ФИЗИКА ТВЕРДОГО ТЕЛА

УДК 537.621; 537.622

ЭФФЕКТ ХОЛЛА В ФРУСТРИРОВАННЫХ ФЕРРИМАГНИТНЫХ СПЛАВАХ ε' -Мп $_3$ Ga

В. Н. Прудников, М. В. Прудникова

(кафедра магнетизма)

Проведены исследования электрического сопротивления, поперечного магнетосопротивления и эффекта Холла сплавов ε' -Mn₃ Ga в состоянии фрустрированного ферримагнетизма. Для парамагнитного состояния коэффициент нормального эффекта Холла R_0 имеет величину $\sim 10^{-13}$ Ом·см·Гс⁻¹, типичную для металлов. Магнитное упорядочение вызывает значительное изменение R_0 и инверсию его знака. Коэффициент аномального эффекта Холла изменяет знак одновременно с R_0 и функционально не связан с электрическим сопротивлением. Величина и знак эффекта Холла определяются наличием двух подсистем, одна из которых связана с областями ближнего магнитного порядка, другая — с фрустрированными спинами на границах этих областей.

Введение

В состоянии фрустрированного ферримагнетизма магнетик представляет собой неоднородную систему, в которой имеет место сильное рассеяние носителей тока. Длина свободного пробега носителей становится величиной порядка межатомных расстояний. При таких условиях кинетические параметры оказываются чрезвычайно чувствительными к ближнему магнитному порядку. Поэтому исследование эффекта Холла и магнетосопротивления позволяет проследить кинетику разрушения дальнего магнитного порядка при возвратных переходах.

Экспериментальные данные по аномальному эффекту Холла (АЭХ) в таких материалах обычно интерпретируют в рамках следующих моделей: асимметричного рассеяния [1], бокового смещения [2] или «спиновой компоненты» [3]. Пик на температурной зависимости холловского сопротивления, аналогичный пику на температурной зависимости низкополевой восприимчивости, обычно связывают с асимметричной компонентой АЭХ, возникающей из-за резонансного рассеяния электронов проводимости на виртуальном связанном *d*-уровне, который локализован на примесном атоме.

В фрустрированных магнитных системах, отличающихся типом магнитного порядка, степенью фрустраций, состоянием электронной системы, имеет место большое разнообразие особенностей в поведении кинетических коэффициентов [4]. Однако можно указать и некоторые общие черты, типичные для фрустрированных магнетиков. Так, в парамагнитном состоянии или в состоянии спинового стекла, которые практически одинаково сильно разупорядочены, коэффициенты нормального эффекта Холла (НЭХ) и АЭХ должны иметь практически одинаковую величину [4]. Изменения в величине коэффициентов Холла происходят лишь при появлении спиновых корреляций, которые приводят к изменению механизмов рассеяния носителей тока и изменению электронного спектра.

1. Методика эксперимента

Сплавы Mn–Ga, на которых проведены измерения холловского сопротивления ρ_h , поперечного магнетосопротивления $\Delta \rho_{\perp}/\rho$, электрического сопротивления ρ , были приготовлены в ЦНИИЧермет им. И.П.Бардина. Для выплавки использовались спектрально чистые материалы: марганец с чистотой 99,999% и галлий марки ГЛ000. Полученная в процессе плавки отливка в виде прутка подвергалась гомогенизирующему отжигу в течение 6–10 ч с последующей закалкой. Из сплава γ -Mn₃Ga путем отжига в течение 8 ч при температуре ~450°С получалась частично упорядоченная ε' -фаза Mn₃Ga со сверхструктурой, упорядоченной по типу DO₂₂.

