УДК 550.382.3

НЕКОТОРЫЕ НОВЫЕ СВОЙСТВА СИЛЬНО НЕЛИНЕЙНОГО ИОННОГО ЗВУКА

И. М. Алешин, Д. В. Перегудов

(кафедра физики Земли)

Проанализировано решение уравнений Власова-Пуассона, описывающее стационарный ионно-звуковой солитон. Показано, что при некоторых значениях отношения числа пролетных и захваченных электронов возможно существенное изменение свойств уединенной волны.

Существование ионно-звукового солитона в двухтемпературной плазме впервые было предсказано в работе [1]. Важность этого результата обусловлена тем, что в пределе малых амплитуд потенциал волны подчиняется уравнению Кортевега—де Фриза [2], которое, как известно, имеет точное решение. Это в свою очередь позволяет методами теории возмущений исследовать процессы, описываемые более сложными уравнениями (см., напр., [3, 4, 5]).

Динамика уединенной ионно-звуковой волны существенным образом зависит от распределения электронов, совершающих финитное движение в потенциальной яме солитона. Как было показано в работе [6], с помощью подходящего выбора распределения захваченных частиц можно получить практически любую координатно-временную зависимость электростатического потенциала волны. Произвол в выборе функции распределения обусловлен тем, что в отличие от пролетных частиц (движущихся инфинитно) распределение захваченных частиц определяется процессом возбуждения волны. Один из способов доопределения функции распределения — решение нестационарной задачи. Так, в работе [7] были рассмотрены предельные случаи мгновенного и адиабатического захвата электронов, что позволило однозначно построить электронную функцию распределения. Другая возможность конкретизации функции распределения — доопределить ее, исходя из тех или иных физических предположений (см., напр., [8]). В классической работе [1] такое доопределение делается неявно, когда, считая частоту возмущений в системе низкой по сравнению с частотой столкновений электронов, пренебрегают явной зависимостью от времени электронной функции распределения f_e . В этом случае последняя подчиняется закону Максвелла—Больцмана: $f_e=N\exp\left(e\varphi/T_e\right)F_M(v^2)$ (здесь e — элементарный заряд, T_e — температура электронов, φ — потенциал волны, N — среднее число частиц, $\dot{F}_M(v^2)$ — максвелловское распределение по скоростям), а концентрация электронов имеет вид $n_e = N \exp{(e\varphi/T_e)}$. Однако при таком определении функции распределения нарушается закон сохранения числа электронов

$$rac{\partial n_e}{\partial t} + rac{\partial j_e}{\partial x} = 0,$$

так как соответствующий ток j_e равен нулю, что говорит о необходимости последовательного учета вкладов пролетных и захваченных электронов.

Рассмотрим распространение электростатических возмущений в электрон-ионной плазме. Динамика системы определяется уравнениями Власова-Пуассона:

$$rac{\partial f_e}{\partial t} + v rac{\partial f_e}{\partial x} + rac{e}{m_e} rac{\partial arphi}{\partial x} rac{\partial f_e}{\partial v} = 0,$$
 $rac{\partial f_i}{\partial t} = rac{\partial f_e}{\partial t} = rac{e}{\partial arphi} rac{\partial f_e}{\partial t} = 0,$

$$rac{\partial f_i}{\partial t} + v rac{\partial f_i}{\partial x} - rac{e}{m_i} rac{\partial arphi}{\partial x} rac{\partial f_i}{\partial v} = 0,$$

$$\Delta \varphi = -4\pi e (n_i - n_e).$$

Здесь $n_{e,i} = \int f_{e,i} dv$ — концентрация частиц. Введем безразмерные величины:

$$\frac{m_e}{m_i}=\varepsilon\ll 1,\quad \frac{m_iv_0^2}{2T_e}=\lambda,\quad \frac{m_iv_0^2}{2T_i}=\mu, \qquad (1)$$

$$rac{2earphi}{m_i v_0^2} = \psi, \quad \psi_1 < \psi < \psi_2,$$

$$u=v/v_0, \quad heta=\omega_p(t-x/v_0), \quad f_{e,i}=N\sqrt{rac{m_{e,i}}{2\pi T_{e,i}}}g_{e,i}.$$

Здесь также введены минимальное ψ_1 и максимальное ψ_2 значения потенциала волны. Нас интересуют возмущения, распространяющиеся со скоростью, близкой к скорости ионного звука $v_s \equiv (T_e/m_i)^{1/2}$. В этом случае из (1) следует, что $\lambda \sim 1$, $T_e \gg T_i$, $\mu \gg 1$. Большое значение параметра μ соответствует малой тепловой скорости ионов.

