ПРЕДЕЛЬНАЯ ЧУВСТВИТЕЛЬНОСТЬ СТРОБОСКОПИЧЕСКОГО ИЗМЕРИТЕЛЯ КООРДИНАТЫ

Н. В. Козлов, Ф. Я. Халили

(кафедра молекулрной физики и физивских измерений)

Получены точные выражения для предельной чувствительности стробоскопического измерителя координаты. Рассмотрен частный случай использования параметрического датчика малых смещений.

Введение

Известно, что предельная чувствительность традиционных схем слежения за координатой ограничивается так называемым стандартным квантовым пределом (СКП) [1], возникающим из-за того, что при непрерывном слежении за координатой фактически одновременно измеряются две некоммутирующие наблюдаемые — координата и импульс.

Стробоскопическое измерение координаты квантового осциллятора было предложено более 20 лет назад [2] в качестве мысленного эксперимента, в котором возможно преодоление СКП в рамках линейных координатных измерений. В настоящее время рассматривается возможность применения стробоскопического измерения во внутрирезонаторных схемах съема информации в больших лазерных гравитационных антеннах следующего поколения [3]. В то же время строгий расчет предельной чувствительности стробоскопического измерения до сих пор отсутствует, и для оценок используется качественная формула

$$\Delta X = \sqrt{\frac{\hbar \tau_1}{m}},\tag{1}$$

где ΔX — ошибка измерения, τ_1 — время измерения, m — масса пробного тела. Из этой формулы следует, что при $\tau_1 \rightarrow 0$ точность измерения, в принципе, может неограниченно нарастать. Однако неясно, какие конкретно требования при этом предъявляются к измерителю.

В настоящее время наивысшую точность измерения координаты позволяют получить параметрические датчики, которые преобразуют сдвиг пробного тела в модуляцию какого-либо параметра связанного с ним электромагнитного резонатора [4]. Известно, что для повышения точности измерения требуется увеличение энергии накачки в параметрическом датчике [5]. Однако точная зависимость величины ΔX от энергии накачки в случае стробоскопического измерения неизвестна.

Цель настоящей работы — получить точное соотношение, связывающее предельно допустимую чувствительность с параметрами схемы измерения, а также построить алгоритм оптимальной обработки сигнала для данного случая.

1. Схема измерений

Рассмотрим общую схему системы для измерения силы, состоящей из пробного осциллятора с мас-

сой *т* и собственной частотой ω_0 и измерителя координаты (рис. 1). Как показано в квантовой теории измерений [5], квантовые свойства такой схемы можно учесть, полагая, что на выходе этой схемы присутствуют аддитивный выходной шум $X_{fl}(t)$ и шум обратного флуктуационного влияния $F_{fl}(t)$, причем характеристики этих шумов определенным образом связаны. В рамках настоящей работы мы будем полагать, что эти шумы белые и взаимно некоррелированные, а их спектральные плотности S_x и S_F могут явно зависеть от времени. В этом случае должно выполняться соотношение

$$S_x(t)S_F(t) \ge \hbar^2/4. \tag{2}$$

Выходной сигнал такого измерителя является уже классической наблюдаемой, и его обработка может производиться по обычным алгоритмам классической теории оптимальной фильтрации (см., напр., [6]).

гис. 1. Схема измерения

Для получения максимальной чувствительности сигнал с выхода схемы интегрируют с оптимальной фильтрующей функцией v(t), которая является решением интегрального уравнения

$$F(t) = \int_{0}^{T} B(t, t_1) v(t_1) dt_1.$$
 (3)

Здесь T — общее время наблюдения, F(t) — измеряемая сила, а $B(t, t_1)$ — корреляционная функция суммарного шума (приведенного ко входу пробного объекта):

$$egin{aligned} B(t,t_1) &= S_F(t)\delta(t-t_1) + \ &+ m^2\left(rac{d^2}{dt^2} + \omega_0^2
ight)\left(rac{d^2}{dt_1^2} + \omega_0^2
ight)\left(rac{d^2}{dt_1^2} + \omega_0^2
ight)S_x(t)\delta(t-t_1). \end{aligned}$$

Интегральное уравнение (3) может быть преобразовано к следующему дифференциальному уравнению четвертого порядка:

$$m^{2} \left(\frac{d^{2}}{dt^{2}} + \omega_{0}^{2}\right) S_{x}(t) [\ddot{v}(t) + \omega_{0}^{2}v(t)] + S_{F}(t)v(t) = F(t)$$
(4)

с нулевыми граничными условиями для функции и ее первой производной. При этом требуется, чтобы функция и все ее производные до третьей включительно были непрерывны в течение всего измерения, за исключением точек разрывов функций $S_x(t)$, $S_F(t)$ и F(t). Введением новых переменных

$$y(t)=rac{2mS_x}{\hbar}\Big(\ddot{v}(t)+\omega_0^2v(t)\Big), \hspace{1em} z(t)=y(t)+iv(t)\,.$$

уравнение (4) сводится к комплексному уравнению второго порядка

$$m\ddot{z}(t)+\left(m\omega_0^2-rac{i\hbar}{2S_x(t)}
ight)z(t)=rac{2F(t)}{\hbar}.$$
 (5)

Граничные условия преобразуются в условие действительности значений функции z(t) и ее первой производной на концах интервала измерения. Требование непрерывности преобразуется в требование непрерывности функции z(t) и ее первой производной.

