момента времени это слагаемое осциллирует по x с частотой, возрастающей со временем t.

Теперь возьмем функцию N(t) в выражении (16) в виде

$$N(t) = \left\lfloor rac{eta z_0(t)}{\pi}
ight
floor + m, \quad m \in \mathbb{N}.$$
 (19)

В силу того, что функция $\varphi_0(x)$ на интервале $(0,\beta)$ положительна, все сказанное выше переносится на первое слагаемое в выражении (16). С другой стороны, поскольку ряд в правой части (16) для функции r(x,t;N(T)) сходится равномерно по $(x,t) \in [0,\beta] \times [0,T], 0 < T < +\infty$, то для каждого фиксированного $0 < T < +\infty$ найдется такое натуральное число m(T), что

$$|r(x,t;N(T))| \leqslant V rac{arepsilon \, {
m e}^{2eta}}{2\pieta r_d^2} \exp(-T).$$

Таким образом, на основании модели, предложенной в работе [2], удалось поставить математическую начально-краевую задачу \mathbf{D}_1 , решение которой дает полное совпадение качественной динамической картины эффекта, наблюдаемого в эксперименте (см. [1]), с результатами исследования решения построенной математической модели. В заключение отметим, что в работе [2] была теоретически исследована аналогичная задача на полупрямой, что позволило качественно выявить наличие слоистой структуры в полупроводнике, однако динамическое развитие эффекта можно детально исследовать только при рассмотрении начально-краевых задач для уравнения составного типа (11) в ограниченных областях.

Работа выполнена при финансовой поддержке РФФИ (грант 96-01-00337).

Литература

- Астратов В.Н., Ильинский А.В., Киселев В.А. // ФТТ. 1984.
 26, № 9. С. 2843.
- 2. Фурман А.С. // ФТТ. 1986. 28, № 7. С. 2083.
- 3. Габов С.А., Свешников А.Г. Задачи динамики стратифицированной жидкости. М.: Наука, 1986.
- 4. Габов С.А., Свешников А.Г. Линейные задачи теории нестационарных внутренних волн. М.: Наука, 1990.
- 5. Плетнер Ю.Д. // ЖВМ и МФ. 1992. 32, № 12. С. 1885.
- Корпусов М.О., Плетнер Ю.Д., Свешников А.Г. // ЖВМ и МФ. 1999. 39, № 9. С. 1706.

Поступила в редакцию 09.12.98

АТОМНАЯ И ЯДЕРНАЯ ФИЗИКА

УДК 539.12

ФЕНОМЕНОЛОГИЧЕСКАЯ МОДЕЛЬ РЕАКЦИИ УПРУГОГО *пN*-РАССЕЯНИЯ В ОБЛАСТИ ЭНЕРГИЙ ВОЗБУЖДЕНИЯ НУКЛОННЫХ РЕЗОНАНСОВ

В. И. Мокеев, М. В. Осипенко

$(HИИЯ\Phi)$

Проведен феноменологический анализ экспериментальных данных реакции упругого πN -рассеяния в области энергий возбуждения нуклонных резонансов. Из условия наилучшего воспроизведения экспериментальных сечений получены нерезонансные амплитуды и фазы интерференции резонансных амплитуд.

Введение

Ускоритель электронов непрерывного действия ТЈNAF (США), введенный недавно в строй, предоставляет качественно новые возможности в исследовании структуры адронов и динамики сильных взаимодействий в эксклюзивных реакциях. Цель эксперимента E-93-006 [1], проводимого в ТЈNAF, состоит в определении электромагнитных формфакторов нуклонных резонансов с массами более 1,6 ГэВ, а также поиск missing-резонансов на основе анализа данных по сечениям реакции рождения фотонами пар пионов на протоне. Существует, однако, проблема описания нерезонансных процессов в реакции $\gamma p \to \pi^- \Delta^{++}$, являющейся одним из основных каналов, которые приводят к образованию двух пионов в конечном состоянии. Описание нерезонансных процессов при W > 1,6 ГэВ в условиях конкуренции многих открытых неупругих каналов относится к одной из наиболее сложных проблем исследований структуры высоколежащих резонансов в электромагнитных взаимодействиях. В работах [2, 3] был использован подход [4], включающий коррекцию нерезонансных процессов, вызванную эффектами взаимодействия во входном и выходном каналах. В подходе [2, 3] нерезонансные процессы описывались минимальным набором борновских диаграм.