В стационарном приближении уравнения для безразмерных величин имеют вид

$$(1-u)\frac{\partial g_e}{\partial \theta} - \frac{1}{2\varepsilon} \frac{d\psi}{d\theta} \frac{\partial g_e}{\partial u} = 0, \tag{2}$$

$$(1-u)\frac{\partial g_i}{\partial \theta} + \frac{1}{2}\frac{d\psi}{d\theta}\frac{\partial g_i}{\partial u} = 0, \tag{3}$$

$$\frac{d^2\psi}{d\theta^2} = -\frac{2}{N}(n_i - n_e),\tag{4}$$

где $n_i=N\sqrt{\mu/\pi}\int g_idu$, $n_e=N\sqrt{\varepsilon\lambda/\pi}\int g_edu$. Приведем также выражения для токов:

$$j_i = N v_0 \sqrt{\mu/\pi} \int u g_i du, \quad j_e = N v_0 \sqrt{arepsilon \lambda/\pi} \int u \, g_e du.$$

Уравнения Власова для ионов (3) и электронов (2) представляют собой уравнения в частных производных первого порядка. Как известно, содержание таких уравнений сводится к утверждению о постоянстве функций распределения вдоль характеристик. Уравнения характеристик

$$rac{d heta}{1-u}-rac{2arepsilon du}{d\psi/d heta}=0, \quad rac{d heta}{1-u}+rac{2du}{d\psi/d heta}=0$$

имеют интегралы $\sigma_i = (u-1)^2 + \psi$ и $\sigma_e = (u-1)^2 - \psi/\varepsilon$, соответствующие полным энергиям частиц в поле ψ . Общее решение уравнения (2) (или (3)) есть произвольная функция интеграла, т. е. $g_i = g_i(\sigma_i)$, $g_e = g_e(\sigma_e)$.

Условия $\sigma_i > \psi_2$, $\sigma_e > -\psi_1/\varepsilon$ выделяют пролетные частицы. Для определения их функции распределения мы можем использовать условие

$$f(v,\varphi=0) = F_M(v^2) \tag{5}$$

— при выключении потенциала функции распределения должны стать максвелловскими. Для определения функции распределения захваченных частиц, как мы уже отмечали выше, приходится использовать дополнительные предположения.

Если в системе отсутствуют направленные потоки ионов, можно пренебречь захваченными ионами (легко показать, что это соответствует пренебрежению экспоненциально малыми слагаемыми $O(e^{-\mu})$). Тогда для распределения ионов имеем:

$$g_i = egin{cases} \exp\left\{-\mu[1\pm\sqrt{\sigma_i}]^2
ight\}, & \sigma_i > \psi_2, \ 0, & \sigma_i < \psi_2. \end{cases}$$

Для значений ψ_2 , не слишком близких к 1, функция распределения g_i имеет глобальный максимум по u в точке $u=1-\sqrt{1-\psi}$. В этом случае плотность ионов и ионный ток легко вычисляются методом перевала [9]:

$$n_i = rac{N}{\sqrt{1-\psi}} + O(1/\mu),$$

$$j_i=rac{Nv_0}{\sqrt{1-\psi}}\left(1-\sqrt{1-\psi}
ight)+O(1/\mu).$$

Приведенные выражения совпадают с соответствующими формулами холодной гидродинамики. Вычисления следующих по μ слагаемых дадут поправки, обусловленные тепловым движением ионов [9], которые в нашей задаче несущественны.

Для задания распределения пролетных электронов мы по-прежнему используем условие (5). Пренебречь захваченными электронами уже нельзя. Следуя духу работы [1], мы выбрали для них «сдвинутое» на v_0 распределение Максвелла. При этом температуры пролетных и захваченных частиц мы считаем одинаковыми:

$$g_e = egin{cases} B \exp \left\{ -\lambda arepsilon \sigma_e
ight\}, & \sigma_e < -\psi_1/arepsilon, \ C \exp \left\{ -\lambda arepsilon [1 \pm \sqrt{\sigma_e}]^2
ight\}, & \sigma_e > -\psi_1/arepsilon. \end{cases}$$

Из постоянных B и C только одна может быть определена по заданной средней плотности электронов. Значение же второй связано со способом захвата частиц.