В случае стробоскопического измерения все время измерения разбивается на три интервала: $\tau_1, \tau_2, \tau_3 = \tau_1$. В течение промежутка времени τ_2 измеритель выключен: $S_x \to \infty$. При этом уравнение (5) на каждом из трех интервалов $\tau_j, j = 1, 2, 3$, является линейным дифференциальным уравнением второго порядка с постоянными коэффициентами вида

$$\ddot{z}(t) + lpha_j^2 z(t) = rac{2F(t)}{m\hbar},$$
 (6)

где $\alpha_2 = \omega_0^2$, $\alpha_{1,3}^2 = \omega_0^2 - i\beta^2$, а $\beta^2 = \hbar/(2mS_x)$ — показатель точности слежения за координатой.

Известно, что возможная точность измерения силы в течение заданного времени слабо зависит от формы силы. Поэтому для упрощения математических выкладок в качестве пробной силы возьмем короткий импульс силы, действующий в середине интервала измерения.

Решение уравнения (5) для этого случая, удовлетворяющее заданным граничным условиям и условиям непрерывности, приведено в приложении. Мнимая часть решения является оптимальной фильтрующей функцией.

2. Достижимая чувствительность

Основной показатель чувствительности схемы — отношение сигнал/шум — в соответствии с теорией оптимальной фильтрации [6] имеет вид

$$rac{s}{n} = \int\limits_{-\infty}^{\infty} F(t) v(t) dt.$$

Как показано в приложении, в рассматриваемом случае

$$\frac{s}{n} = \frac{P^2}{m\hbar} \cdot \frac{-|\alpha_1|^2 (\operatorname{ch} 2\alpha_{\operatorname{Im}} \tau_1 + \cos 2\alpha_{\operatorname{Re}} \tau_1 - 2)}{2} \times \\ \times \left(\alpha_{\operatorname{Re}}^3 \operatorname{sh} 2\alpha_{\operatorname{Im}} \tau_1 + \alpha_{\operatorname{Im}}^3 \sin 2\alpha_{\operatorname{Re}} \tau_1 + \right. (7) \\ + G_1 \cos \omega_0 \tau_2 + G_2 \sin \omega_0 \tau_2 \right)^{-1},$$

7 ВМУ, физика, астрономия, №4

где P — импульс, переданный пробному телу обнаруживаемой силой, $\alpha_{\rm Im}$ и $\alpha_{\rm Re}$ — мнимая и действительная части α_1 ,

$$G_1 = lpha_{
m Re} lpha_{
m Im}^2 \sin 2lpha_{
m Im} au_1 + lpha_{
m Im} lpha_{
m Re}^2 \sin 2lpha_{
m Re} au_1,$$

 $G_2 = -lpha_{
m Im} lpha_{
m Re} \omega_0 ({
m ch}\, 2 lpha_{
m Im} au_1 - \cos 2 lpha_{
m Re} au_1).$

Максимальная чувствительность достигается при такой длине интервала au_2 между измерениями, при которой справедливо условие

$$G_1 \cos(\omega_0 \tau_2) + G_2 \sin(\omega_0 \tau_2) = \sqrt{G_1^2 + G_2^2}.$$
 (8)

Отношение сигнал/шум при этом равно

$$rac{s}{n} = rac{P^2}{m\hbar} imes
onumber \ imes rac{s}{2} \left(lpha_{
m Re}^3 {
m sh} \, 2lpha_{
m Im} au_1 + lpha_{
m Im}^3 \sin 2lpha_{
m Re} au_1 + \sqrt{G_1^2 + G_2^2}
ight).$$

Зависимости отношения сигнал/шум от времени τ_1 для различных значений параметра β/ω_0 изображены на рис. 2. Графики нормированы на величину

Рис. 2. Зависимость чувствительности от времени измерения при различных значениях величины $\beta/(\sqrt{2}\,\omega_0)$ — цифры при кривых

отношения сигнал/шум, соответствующую стандартному квантовому пределу:

$$\left(rac{s}{n}
ight)_{SQL}=rac{P^2}{m\hbar\omega_0}.$$

Из графиков хорошо видно, что при увеличении τ_1

чувствительность монотонно растет, асимптотически стремясь к величине

$$rac{s}{n}=rac{P^2}{m\hbar\omega_0}rac{eta}{\sqrt{2}\omega_0}.$$

При этом чувствительность, близкая к этому асимптотическому пределу, достигается за время

$$\tau_1 = 2\pi/\beta \tag{9}$$

и при дальнейшем увеличении времени измерения возрастает незначительно. Время τ_2 в силу формулы (8) равно примерно π/ω_2 .