В качестве объекта исследования был выбран сплав Mn_{0.75} Ga_{0.25}, который в неупорядоченном состоянии имеет ГЦК-структуру, подобную модификации у-Mn [3]. Замещение атомов марганца диамагнитными атомами галлия разрушает связи Mn-Mn и создает в системе спинов фрустрированные обменные взаимодействия. При указанных концентрациях Mn и Ga создаются оптимальные условия фрустраций. В исследованном сплаве Mn₃ Ga стехиометрического состава возможно атомное разупорядочение [5, 6]. Это позволяет на одном и том же образце исследовать магнитные и кинетические свойства структурных состояний с различной степенью атомного и магнитного порядка: ферримагнитного (ε' -Mn₃Ga) и антиферромагнитного (γ -Mn₃Ga) типа [7]. Исследования магнитных свойств сплава ε' -Mn₃Ga показали, что эта фаза находится в ферримагнитном неэргодичном состоянии, в котором при нагревании происходит двойной переход «ферримагнитное спиновое стекло — ферримагнетизм — парамагнетизм» (ФиМСС-ФиМ-ПМ) [8].

Электрическое сопротивление, магнетосопротивление, эффект Холла были изучены при температурах 20–730°С в магнитных полях до 18 кЭ. Измерения

проводились при постоянном токе с использованием четырехконтактной методики.

2. Экспериментальные результаты и обсуждение

На рис. 1, 2 представлены зависимости удельного холловского сопротивления ρ_h и поперечного магнетосопротивления $\Delta \rho_{\perp}/\rho$ от величины магнитного поля при 20°С. Полевая зависимость холловского сопротивления состоит из двух линейных участков с различным наклоном (излом при $H \approx 10$ кЭ). Тангенс угла наклона высокополевого (при H > 10 кЭ) участка кривой $\rho_h(H)$ больше, чем низкополевого, что противоположно результатам для намагниченности [8]. При повышении температуры излом наблюдается при меньших значениях магнитного поля, при этом тангенс угла наклона кривой $\rho_h(H)$ возрастает. Линейность участков сохраняется до 350°С. По мере дальнейшего роста температуры в высоких магнитных полях появляется тенденция к насыщению $\rho_h(H)$. Резкое изменение поперечного магнетосопротивления отмечается в магнитных полях, при которых меняется наклон прямых $\rho_h(H)$.

Нагревание до T < 400 °C с последующим охлаждением в отсутствие магнитного поля не сказывается на зависимости $\rho_h(H)$, как это видно из рис. 1, где разными точками обозначены значения ρ_h , полученные после охлаждения от различных температур до комнатной. В то же время даже небольшие различия в термомагнитной обработке на стадии отжига чрезвычайно сильно влияют на кинетические свойства ε' -Mn₃Ga.

Рис. 1. Зависимость удельного холловского сопротивления ρ_h сплава ε' -Мп₃Ga от магнитного поля при T = 20 °C: исходное состояние (•), после охлаждения от T = 118 °C (□), 287 °C (△) и 395 °C (○)

Рис. 2. Зависимость поперечного магнетосопротивления $\Delta \rho_{\perp} / \rho$ сплава ε' -Mn₃ Ga от магнитного поля H при 20°C

Рис. 3. Зависимость удельного холловского сопротивления ρ_h сплава ε' -Mn₃ Ga от магнитного поля при некоторых температурах

Семейство температурных зависимостей холловского сопротивления в магнитных полях до 18 кЭ представлено на рис. 3. Сравнение $\rho_h(T)$ с температурной зависимостью намагниченности [7] свидетельствует о их корреляции и подтверждает наличие АЭХ в изученных сплавах. Температура T_c , при которой наблюдается максимум ρ_h , совпадает с температурой, соответствующей максимуму намагниченности, и, следовательно, может служить основой для определения температуры Кюри из измерений кинетических параметров. Увеличение магнитного поля, при котором проводятся измерения, сдвигает температуру T_c в область более низких температур.

