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NEUTRAL PARTICLE RADIATION IN ELECTROMAGNETIC FIELD 

A. E. Lobanov and 0. S. Pavlova 

The total radiation power of a classical neutral particle having an anomalous 
magnetic and an electric moment in its motion in an arbitrary electromagnetic 
field has been found. The result has been obtained on the assumption that 
the particle spin evolution is determined by the generalized Bargmann-Michel­
Telegdi equation. 

It is common knowledge that external electromagnetic fields exert considerable effect on the course of 
processes with participation of neutral particles. This effect may result not only from vacuum polarization 
but also from the internal electromagnetic structure of heavy particles such as the neutron. This fact 
makes the study of the external field effect on the processes with participation of neutrons one of the most 
important problems of high-energy physics. 

The internal electromagnetic structure of the neutron manifests itself mainly in its anomalous magnetic 
moment. Studies show that the consideration of this factor alone makes the results nontrivial. It was thus 
established that the presence of an anomalous magnetic moment in the neutron results in considerable 
changes in the beta-decay probability in strong fields [1], which is important for pulsar physics [2]. Another 
interesting effect is the neutron radiation. 

This phenomenon was studied both on the basis of quantum theory and within the framework 
of classical electrodynamics. Quantum electrodynamics methods were used in studying the neutron in 
electromagnetic fields of a special kind: homogeneous [3, 4], plane-wave [5-8], and some other [9]. In some 
works [10, 11], a classical description of neutron radiation was carried out. 

In quantum attack of the problem, field models are chosen so that Dirac's equations have the exact 
solutions in these fields. We should note that the availability of exact solutions is obligatory for the 
calculation of polarized and nonpolarized particle radiation power. For polarized particles, the classical 
situation is the same: the availability of exact solutions of the equation of motion (Lorentz equation) and 
the equation of spin evolution (Bargmann-Michel-Telegdi equation) allows us to calculate the radiation 
power both for a neutral and a charged particle in its motion in the electromagnetic field. 

The problem is considerably simplified when radiation of a neutral nonpolarized particle is being 
studied. Actually, the classical approach is mainly distinguished from the quantum approach by that 
radiative recoil is not considered in classical description. Therefore, in quantum electrodynamics, a radiation 
event brings about a change in the pulse and polarization of the particle, and is thus characterized by the 
initial and final values of the pulse and polarization, while in classical treatment, the radiation event does 
not change these quantities, because the recoil is absent. This roughens the picture but, nonetheless, as the 
comparison with quantum consideration shows, the results agree well as Ii. --t 0. 

For a neutral particle the solution of the Lorentz equation for the 4-velocity is uP = const, and, 
therefore, the Lorentz transformation that executes the transition to the particle rest system will in this 
case be determined by the constant operator. In the rest system the only characteristic vector determining 
the particle is its polarization vector. If we perform averaging over spin directions (which in quantum theory 
will correspond to a description of a nonpolarized particle radiation), then only the strengths of the electric 
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and magnetic fields in the particle rest system remain the vectors that may enter into the expressions for 
the radiation energy. This fact suggests the existence of a universal formula for the radiation energy of 
the neutral nonpolarized particle in arbitrary heterogeneous electromagnetic fields. The calculations given 
below support the aforesaid. 

Let us consider the radiation of a neutral nonpolarized particle caused by its anomalous magnetic 
moment, which we denote by µ". Classical electrodynamics gives the following formula [12] for the total 
radiation energy: 

t: =!I dt, (1) 

in the covariant form the radiation power can be presented as 

I - 2( .. "'' ) - -- µ µv 
3 

(2) 

(the dot denotes differentiation with respect to proper timer, French quotes denote averaging over spin 
states, Ii= c = 1). 

We restrict the discussion to the assumption that the magnetic moment is proportional to the spin 
vector 

µ" = µoS". 

Then the evolution of the spin vector is described by the BMT equation [13], 

S" = 2µo [F""Sa - u"(u,.F"PSp)], 

whose solution satisfies the following additional conditions (SS) = -1 and (Su)= 0. 
For the sake of convenience of comparison with quantum-mechanical description, we use the spin-tensor 

of rank two § = S°<J'o + S<T, where <J'v are the Pauli matrices, instead of the polarization vector S" {the 

notation corresponds to that used in [14]). Then the spin evolution is determined from the formula 

(3) 

Here So:;;; S(ro) is the polarization at the initial time r0 ; [:-
1 is the operator of transition into the particle 

rest system, 
1+;; 

L -1 = -..j-;=2=( 1=+=uo"') ' 
1+1! 

