбулентные коэффициенты обмена массой, турбулентной энергией и теплом. Первый член в правой части уравнения (1) описывает затраты энергии на работу против сил плавучести, второй — турбулентный перенос турбулентной энергии, третий — диссипацию турбулентной энергии. Генерация турбулентной энергии описывается функцией $\beta(z, t)$, которую мы выбираем в следующем виде:

$$eta(z,t)=eta_0[heta(t)- heta(t- au)],$$