Сравнение температурных зависимостей холловского сопротивления и намагниченности для сплава ε' -Мп₃ Ga показывает, что резкое изменение в их поведении наблюдается при одинаковых температурах, причем для зависимостей $\rho_h(T)$ это проявляется значительно четче. В связи с этим зависимость $\rho_h(T)$ может быть использована для более точного определения температуры перехода в состояние ферримагнитного спинового стекла $(T_g(H))$. Значения T_g и T_c отмечены на рис. 4, где представлены температурные зависимости удельного холловского сопротивления при некоторых значениях магнитного поля. Каждая кривая $\rho_h(T)$ состоит из трех участков. В пределах первого участка зависимость $\rho_h(T)$ линейна. Линейная зависимость нарушается при температурах $T_{q}(H)$, значения которых в существенной степени зависят от магнитного поля (см. рис. 4). В пределах

Рис. 4. Зависимость удельного холловского сопротивления ρ_h сплава ε' -Mn₃ Ga от температуры в различных магнитных полях

второго участка ($T_g < T < T_c$) холловское сопротивление всегда возрастает при увеличении температуры, что характерно для ферримагнитного состояния (ФиМ). На третьем участке $\rho_h(T)$ резко уменьшается при увеличении температуры во всех магнитных полях.

Для выделения вкладов НЭХ и АЭХ измерения холловского сопротивления и намагниченности были проведены на одних и тех же образцах при одинаковой геометрии эксперимента. В температурной области существования неэргодичной фазы ФиМСС (ферримагнитное спиновое стекло) при $T < T_g$ наблюдается линейная зависимость приведенного холловского сопротивления ρ_h/H от магнитной восприимчивости χ , что может свидетельствовать о независимости от температуры и магнитного поля коэффициентов R_0 и R_a (рис. 5). Их значения составляют: $R_0 = -11.4 \cdot 10^{\perp 11}$ Ом \cdot см \cdot Гс^{$\perp 1$}.

На рис. 5 показаны зависимости R_0 и R_a от температуры в ферримагнитном состоянии сплава. Следует иметь в виду, что в области температур $0 \div 500$ °C в магнитном поле $H \approx 6$ кЭ зависимость холловского сопротивления $\rho_h(T)$ отклоняется от линейной и определение R_0 и R_a таким способом не совсем корректно. Значения коэффициентов Холла, приведенные на рис. 5, характеризуют общую тенденцию их изменения при переходе ФиМСС–ФиМ.

Таким образом, коэффициент аномального эффекта Холла R_a в ε' -фазе сплава Mn₃ Ga и в γ -фазе [6] имеет один порядок величины и один знак ($R_a > 0$), тогда как коэффициент нормального эффекта Холла R_0 в состоянии ФиМСС на три порядка больше, чем

Рис. 5. Зависимость от температуры коэффициентов R_a (АЭХ) и R_0 (НЭХ) сплава ε' -Мп₃ Ga. Отмечено значение температуры перехода ($T_g = 325$ °С при H = 0) из состояния ферримагнитного спинового стекла (ФиМСС) в ферримагнитное состояние (ФиМ)

в состоянии антиферромагнитного спинового стекла [6]. Последнее указывает на значительные изменения зонной структуры сплава Mn_3 Ga при переходе $\gamma \rightarrow \varepsilon'$.

Учитывая конфигурацию атома Mn $(3d^54s^1)$ и атома Ga $(3d^{10}4s^24p^1)$ при определении эффективного числа носителей тока, можно утверждать, что величина нормального эффекта Холла определяется в первую очередь системой 4s-, 4p- и 3d-электронов. Это подтверждается результатами исследований сплава γ -Mn₃Ga в парамагнитном состоянии [9], согласно которым эффективный магнитный момент атома Mn составляет $\mu = 2\mu_B$, т.е. из всех d-подобных электронных состояний локализованы только два электрона в атоме Mn. Это подтверждается и расчетами электронной структуры для чистого γ -Mn в приближении когерентного потенциала [10]. Таким образом, в исходном γ -Mn₃Ga электроны атома Mn неэквивалентны и отличаются подвижностью.