Выполняя интегрирование по u, для плотности и тока получаем

$$egin{aligned} n_e &= N B \, \mathrm{e}^{\lambda \psi} \, \mathrm{erf} \, \sqrt{\lambda (\psi - \psi_1)} \, + \ &+ N C \, \mathrm{e}^{\lambda \psi} \, \Big(1 - \mathrm{erf} \, \sqrt{\lambda (\psi - \psi_1)} \Big) + O(arepsilon), \end{aligned}$$

$$egin{align} j_e &= n_e v_0 - \ &- N v_0 C \left[1 - ext{erf} \, \sqrt{-\lambda \psi_1} + rac{2}{\sqrt{\pi}} \sqrt{-\lambda \psi_1} \, \mathrm{e}^{\lambda \psi_1}
ight] + O(arepsilon). \end{split}$$

Положим сначала C=B. В этом случае условие квазинейтральности ($n_i=n_e$ при $\psi=0$) дает B=1, и мы имеем:

$$n_e = N e^{\lambda \psi},$$

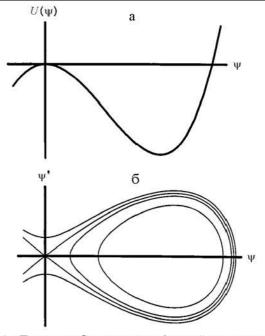
$$j_e = n_e v_0 - N v_0 \left[1 - ext{erf} \; \sqrt{-\lambda \psi_1} + rac{2}{\sqrt{\pi}} \sqrt{-\lambda \psi_1} \, \mathrm{e}^{\lambda \psi_1}
ight].$$

Выражение для плотности электронов с точностью до обозначений совпадает с соответствующей формулой работы [1]. В то же время, поскольку ток отличается от $n_e v_0$ лишь постоянным слагаемым, уравнение непрерывности выполняется очевидным образом.

Нетрудно убедиться, что использованное нами условие равенства коэффициентов B и C формально соответствует мгновенному захвату электронов с их последующей термализацией. Действительно, в этом случае число захваченных (n_{tr}) и число пролетных (n_{f}) частиц выражаются следующим образом:

$$n_{tr} = \int \limits_{1-\sqrt{(\psi_2-\psi_1)/arepsilon}}^{1+\sqrt{(\psi_2-\psi_1)/arepsilon}} F_M(u^2) du, \quad n_f = 1-n_{tr},$$

откуда немедленно следует равенство B = C. Необходимо, однако, иметь в виду, что термализация подразумевает протекание релаксационных процессов. В этом случае энергия частиц не сохраняется, и они могут пересекать сепаратрису, что приводит к «перемешиванию» пролетных и захваченных частиц [7]. В пользу этого сценария говорит результат исследования нелинейного затухания плазменных волн с учетом столкновений частиц [10]. Однако в работе [10] исследовался случай малых амплитуд ($e\varphi/T_e\ll 1$), когда число захваченных электронов невелико. Отметим здесь, что оставаясь в рамках приближения самосогласованного поля, принципиально невозможно описать релаксационные процессы. Поэтому все рассуждения об иерархии времен релаксации носят феноменологический характер. Впрочем, с нашей точки зрения, эти предположения достаточно прозрачны и обоснованы экспериментально.



 $Puc.\ 1.$ «Потенциал Сагдеева» (a) и фазовый портрет уравнения (6) (б): $B=C,\ \lambda>1$

Подставляя n_e и n_i в уравнение Пуассона, получаем для потенциала обыкновенное дифференциальное уравнение второго порядка

$$\psi'' = -\frac{2}{N}(n_i(\psi) - n_e(\psi)) \tag{6}$$

(штрих означает дифференцирование по θ). Это уравнение для нелинейного маятника единичной массы с потенциальной энергией («потенциал Сагдеева»):

$$U(\psi) = 2 \left\{ -2\sqrt{1-2\psi} - rac{\mathrm{e}^{\lambda\psi}}{\lambda}
ight\} + E,$$

E — константа интегрирования.

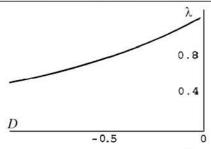
Разложение функции $U(\psi)$ при малых значениях аргумента начинается с члена, пропорционального ψ^2 :

$$U(\psi) - U(0) \approx 2(1 - 2\lambda)\psi^2$$
.