Как показано в работе [3], эффекты взаимодействия в начальном состоянии (ВНС) и в конечном состоянии (ВКС) играют важную роль в описании реакции $\gamma p \rightarrow \pi^- \Delta^{++}$. Если пренебречь вкладами ВНС- и ВКС-эффектов, то при углах эмиссии пиона, больших 90° (в с.ц.м.), и W > 1,6 ГэВ рассчитанные сечения превышают измеренные в несколько раз. Согласно [4], связь входного и выходного каналов реакции с открытыми неупругими каналами представлена как частичное поглощение падающих частиц до протекания реакции и частичное поглощение образовавшихся продуктов распада. Факторы ВНСи ВКС-коррекций связываются в [4] с амплитудами упругих реакций ρp - и $\pi \Delta$ -рассеяния соответственно. В работе [2] реакции упругого ρp - и $\pi \Delta$ -рассеяния описывались в виде совокупности возбуждений нуклонных резонансов в *s*-канале и нерезонансного фона. Амплитуды резонансных процессов рассчитывались в приближении Брейта-Вигнера с использованием данных по ширинам распадов резонансов из работы [5]. Нерезонансные амплитуды реакций упругого ρp - и $\pi \Delta$ -рассеяния определялись из нерезонансных амплитуд упругого πN -рассеяния в рамках SU(3) симметрии относительно ароматов. В свою очередь, в работе [2] нерезонансные процессы в реакции упругого πN -рассеяния вычислялись в рамках сильных модельных приближений. В связи с этим представляет интерес определение амплитуд нерезонансных процессов из экспериментальных данных по сечениям реакции упругого πN -рассеяния.

В настоящей работе развита феноменологическая модель описания реакции упругого πN -рассеяния в области энергий возбуждения нуклонных резонансов. Фитирование экспериментальных данных [6] по сечениям упругого πN -рассеяния для каждой из парциальных волн с заданными величинами полного (J) и орбитального (L) моментов позволяет определить амплитуды нерезонансных процессов непосредственно из экспериментальных данных, не используя какие-либо модельные предположения о соотношениях между нерезонансными амплитудами в состояниях с различными J и L.

1. Амплитуды и сечение реакции упругого *пN*-рассения

Полная амплитуда реакции для каждого состояния с определенными значениями полного момента *J*, изоспина *I* и четности *P* представлялась в виде суперпозиции резонансных и нерезонансного членов:

$$egin{aligned} &\langle\lambda_{N_f}|T|\lambda_{N_i}
angle = \langle\lambda_{N_f}|T_{ ext{born}}|\lambda_{N_i}
angle + \ &+ \sum_{N^*} \langle\lambda_{N_f}|T_{ ext{res}_{N^*}}|\lambda_{N_i}
angle \exp(2i\phi_{N^*}), \end{aligned}$$

где ϕ_{N^*} — фаза интерференции резонанса относительно фона. Фазы интерференции резонансов ϕ_{N^*} полагались свободными параметрами и извлекались из условия наилучшего воспроизведения экспериментальных сечений.

Полное сечение реакции упругого πN -рассеяния для каждой парциальной волны вычислялось следующим образом:

$$\sigma(W) = rac{1}{(8\pi W)^2} \int d\Omega rac{1}{2} \sum_{\lambda_{N_f},\lambda_{N_i}} |\langle \lambda_{N_f} | T | \lambda_{N_i}
angle|^2.$$

2. Нерезонансные процессы

Нерезонансные процессы в реакции упругого πN -рассеяния описываются в виде линейных функций от W, т.е. для каждой парциальной волны с определенными значениями полного момента J и орбитального момента L амплитуда фона в LS-представлении имеет вид

$$a_{LS} = C + BW,$$

где C и B — вещественные параметры модели, определяемые из условия наилучшего воспроизведения экспериментальных данных [6]. Далее амплитуда a_{LS} переводится в спиральное представление, в котором для канала с полным моментом J имеет вид

$$\langle \lambda_{N_f} | T_{
m born} | \lambda_{N_i}
angle = a_{\lambda_{N_f} \lambda_{N_i}} d^J_{\lambda_{N_f} \lambda_{N_i}}(heta),$$

где λ_{N_i} и λ_{N_f} — спиральности нуклона в начальном и конечном состояниях, а $d^J_{\lambda_{N_f}\lambda_{N_i}}(\theta)$ — соответствующие d-функции.