L= -;;=="' 
V2(1 + u0 )' 

and !J is the rotation operator that satisfies the equation 

where 
0 u(uH) 

Ho(:c) :=Ho =u H-ux E- --0 l+u 
is the magnetic field in the particle rest system at the point of its location x" = u"-r. 

Using the introduced spin-tensor, formula (2) for radiation power can be rewritten as: 

2 .. 

I= _ µo Sp(SS). 
3 -

(4) 

Hence, on some simple transformations, the radiation power of a nonpolarized particle can be obtained with 
regard to (3), 

2 

1 = ~0 Sp :E (!J<J';!J+)"(~;IJ+r. 
; 

(5) 
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Summing over i in (5) corresponds to an averaging procedure over the final spin states of the particle in 
quantum theory. 

The final result follows from formulas ( 4) and (5), 

I= ~6 µ~{4(µoHo)4 + (µoHo) 2
}. (6) 

Thus, as pointed out above, the radiation power of nonpolarized neutral particle in an arbitrary 
electromagnetic field is only expressed in terms of strength of these fields in the particle rest system and 
their proper-time derivatives. 

Some remarks as to formula (1) need to be made. As is customary in quantum dynamics, if in (1) the 
integral converges on the interval ( -oo, +oo), then this formula describes the total radiation energy when 
the particle flies through the region occupied by the field. If there exists the finite limit 

T 

t~ 2~ J Jdt, 
-T 

then this expression defines the radiation energy per unit time in periodic and nonperiodic fields. If the 
above limit does not exist, then the given formula has no quantum analog, to be more exact, this divergence 
suggests that, in solving quantum problems, bound states will be observed (discrete energy spectrum) (see, 
for instance, [15]). 

It is easy to verify that when substituting into (6) the fields, which were earlier used for calculations 
both by quantum and classical methods, a complete agreement is observed with the obtained results if we 
omit the terms that characterize the recoil, i.e., the terms which have the next order of smallness in Planck's 
constant. 

Let us discuss the possibility of using the classical approximation in more detail. As noted above, we 
can neglect quantum corrections if the energy of radiated photons is small as compared to the energy of 
radiating particle. This requirement is responsible for two types of restrictions. First, the bond energy in 
the rest system must be considerably less than the particle rest energy, µoHo/m « 1. Second, the field 
must slightly vary over the distance of the order of the particle Compton wavelength, Ho/mHo « 1. There 
is good reason to rewrite these conditions in Gaussian units. Then, considering that µo ~ eh/me and 
introducing the so-called critical magnetic field H., = m2d' Jen, we get the above-mentioned conditions as 
H0 /Her « 1 and (H0 /Her)(w/we) « 1. Here w is the characteristic frequency of external field variation, 
and We = eH /me is the cyclotron frequency. Hence it follows that for the neutron these conditions are 
a fortiori satisfied at reasonable strengths of the fields and their gradients. An important point is that 
the reported estimates are not weaker than those that allow us to disregard the effective mass variation in 
the external field and the Stern-Gerlach effect when deriving the BMT equation [16, 17]. The abovesaid 
confirms the fact that our approach can be used when solving the problem on the radiation of a neutral 
nonpolarized particle in an external field. 

It is of interest to compare, in the order of magnitude, the radiation power I of a neutral particle 
(the neutron) defined by formula (6) with the classical radiation power of a charged particle Io (see, for 
instance [12]) which has close values of mass and energy (the proton). It is easy to find that 

I {(H0
)

2 (u0nw)
2

} lo ,...., max Her ' rnc2 · 

Therefore, the powers of charge radiation and magnetic moment can be compared either in superstrong 
fields or in very high-frequency fields, which can exist in the vicinity of astrophysical objects of pulsar type. 

In conclusion, it should be pointed that obtained formula (6) can be extended to the case of the 
existence, along with the anomalous magnetic moment, of an electric moment (naturally, the static limit of 
electric moment <o only exists in theories with T-invariance violation). In this case, the evolution of a spin 
vector is described by the generalized BMT equation [13, 18] 

S" = 2µo{F" 0 S0 - u"(u0 F0 PSµ)} + 2<o{H"0 S0 - u"(u0 H 0 µ Sp)}, 
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where H"a = -!eva,81 Fµ1 is the dual tensor. 
The generalized formula (6) has the form 

where 

16 2 2 4 • • 2 
I= 3(µ0 + <o){4(<oEo + µoHo) + (<oEo + µoHo) }, 

0 u{uE) 
Eo(x)=Eo=uE+uxH---0 l+u 

(7) 

is the electric field in the rest system of a particle at the point of its location. The results obtained with 
formula (7) agree with those obtained earlier in (19]. 

The authors are deeply indebted to V.A. Bordovitsyn, A. V. Borisov, and V. Ch. Zhukovskii for their 
discussion of the work. 
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