При $\lambda < 1/2$ «потенциальная энергия» имеет в нуле минимум, так что решением уравнения (6) является периодическая волна. При $\lambda > 1/2$ «потенциальная энергия» имеет в нуле локальный максимум (рис. 1,a), и при определенной «энергии» E возможно солитонное решение (на фазовом портрете ему соответствует сепаратриса — рис. $1,\delta$). В этом случае константа E определяется из условия $\psi(-\infty) = \psi'(-\infty) \to 0$. Допустимые значения λ ограничены сверху величиной, определяемой из условия ограниченности решения $U(1) \geqslant U(0) = 0$.

Предположим теперь, что $C \neq B$, и введем параметр D = C - B. Имея в виду солитоноподобные решения, положим $\psi_1 = 0$. По сравнению с рассмотренным выше случаем D = 0 к «потенциальной энергии» U добавится слагаемое

$$\Delta U = rac{2D}{\lambda} \left\{ \mathrm{e}^{\lambda \psi} \operatorname{erf} \sqrt{\lambda \psi} - rac{2}{\sqrt{\pi}} \sqrt{\lambda \psi}
ight\},$$



 $Puc.\ 2.\$ Зависимость максимального значения безразмерной фазовой скорости от коэффициета D. По определению модуль D не может превышать единицы

разложение которого вблизи $\psi=0$ начинается с члена, пропорционального $\psi^{3/2}$:

$$\Delta U pprox rac{8D}{3} \sqrt{rac{\lambda}{\pi}} \, \psi^{3/2} + O(\psi^{5/2}).$$
 (7)

То, что наличие захваченных частиц приводит к появлению в «потенциальной энергии» членов с полуцелыми степенями ψ , отмечалось еще в работе [6]. Однако в нашем случае рассматриваемая добавка меняет решение принципиально, поскольку именно она определяет поведение $U(\psi)$ при $\psi \to 0$.

Как видно из формулы (7), если коэффициент D отрицателен, то функция $U(\psi)$ имеет в нуле максимум при любых значениях λ . Таким образом, при любых малых значениях этого параметра уравнение (4) имеет солитоноподобные решения. В то же время ограничение на λ и, следовательно, на фазовую скорость сверху, следующее из требования ограниченности решения $(U(1) \geqslant 0)$, усиливается с ростом абсолютного значения D (рис. 2).

Неаналитичность «потенциальной функции» в нуле приводит к значительной трансформации координатно-временной зависимости уединенной волны. Если в случае D=0 уравнение

$$heta = \int\limits_0^\psi rac{d\psi}{\sqrt{2(E-U(\psi))}},$$

определяющее неявно зависимость $\psi(\theta)$, имело решение $\psi \sim \mathrm{e}^{-a\theta}$ при $\theta \to \infty$, т.е. потенциал был отличен от нуля во всем пространстве и экспоненциально убывал на бесконечности, то в случае D < 0 электростатический потенциал ψ отличен от нуля лишь на конечном по θ отрезке, вне которого ψ строго равен нулю. Вблизи концов этого отрезка изменение потенциала происходит по степенному закону: $\psi \sim \theta^4$. Ситуация здесь аналогична известной в теории взаимодействия волн взрывной неустойчивости, когда амплитуда возмущения нарастает со временем пропорционально $1/(t-t_0)$ и обращается в бесконечность за конечное время [11].

Литература

- Веденов А.А., Велихов Е.П., Сагдеев Р.З. // Ядерный синтез. 1961. 1. С. 82.
- 2. *Лифииц Е.М., Питаевский Л.П.* Физическая кинетика. М.: Наука, 1979.

- 3. Das K.P., Verheest F. // J. Plasma Phys. 1989. 41. P. 139.
- 4. Seyler C.I. // J. Geophys. Res. 1990. A95. P. 17199.
- Frycz P., Rankin R., Samson J.C. // J. Plasma Phys. 1992. 48.
 P. 335.
- Bernstein I.B., Green J.M., Kruskal M.D. // Phys. Rev. 1957.
 108. P. 546.
- 7. Гуревич А.В. // ЖЭТФ. 1967. 53. С. 951.
- Алешин И.М., Дрофа М.А., Кузьменков Л.С. // Физическая мысль России. 1994. 1. С. 15.
- 9. Алешин И.М., Дрофа М.А., Кузьменков Л.С. // Физика плазмы. 1993. **19**. С. 999; Aleshin I.M., Drofa М.А., Kuzmenkov L.S. // J. Plasma Phys. 1994. **51**. P. 177.
- 10. Захаров В.Е., Карпман В.И. // ЖЭТФ. 1962. 43. С. 490.
- 11. *Вильхельмсон X., Вейланд Я.* Когерентное нелинейное взаимодействие волн в плазме. М.: Энергоиздат, 1981.