3. Резонансные процессы

Резонансные процессы описываются суперпозицией амплитуд нуклонных резонансов, дающих заметный вклад в волну с заданными квантовыми числами *J* и *L*. Вклад каждого резонанса описывается в приближении Брейта–Вигнера:

$$egin{aligned} &\langle\lambda_{N_f}|T_{\mathrm{res}_{N^*}}|\lambda_{N_i}
angle =\ &=rac{a_{\lambda_{N_f}\lambda_{N^*}}(W)a_{\lambda_{N^*}\lambda_{N_i}}(W)}{M_{N^*}^2-W^2-iM_{N^*}\Gamma_{\mathrm{total}_{N^*}}(W)}d_{\lambda_{N_f}\lambda_{N_i}}^J(heta), \end{aligned}$$

где амплитуды a_{λ_N,λ_N*} могут быть связаны с соответствующими ширинами распадов резонансов по каналу πN [3]:

$$a_{\lambda_{N_f}\lambda_{N^*}}=\sqrt{\Gamma_{\pi N_{N^*}}}M_{N^*}\sqrt{rac{8\pi(2J_{N^*}+1)}{p_\pi}},$$

где p_{π} — модуль трехмерного импульса пиона при $W = M_{N^*}$ в с.ц.м., $\Gamma_{\pi N_{N^*}}$ — ширина распада резонанса по каналу πN в спиральном представлении, а J_{N^*} — спин резонанса.

В настоящей работе использовались ширины $\Gamma_{\pi N_{N^*}}$ из статьи [5]. Так как в [5] ширины даны в LS-представлении, они пересчитывались в спиральное представление. Ширины $\Gamma_{\pi N_{N^*}}$ варьировались в пределах неопределенностей данных [5, 8] и фиксировались из условия наилучшего воспроизведения экспериментальных сечений [6]. W-зависимость амплитуд $a_{\lambda_{N_f}}\lambda_{N^*}$ описывалась в предположении доминирующей роли эффектов прохождения через барьер [7]:

$$a_{\lambda_{N_f}\lambda_{N^*}}(W) = a_{\lambda_{N_f}\lambda_{N^*}}\sqrt{rac{M_{N^*}}{W}}rac{B_L(pR)}{B_L(p_N^*R)},$$

где p и p_{N^*} — модули трехмерного импульса пиона в с.ц.м. при текущем значении W и при $W = M_{N^*}$, $B_L(pR)$ — проницаемость барьера [7] для пиона с орбитальным моментом L. Радиус канала R выбран равным 1 фм.

Полная ширина резонанса $\Gamma_{\text{total}_{N^*}}(W)$ была представлена в виде суммы ширин распада данного резонанса по всем возможным каналам:

$$\Gamma_{ ext{total}_{N^*}}(W) = \sum_i \Gamma_{i_{N^*}}(W),$$

где $\Gamma_{i_{N^*}}(W)$ — ширина распада резонанса по *i*-му каналу. *W*-зависимость ширин распада резонанса по каждому каналу также описывалась в предположении доминирующей роли эффектов прохождения через барьер:

$$\Gamma_{i_N*}(W) = \Gamma_{i_N*} \frac{M_{N*}}{W} \frac{B_L^2(pR)}{B_L^2(p_N*R)}.$$

4. Обсуждение результатов

В рамках представленной модели были выполнены расчеты сечений реакции упругого πN -рассеяния. В расчетах варьировались величины параметров фона C и B, фаз интерференции резонансных и нерезонансной амплитуд ($-\infty < C, B < \infty, 0 < \phi_{N^*} < 2\pi$). Ширины распадов резонансов по всем возможным каналам $\Gamma_{i_{N^*}}$ менялись в пределах неопределенностей [5, 8]. Результаты фитирования сечений [6] для некоторых парциальных волн показаны на рисунке. В целом наблюдается хорошее согласие между расчетными и экспериментальными данными.

Следует отметить важную роль эффектов интерференции резонансных амплитуд между собой и с амплитудой фона, приводящих к значительному отклонению полного сечения от суммы квадратов модулей амплитуд резонансных и нерезонансных процессов.

