$3 \cdot 10^{-3}$; такая числовая малость чрезвычайно затрудняет возможность экспериментального наблюдения исследованного явления.

Настоящая работа выполнена при финансовой поддержке Учебно-научного центра «Фундаментальная оптика и спектроскопия» (в рамках программы «Интеграция») и Федеральной программы по поддержке ведущих научных школ (грант 96-15-96476).

Литература

- Andronow A., Witt A. // Archiv f
 ür Elektrotechnik. 1930. XXIV. S. 99
- 2. Андронов А.А. Собр. трудов. М.: Изд-во АН СССР, 1956.

- 3. *Рабинович М.И., Трубецков Д.И.* Введение в теорию колебаний и волн. М.: Наука, 1984. С. 251–258.
- Мигулин В.В., Медведев В.И., Мустель Е.Р., Парыгин В.Н. Основы теории колебаний. 2-е изд. М.: Наука, 1988. С. 214–219.
- 5. *Стокер Дж.* Нелинейные колебания в механических и электрических системах. М.: ИЛ, 1953. С. 157, 180.
- 6. *Ланда П.С.* Автоколебания в системах с конечным числом степеней свободы. М.: Наука, 1980. С. 75–76.

Поступила в редакцию 18,06,99

УДК 530.12:517.958

ПРИМЕНЕНИЕ МЕТОДА ГАМИЛЬТОНА-ЯКОБИ ДЛЯ ИССЛЕДОВАНИЯ ГЕОДЕЗИЧЕСКИХ В ТЕОРИИ ГРАВИТАЦИИ ВИССЕРА

И. П. Денисова, А. А. Зубрило, В. Б. Тверской

(кафедра квантовой теории и физики высоких энергий)

Проведено интегрирование уравнений геодезического движения для массивных и безмассовых частиц в гравитационных полях, создаваемых плоскими электромагнитной и скалярной волнами в теории гравитации Виссера. Показано, что уравнения траекторий этих частиц существенно зависят от массы гравитона.

В настоящее время в научной литературе активно обсуждается несколько вариантов биметрических теорий гравитации, использующих представления о массивном гравитоне. В таких теориях точные решения уравнений гравитационного поля содержат массу гравитона в качестве параметра. Поэтому, изучая законы движения частиц в гравитационных полях, можно оценить массу гравитона и выяснить, насколько предположение о неравенстве нулю массы гравитона согласуется с объективной реальностью.

К сожалению, число найденных точных решений в таких теориях невелико. В частности, в рамках теории гравитации Виссера [1] в работе [2] найдено только решение, описывающее гравитационное поле, которое создает плоская эллиптически поляризованная электромагнитная волна. В этом случае при использовании галилеевских координат плоского фонового пространства-времени ненулевые компоненты метрического тензора риманова пространства-времени можно записать в виде

$$g^{00} = 1 - F(ct - z), \quad g^{11} = g^{22} = -1,$$
 $g^{33} = -1 - F(ct - z), \quad g^{03} = -F(ct - z),$
 $F(ct - z) = -\frac{2G\hbar^2}{m_g^2 c^6} [h_1^2(ct - z) + h_2^2(ct - z)],$

$$(1)$$

где G — гравитационная постоянная, \hbar — постоянная Планка, m_g — масса гравитона, а $h_1(ct-z)$ и $h_2(ct-z)$ — произвольные функции от переменных ct-z, выбор которых означает выбор определенного

волнового пакета и состояния поляризации электромагнитной волны.

Совершенно аналогично работе [2] можно найти компоненты гравитационного поля, создаваемого плоской волной безмассового скалярного поля. В этом случае метрический тензор имеет ту же структуру, что и в (1), но отличается выражением для функции F(ct-z):

$$F(ct-z) = -rac{2G\hbar^2}{m_q^2c^6}h_3^2(ct-z), \hspace{1.5cm} (2)$$

где $h_3(ct-z)$ описывает волновой пакет безмассового скалярного поля.

Так как метрики (1) и (2) имеют одинаковый вид, различаясь только обозначениями, то их исследование проводится одинаково.

Используя метод Гамильтона—Якоби, изучим геодезическое движение массивных и безмассовых частиц в гравитационных полях (1) и (2). Решение уравнений Гамильтона—Якоби для частицы, имеющей массу m_0 , в координатах ct, x, y и z фонового пространства-времени имеет вид

$$S = lpha_1 x + lpha_2 y + lpha_3 z + rac{lpha_1^2 + lpha_2^2 + lpha_3^2 + m_0^2 c^2}{2lpha_3} (ct - z) +$$

$$+\frac{\alpha_3}{2} \int_{-\infty}^{ct-z} F(\xi) d\xi, \tag{3}$$

где α_1, α_2 и α_3 — параметры, вводимые для разделения переменных.

