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Based on the assumption put forward as to the local character of vorticity in a 
free incompressible liquid flow, the vortex element of a turbulent flow is isolated 
and its properties are evaluated. Good agreement is found to exist between 
the form of the spectral density of the velocity pulsations arising as a result 
of the uniform transport of a random ensemble of quasistationary turbulence 
vortex elements by the mainstream flow and the well-known approximations of 
experimental data. 

There are various models of a free turbulent incompressible liquid flow that make it possible to estimate 
the statistical characteristics of velocity and pressure pulsations therein [1]. These models, however, fail to 
reveal the mechanism of interaction between such a flow and a solid body placed therein. For this reason, 
the pseudosonic pulsations received by sound vibration pickups placed in a turbulent flow were theoretically 
studied on the basis of a simplified notions of turbulence as a plane harmonic wave [2, 3]. In this work, we 
consider a vortical model of turbulent pulsations, within the framework of which the formation mechanism 
of pseudosonic noise interfering with sound reception can be verified. 

To analyze the motions of a viscous incompressible liquid in the absence of free boundaries 1 use is 
made of the equation 
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(1) 

that relates the liquid velocity u and pressure p. Here p and v are the density and kinematic viscosity of 
the liquid, respectively. There are known a few types of flow for which the exact solutions of this equation 
have been found. Therefore, the major advances in hydrodynamics in studying flows over various bodies 
have been based on the proposal made by L. Prandtl that the entire region occupied by the liquid can be 
subdivided into a thin boundary layer wherein the effect of the velocity field vorticity (curl u) is essential 
and an external region wherein the liquid motion is taken to be potential [4]. 

Based on the Prandtl hypothesis, we assume that in a free turbulent motion, too, vorticity is other than 
zero only in a small part of space represented by vortex tubes. It has been known from Helmholtz's second 
theorem [4] that vortex tubes cannot terminate in the liquid: they either rest on the bounding surfaces or 
form closed rings. 

Consider the velocity field formed by a single vortex ring. Let the average ring radius Ro be much 
greater than the tube radius r0 • The flow inside the vortex tube is completely determined by the vorticity 
distribution over its cross section. In a most simple case where curl u = canst, the liquid rotates as a 
single whole, and the flow velocity is proportional to the distance r' from the tube axis, r' « ro. When 
ro « r' « Ro, the velocity field of the vortex ring approaches that of an infinite rectilinear vortex filament 
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around which there is formed a fl.ow known as a potential vortex. In this region, the fl.ow velocity is inversely 
proportional to the distance from the vortex tube axis: 

v(r') = 2~r'' 
where r is the velocity circulation. For r' » Ro, the potential of the ring approaches that of a dipole by 
virtue of the closed character of the vortex tube. A dipole region is characterized by a decrease of the flow 
velocity therein in proportion to the cube of the distance from the tube axis. 

Let us select a function approximating the above relationships in all the three regions. We take as a 
basis the velocity field produced by a potential vortex. We will allow for the behavior of the velocity field 
at small and large distances from the axis by means of additional factors. In that case, the velocity 

I r 1 - exp(-r12 /r~) 
v(r) = 21Tr1 1 + (r' /Ro)2 ' 

is directed along the tangent to the circumference of radius r' = const. In the above expression, ro and Ro 
are respectively the distances at which the effect of viscosity and the spatial structure of the vortex ring 
manifest themselves. As Ro-+ oo, the function selected tends to the exact solution of equation (1), which 
is sometimes referred to as the Gaussian vortex [4, 5] wherein r0 varies with time, r~ = 4vt, thus pointing 
to a gradual reduction of its growth rate. 

As a model of vortical turbulent pulsations, we consider a process formed as a result of the transport 
of turbulence elements randomly arranged in space by the mainstream flow having a constant velocity of U. 
Each turbulence element is a motion whose vorticity is essentially other than zero only in a limited region 
of space, namely, in an infinite rectilinear vortex tube. The axes of the elements have different directions in 
space. The velocity fields produced by the turbulence elements are time-invariable, similar to one another, 
and differ only by the scale factor 

( ') r; ( ') Uj r = rV r , 

the mathematical expectation of r; /r being equal to zero and its dispersion to unity. The pulsation velocity 
produced by such a process at the point with the radius-vector r = (x, y, z) is 

= 
uI;(r) = 2:: u;(r - r; - tV), 

i;::-oo 

where r; = ((;, 7J;, e;) is the position of the ith turbulence element at the time instant t = 0. Here the 
motion velocities of the elements, both caused by the action of the adjacent elements and self-induced, are 
considered negligibly small. The motion described is a model of frozen uniform and isotropic turbulent 
pulsations. 