Как видно из рисунка, во всех парциальных волнах сечения нерезонансных процессов, полученные фитированием экспериментальных данных [6], обращаются в нуль на пороге рождения пиона. Следовательно, развитая модель обеспечивает корректное воспроизведение околопорогового поведения нерезонансных амплитуд упругого πN -рассеяния.

В табл. 1 приведены ширины $\Gamma_{\pi N_N*}$ распада резонансов по каналу πN и полные ширины Γ_{total_N*} , взятые из работ [5, 8], а также отношения $\Gamma_{\pi N_N*}/\Gamma_{\text{total}_N*}$ и результаты, полученные фитирова-

Таблица 1

Ширины $\Gamma_{\pi N_N^*}$	и $\Gamma_{\text{total}_{N^*}},$	полученные	путем	фитирования
экспериментал	ных данных	[6] и привед	енные	в [5] и [8]

$\Gamma_{\pi N_N *}$ (МэВ)		$\Gamma_{\text{total}_{N^*}}$ (M3B)			$\Gamma_{\pi N_N *} / \Gamma_{\text{total}_N *}$ (%)			
N^*	[5]	фит	[5]	[8]	фит	[5]	[8]	фит
S ₁₁ (1535)	77(17)	53	151(27)	100-250	150	51(5)	35-55	35
S ₁₁ (1620)	154(14)	80	173(12)	145-190	180	89(7)	55–90	44
S ₁₁ (2090)	43(50)	93	414(157)	95-414	638	10(10)	8-20	14
$P_{11}(1440)$	270(25)	106	391(34)	250-450	202	69(3)	60-70	53
$P_{11}(1710)$	45(22)	67	478(226)	50-250	272	9(4)	10-20	25
$P_{11}(2100)$	17(11)	28	113(44)	113-260	106	15(6)	10-15	26
$P_{13}(1720)$	50(16)	57	383(179)	100-200	222	13(5)	10-20	26
$P_{13}(1879)$	130(37)	100	498(78)	420-576	600	26(6)	20-35	17
D ₁₃ (1520)	73(6)	53	124(8)	110-135	112	59(3)	50-60	47
$D_{13}(1700)$	3(7)	20	249(218)	50-150	74	1(2)	5-15	27
$D_{13}(2080)$	104(40)	144	447(185)	180 - 1000	240	23(3)	5-25	60
$D_{15}(1675)$	74(4)	70	159(7)	140 - 180	150	47(2)	40-50	47
$F_{15}(1680)$	96(6)	90	139(8)	120-140	148	70(3)	60-70	61
$F_{15}(2000)$	39(33)	72	494(308)	95-490	308	8(5)	4-25	23
$G_{17}(2190)$	123(14)	135	547(48)	350-550	478	22(1)	10-20	28
$S_{31}(1620)$	14(6)	43	154(37)	120 - 180	112	9(2)	20-30	38
$S_{31}(1900)$	107(22)	85	263(39)	140-240	339	41(4)	10-30	25
$P_{31}(1744)$	24(13)	24	299(118)	93-300	188	8(3)	5-20	13
$P_{31}(1910)$	55(22)	77	239(25)	190-270	247	23(8)	15-30	31
$P_{33}(1600)$	53(9)	98	430(73)	250-450	395	12(2)	10-25	25
P ₃₃ (1920)	3(4)	15	152(55)	150-300	222	2(2)	5-20	7
D ₃₃ (1700)	81(34)	80	599(248)	200-400	260	14(6)	10-20	31
D ₃₃ (1940)	81(104)	78	460(316)	200-460	881	18(12)	5-20	9
D ₃₅ (1530)	93(24)	93	526(142)	250-450	459	18(2)	10-20	20
$F_{35}(1905)$	41(13)	70	327(51)	280-440	270	12(3)	5-15	26
$F_{37}(1950)$	114(2)	120	300(7)	290-350	213	38(1)	35–40	56

В скобках представлены погрешности соответствующих ширин из работы [5].