Предположим, что массивная частица в начальный момент времени t=0 находилась в начале координат $(\mathbf{r}(0)=0)$ и имела скорость \mathbf{V}_0 , направленную под углом θ_0 к оси z.

Тогда из выражения (3) мы можем получить закон геодезического движения $\mathbf{r} = \mathbf{r}(t)$ и уравнение траектории этой частицы:

$$x=rac{eta_0\sin heta_0}{1-eta_0\cos heta_0}(ct-z),$$

$$z=rac{(ct-z)eta_0\cos heta_0}{1-eta_0\cos heta_0}+rac{(ct-z)F_0}{2}-rac{1}{2}\int\limits_0^{ct-z}F(\xi)d\xi,$$

где $\beta_0 = V_0/c$, а F_0 — значение функции F(ct-z) в точке ${\bf r}=0$ в момент времени t=0.

Совершенно аналогично можно получить закон движения и уравнение траектории для безмассовой частицы. Полагая, что в начальный момент времени t=0 безмассовая частица находилась в начале координат и имела скорость $\mathbf{V}_{ph}=\{V_{ph}\sin\theta_0,0,V_{ph}\cos\theta_0\}$, направленную под углом θ_0 к оси z, получим

$$x=rac{eta_p\sin heta_0}{1-eta_p\cos heta_0}(ct-z),$$

$$z=rac{(ct-z)eta_p\cos heta_0}{1-eta_p\cos heta_0}+rac{(ct-z)F_0}{2}-rac{1}{2}\int\limits_0^{ct-z}F(\xi)d\xi,$$

где $eta_p = V_{ph}/c$, причем для безмассовой частицы в силу соотношения $ds^2 = 0$ имеем

$$eta_p = rac{\sqrt{1 + F_0 \sin^2 heta_0} - F_0 \cos heta_0}{(1 - F_0 \cos^2 heta_0)}.$$

Таким образом, в гравитационном поле (1), которое, согласно уравнениям теории гравитации Виссера, создается плоской электромагнитной волной, массивная $(V_0 < V_{ph})$ и безмассовая $(V_0 = V_{ph})$ частицы движутся по различным траекториям и величина отклонения одной траектории от другой зависит от массы гравитона.

Поэтому, измеряя отклонение одной траектории от другой в фоновом плоском пространстве-времени, можно в принципе измерить массу гравитона. Следует отметить, что метрики (1) и (2) не допускают предельного перехода $m_g \to 0$, так как в ОТО Эйнштейна плоские электромагнитные и скалярные волны создают гравитационное поле, у которого структура метрического тензора (отличные от нуля компоненты) отличается от структуры метрического тензора (1) теории гравитации Виссера.

Литература

- Visser M. // General Relativity and Gravitation. 1998. 30, No. 12.
 P. 1717.
- 2. *Карецкий М.М.* // Вестн. Моск. ун-та. Физ. Астрон. 1999. № 3. С. 13 (Moscow University Phys. Bull. 1999. No. 3. P. 19).

Поступила в редакцию 29.11.99

АТОМНАЯ И ЯДЕРНАЯ ФИЗИКА

УДК 621.384.6

ВЫСОКОЭФФЕКТИВНЫЙ ИСТОЧНИК ЖЕСТКОГО ТОРМОЗНОГО ИЗЛУЧЕНИЯ НА ОСНОВЕ РЕЦИРКУЛЯЦИОННОГО УСКОРИТЕЛЯ

В. К. Гришин, Б. С. Ишханов, С. П. Лихачев

(НИИЯФ)

Обсуждается новая физическая схема источника тормозного рентгеновского и γ -излучения, в котором процесс испускания фотонов сопровождается ускорением электронов. Схема существенно повышает выход как мягких, так и жестких тормозных фотонов при сохранении компактных размеров всего устройства. Компьютерное моделирование подтверждает высокую эффективность подобной схемы.

Источники γ - и рентгеновского тормозного излучения (ИТИ) электронов находят широкое применение в разнообразных исследованиях, и чрезвычайно важно поднять их эффективность, которая не превышает пока 5–10% [1, 2]. Поэтому, учитывая непрекращающиеся поиски более эффективных устройств ИТИ (см., напр., [3, 4]), оценим перспективность предложенной авторами схемы [3] с продленным, многократным циклом излучения, в котором про-

исходит регулярная компенсация энергии, теряемой электронами при прохождении мишени-радиатора.

Одна из возможных практических схем такого рода — электронный циклотрон с индукционным ускорением частиц. Система состоит из плоских магнитов, создающих постоянное магнитное поле (могут использоваться и постоянные магниты) и индукционного сердечника, который проходит сквозь полюсы. С помощью сердечника возбуждается вихревое уско-