Так как сплав ε' -Mn₃Ga не может быть получен в парамагнитном состоянии (выше T_c происходит структурный переход $\varepsilon' \to \varepsilon$), то сравниваются только состояния ФиМ и ФиМСС. Оценки показывают, что в отличие от γ -Mn₃Ga в ε -Mn₃Ga в состоянии ФиМ коллективизированы все пять 3d-электронов атома Mn, причем оно обладает дырочной проводимостью. В состоянии ФиМСС лишь часть атомов Mn имеет пять коллективизированных d-электронов. В другой части атомов, по-видимому принадлежащей фрустрированной подсистеме, коллективизированы только три d-электронов это приводит к эффекту компенсации вкладов от положительных и отрицательных носителей тока и большому отрицательному значению R_0 . Заметим, что коэффициент АЭХ определяется исключительно 3d-электронами атомов Мп и эффект компенсации на нем не сказывается.

Таким образом, эффект Холла и электрическое сопротивление определяются вкладами от двух магнитных подсистем, одна из которых связана с областями ближнего магнитного порядка, другая — с фрустрированными спинами на границах этих областей.

Литература

- 1. McAlister S.P., Hurd C.M. // J. Phys. F. 1978. 8. P. 239.
- 2. Hurd C.M., McAlister S.P. // J. Appl. Phys. 1979. 59. P. 1743.
- Anderson J.E.A., Hurd C.M. // J. Phys. Chem. Solids. 1971. 32. P. 2075.
- Ведяев А.В., Грановский А.Б., Каминская Е.П., Котельникова О.А. // Письма в ЖЭТФ. 1979. 30. С. 685.
- 5. Гоманьков В.И., Равдель М.П., Ногин И.Н. и др. // ФММ. 1979. 47. С. 735.
- Prudnikov V., Silonov V., Prudnikova M., Rodin S. // J. Magn. Magn. Mater. 1998. 188. P. 393.
- Прудников В.Н. // Вестн. Моск. ун-та. Физ. Астрон. 1999.
 № 5. С. 34 (Moscow University Phys. Bull. 1999. No. 5).
- Hori T., Morii Y., Funahashi S. et al. // Physica B. 1995. 213/214. P. 354.
- 9. Козлова Т.М., Прудников В.Н., Хакамов М.Ф., Шитова Е.А. Препринт физ. ф-та МГУ. 1986, № 12.
- 10. Fletcher G.C. // J. Phys. F. 1971. 1. P. 177.

Поступила в редакцию 04.09.98

УДК 535.37; 621.315.592

ТУННЕЛЬНАЯ ПРОЗРАЧНОСТЬ СВЕРХРЕШЕТОК С КОНТРОЛИРУЕМЫМ БЕСПОРЯДКОМ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ

А. В. Дмитриев, О. В. Пупышева

(кафедра физики низких температур)

Теоретически исследован вертикальный электронный транспорт в полупроводниковых сверхрешетках с контролируемым беспорядком в электрическом поле. Численно рассчитаны коэффициенты туннельного прохождения электронов через тонкослойные сверхрешетки с различными типами беспорядка в конечном поле.

Введение

Со времени создания слоистых твердотельных структур и сверхрешеток в 1970-х годах они непрерывно совершенствовались и стали часто использоваться как модельные системы для реализации и исследования одномерных задач квантовой механики. В частности, полупроводниковая сверхрешетка практически идеально представляет одномерную модель кристалла Кронига–Пенни [1]. Крайне интересно рассмотреть типичную квантовомеханическую задачу о подбарьерном туннелировании, в том числе резонансном, в применении к таким гетероструктурам [2, 3]. Возник интерес и к изучению свойств более сложных систем: гетероструктур с переменной шириной ям [4] и так называемых сверхрешеток Фибоначчи [5], в которых последовательность чередования слоев из разных материалов задается определенным правилом и которые не являются уже простыми периодическими объектами, оставаясь тем не менее детерминированными. В последнее время были выращены и сверхрешетки, в которых параметры слоев задаются последовательностью случайных чисел [6]. Эти новые и весьма интересные структуры можно назвать сверхрешетками с контролируемым беспорядком, так как последний намеренно вводится в них в процессе роста. В определенном смысле такие