Таблица 2

Значения параметров нерезонансных амплитуд C, B и фаз интерференции ϕ_{N^*} , полученных фитированием экспериментальных данных [6]

Волна	C	$B \ (\Gamma \Im B^{-1})$	Резонанс	ϕ_{N^*}, \circ
S ₁₁	44,1	-33,0	S ₁₁ (1535)	54,8
			S ₁₁ (1650)	47,6
			S ₁₁ (2090)	121,1
P ₁₁	37,3	-30,8	P ₁₁ (1440)	46,6
			P ₁₁ (1710)	330,4
			P ₁₁ (2100)	0,0
P ₁₃	61,5	-41,8	P ₁₃ (1720)	0,0
			P ₁₃ (1879)	118,8
D ₁₃	60,7	-50,1	D ₁₃ (1520)	41,5
			D ₁₃ (1700)	74,9
			D ₁₃ (2080)	29,0
D ₁₅	54,1	-34,2	$D_{15}(1675)$	0,0
F_{15}	53,4	-43,8	$F_{15}(1680)$	33,4
			$F_{15}(2000)$	92,7
G17	257,5	-166,8	$G_{17}(2190)$	51,0
S_{31}	17,5	-15,4	S ₃₁ (1620)	109,9
			S ₃₁ (1900)	40,6
P ₃₁	76,2	-46,0	$P_{31}(1744)$	94,4
			P ₃₁ (1910)	103,8
P ₃₃	144,2	-93,0	P ₃₃ (1600)	116,7
			P ₃₃ (1920)	30,4
D ₃₃	75,0	-52,5	D ₃₃ (1700)	79,9
			D ₃₃ (1940)	90,5
D ₃₅	110,2	-71,0	D ₃₅ (1930)	103,6
F ₃₅	102,8	-67,9	F ₃₅ (1905)	96,4
F ₃₇	79,8	-47,7	F ₃₇ (1950)	48,7

нием экспериментальных данных [6]. Сравнение показывает, что полученные с помощью фитирующей процедуры ширины распадов резонансов неплохо согласуются с данными [5, 8]. Это свидетельствует о том, что развитый подход может использоваться для разделения вкладов резонансных и нерезонансных процессов в амплитуду упругого πN -рассеяния.

Найденные путем фитирования параметры фона C, B и фазы интерференции резонансных амплитуд ϕ_{N^*} представлены в табл. 2.

Заклнение

Предложен метод разделения вкладов резонансных и нерезонансных процессов в реакции упругого πN -рассеяния в области энергий возбуждения нуклонных резонансов. В фитирующей процедуре получено хорошее согласие рассчитанных сечений с экспе-

Рассчитанные в настоящей работе сечения реакции упругого πN -рассеяния (сплошная линия — полное рассчитанное сечение, пунктир — вклад нерезонансных процессов, точечная — вклад резонансных процессов) и экспериментальные данные [6] (кружки)

риментальными данными [6] (см. рисунок). Определенный с помощью фитирующей процедуры фон обнаруживает корректное околопороговое поведение. Полученные нерезонансные вклады в амплитуды упругого πN -рассеяния являются важной исходной информацией для описания эффектов взаимодействия в начальном и конечном состояниях в реакциях фотои электророждения пионов в рамках подхода [2].

Литература

- Burkert V. D., Ripani M. et. al. CEBAF Experiment E-93-006 // Report of the Meeting of the CEBAF Program Advisory Committee PAC 8 (June 13–17 1994).
- Mokeev V., Anghinolfi M., Battaglieri M. et. al. // Few Body System Suppl. 1999. 11. P. 292.
- Battaglieri M., Головач Е.Н., Замиралов В.С. и др. // Ядерная физика. 1999. 62. С. 1552.
- 4. Gottfried K., Jackson J.D. // Nuovo Cimento. 1964. 34. P. 736.
- 5. Manley D. M., Salesky E.M. // Phys. Rev. 1992. D45. P. 4002.
- Höhler G., Kaiser F., Koch R., Pietarinen E. Handbook of Pion-Nucleon Scattering (Physics Data No. 12-1 (1979)); Höhler G. Pion-Nucleon Scattering / Ed. H. Schopper. Landolf-Börnstein, New Series, Group 1, vol. 9, pt. b (N. Y.: Springer, 1983); Koch R. // Baryon 1980: Proc. IV Intern. Conf. on Baryon Resonances. Toronto, 1980. P. 3; Koch R., Pietarinen E. // Nucl. Phys. 1980. A336. P. 331.
- Blatt J. M., Weisskopf U. F. Theoretical Nuclear Physics. N.Y.; L., 1952.
- 8. Particle Data Group // Phys. Rev. 1996. D54. P. 1.

Поступила в редакцию 11.12.98