Let the flow velocity U be directed along the x-axis. In that case, the longitudinal component of the 
velocity induced at the point (x, y, z) by a turbulence element having a circulation of r may be written in 
the form 

v,(t) = .!:._ rsina 1- exp[-(x~ + r2 )/r~J, 
21T x~+r2 l+(x~+r2)/~ 

where r = .,j(y - 7J) 2 + (z - e)2, Xo = (x-e -tU) sin a, and a is the angle between the axis of the element 
and the x-axis. Its Fourier transform is 

v,(w) re<;w/U)((-•) { kr 1 [ kr ( T kro) kr ( T kro)] T kR T R'fr' e- -- e- erfc --- +e erfc -+- --e- +-e' ' 
2U 2 ro2 ro2 R 2R 

x [ e-kR erfc ( ~ _ k;o) + 0kR erfc ( ~ + k;o)) } , 
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where k = w /Usina and R = Jr2 + R5. The above assumptions allow us to use the well-known method [6] 
to calculate the spectral density .Ptt(w) of velocity pulsations. As a result, we have 

00 ~ 

.Pu(w) = 2; J /ivt(a,r,w)l 2rdrda, 
0 0 

where V is the average volume of space occupied by a single turbulence element. 
The plots of the normalized spectral density of velocity pulsations shown in Fig. 1 make it possible to 

single out three regions wherein the properties of this function are different. In the low-frequency region 
(w «: U /Ro) corresponding to dipole motion, the spectral density of velocity pulsations is constant. In the 
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Fig. 1 

Spectral density of vortical velocity pulsations in an isotropic turbulent flow at various 
external-to-internal radius ratios: (1) Ro/ro = 10; (2) Ro/ro = 100. Lines I and II are 
approximations by the relations - w-5 / 3 and,...... w-7 , respectively. 
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Fig. 2 

Spectral density of longitudinal vortical velocity pulsations at Ro/ro = 100 in an isotropic 
turbulent flow (curve 1) and in an anisotropic flow with turbulence element axes normal to 
the x-axis (curve 2) and with turbulence element axes normal to the :cy plane (curve 3). 
Lines I, II, III, and IV are approximations by the relations - w-•!3 , - w-7 , - w- 2, and 
- w- 1, respectively. 
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vortex motion frequency scale region U f Ro « w « U fro at Rofro = 100, the spectral density of velocity 
pulsations can be approximated well enough by the relation w- 5/ 3 corresponding to the inertial interval of 
the locally isotropic Kolmogorov-Obukhov turbulence [5]. At high frequencies (w » U fro) corresponding to 
motions in the viscous region, there is observed a rapid decrease of the spectral density of velocity pulsations. 
This decrease in the initial section can be approximated well enough by the relation - w- 7 corresponding 
to the dissipation interval of the locally isotropic turbulence. 

We have also calculated the spectral density of vortical velocity pulsations in some types of anisotropic 
flows (Fig. 2). In the cases considered, the character of the frequency dependence of the spectral density 
remains the same as in Fig. 1, and it is only the ratio between the energies corresponding to the dipole and 
vortex motions (curves 1 and 2) that changes, and the slope of the spectral density curve decreases in the 
vortex interval in the case of plane flow (curve 3). It should be noted that in actual flows there are observed 
both velocity pulsation spectra close to those predicted by the Kolmogorov-Obukhov model (lines I and If) 
and ones noticeably different from them [7] (lines III and IV). The vortical model is versatile enough to 
describe these differences. 

Since it is a random ensemble of elements and the velocity fields of each one of them that are 
specified (up to within a factor) in the vortical model, it seems possible to find in the future the statistical 
characteristics of the appropriate model of the field of vortical pressure pulsations in a free turbulent flow 
and to study the mechanism whereby pseudosonic pulsations form on the surface of sound vibration pickups. 
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