Поступила в редакцию 15.02.99

УДК 530.145

АСИМПТОТИЧЕСКОЕ ПОВЕДЕНИЕ ЭФФЕКТИВНОГО ДЕЙСТВИЯ В СУПЕРСИММЕТРИЧНЫХ ТЕОРИЯХ

К. В. Степаньянц, В. Б. Фокин

(кафедра теоретинской физики)

С помощью программы, написанной с использованием системы аналитических вычислений МАРРLE, получены асимптотические разложения точного эффективного действия для N=1 и N=2 суперсимметричных моделей в пределах сильной и слабой связи.

Введение

Исследование непертурбативной динамики теории поля представляет собой одну из наиболее интересных и сложных задач современной теоретической физики. Хорошо известно [1], что квантовые поправки отнюдь не сводятся к ряду теории возмущений. Помимо пертурбативных поправок существуют еще и инстантонные вклады, нумерующиеся значением топологического числа и, следовательно, представляющие собой некоторый ряд. Зайберг и Виттен [2] в простейшем случае N=2 суперсимметричной теории Янга-Миллса с калибровочной группой SU(2) явно вычислили его сумму в приближении постоянного поля. Полученный результат выражается через некоторую специальную функцию τ , тесно связанную с эллиптическими функциями.

Однако модель Зайберга-Виттена не является физической. Значительно больший интерес представляет исследование N=1 суперсимметричных теорий, поскольку существуют косвенные экспериментальные данные, подтверждающие существование N=1суперсимметрии в стандартной модели. При изучении данных теорий достаточно эффективным оказался метод, основанный на исследовании квантовых аномалий вне рамок теории возмущений [3, 4]. С его помощью в работе [4] было найдено точное выражение для эффективного действия, которое (в отличие от предлагавшихся ранее) согласуется с результатами инстантонных вычислений и квантовыми аномалиями. Результат оказался тесно связанным с решением Зайберга-Виттена, поскольку выражается через ту же самую специальную функцию τ , но уже от некоторого другого аргумента. Поэтому данная функция, по-видимому, играет особую роль при исследовании непертурбативной динамики и заслуживает тщательного исследования. Это и является целью настоящей работы.

Наибольший интерес представляют асимптотики функции τ в областях сильной и слабой связи, поскольку при слабой связи они дают величины инстантонных поправок. При сильной связи физическое обоснование появления поправок является весьма интересной и до сих пор не решенной проблемой. Однако в силу крайне нетривиальной структуры асимптотик их невозможно вычислить с помощью стандартных программ аналитических вычислений (МАРРLE, МАТНЕМАТІСА). Поэтому данная проблема должна быть решена некоторым другим, менее тривиальным способом.

1. Точные результаты в суперсимметричных теориях

При исследовании точных результатов простейшей моделью является N=2 суперсимметричная теория Янга-Миллса с калибровочной группой SU(2). Ее эффективное действие в N=2 суперпространстве может быть представлено в виде

$$\Gamma = rac{1}{16\pi} {
m Im} \int d^4x d^2 heta_1 d^2 heta_2 F(\Phi), \qquad \qquad (1)$$

где $\Phi(x, \theta_1, \theta_2)$ есть N=2 суперполе, включающее в виде компонент одно векторное, два (майорановских) спинорных и одно (комплексное) скалярное поле. В древесном приближении

$$F(\Phi) = \frac{1}{2} \operatorname{tr}(\tau_0 \Phi^2), \tag{2}$$

где $au_0 = 4\pi i/e^2 + \vartheta/(2\pi)$, e — константа связи, а ϑ — коэффициент при топологическом слагаемом.

В пределе низких энергий калибровочная группа SU(2) нарушается до U(1) вакуумным средним скалярного поля φ , которое далее будет обозначаться через a.