То обстоятельство, что основная информация при измерении поступает за время порядка $2\pi/\beta$, подтверждается также видом оптимальной фильтрующей функции. Отметим, что более наглядным является вид не самой фильтрующей функции v(t), а функции

$$v_x(t)=\ddot{v}(t)+\omega_0^2 v,$$

описывающей оптимальную фильтрацию сигнала, приведенного ко входу измерителя координаты пробного тела, поскольку именно такие фильтрующие функции обычно фигурируют в иллюстративных качественных рассуждениях. Типичный вид этой функции для различных значений параметра β приведен на рис. 3.

Рис. 3. Вид фильтрующих функций при различных значениях величины β/ω_0 — цифры при кривых

3. Энергия в параметрическом датчике, необходимая для достижения требуемой чувствительности

При использовании в качестве измерителя координаты пробного тела параметрического датчика малых смещений, как показано в работе [3], спектральная плотность координатного шума равна

$$S_x = rac{\hbar L^2}{16Q\mathcal{E}},$$

где L — длина резонатора, Q — его добротность, \mathcal{E} — электромагнитная энергия, запасенная в резонаторе параметрического датчика. При этом

$$eta^2 = rac{8Q\mathcal{E}}{mL^2}.$$

Тем самым предельная чувствительность определяет- ся выражением

$$rac{s}{n} = \left(rac{s}{n}
ight)_{SQL} \sqrt{rac{8Q\mathcal{E}}{mL^2\omega_0^2}}.$$

В том случае, когда время измерения выбрано в соответствии с формулой (9),

$$rac{s}{n} = rac{P^2}{m \hbar \omega_0} \cdot rac{2\pi}{\omega_0 au}$$

С точностью до численного множителя порядка единицы этот результат совпадает с основным результатом работы [2].

Авторы благодарят С. П. Вятчанина и М. Л. Городецкого за полезное обсуждение результатов данной работы.

Приложение

Решение однородного уравнения (6) на каждом из трех интервалов τ_1, τ_2, τ_3 имеет вид

$$\begin{pmatrix} z(\delta t) \\ \dot{z}(\delta t) \end{pmatrix} = \mathbf{A}_n(\delta t) \begin{pmatrix} z_n \\ \dot{z}_n \end{pmatrix},$$

где z_n и \dot{z}_n — начальные значения функции z и ее первой производной для этого интервала; δt — время, отсчитываемое от начала данного интервала;

$$\mathbf{A}_{n}(\delta t) = \mathbf{I} \cos \alpha_{n} \delta t + \mathbf{M}_{n} \sin \alpha_{n} \delta t$$

— матрица эволюции; I — единичная матрица; $\mathbf{M}_n = \begin{pmatrix} 0 & 1/\alpha_n \\ -\alpha_n & 0 \end{pmatrix}$.

Следовательно, конечные значения функции z(t) и ее производной для уравнения (6) равны

$$\begin{pmatrix} z_f \\ \dot{z}_f \end{pmatrix} = \mathbf{A}_1(\tau_1)\mathbf{A}_2(\tau_2)\mathbf{A}_1(\tau_1) \begin{pmatrix} z_0 \\ \dot{z}_0 \end{pmatrix} + \\ +\mathbf{A}_1(\tau_1)\mathbf{A}_2(\tau_2/2) \begin{pmatrix} 0 \\ 2P/m\hbar \end{pmatrix},$$
(10)

где *P* — импульс, переданный измеряемой силой пробному осциллятору.

Граничные условия для v(t) в начале и конце интервала измерения совпадают, а коэффициенты уравнения (6) и форма силы — четные функции времени относительно середины этого интервала. Следовательно, искомое решение уравнения (6) также будет четным. Учитывая это обстоятельство, уравнение (10) можно свести к одному скалярному:

$$\dot{z}_0 K_{22} + z_0 T_{12} = - rac{P}{m \hbar},$$

где K_{22} и T_{12} — элементы матриц

$$\begin{split} K &= I\cos(\alpha_{1}\tau_{1})\cos(\alpha_{2}\tau_{2}/2) + M_{1}M_{2}\sin(\alpha_{1}\tau_{1})\sin(\alpha_{2}\tau_{2}/2), \\ T &= M_{1}\sin(\alpha_{1}\tau_{1})\cos(\alpha_{2}\tau_{2}/2) + M_{2}\cos(\alpha_{1}\tau_{1})\sin(\alpha_{2}\tau_{2}/2). \end{split}$$

Следовательно,

$$z_0 = -\frac{P}{m\hbar} \frac{\operatorname{Im} K_{22}}{D}, \quad \dot{z}_0 = \frac{P}{m\hbar} \frac{\operatorname{Im} T_{12}}{D}$$

где $D = \operatorname{Re} T_{12} \operatorname{Im} K_{22} - \operatorname{Re} K_{22} \operatorname{Im} T_{12}$. Отсюда

$$z(t) = \begin{cases} z_0 \cos \alpha_1 t + \frac{z_0}{\alpha_1} \sin \alpha_1 t, & t \in [0; \ \tau_1], \\ z_1 \cos \omega_0 (t - \tau_1) + \frac{\dot{z}_1}{\omega_0} \sin \omega_0 (t - \tau_1), \\ & t \in [\tau_1; \ \tau_1 + \tau_2/2], \end{cases}$$

где $z_1 = z_0 \cos \alpha_1 \tau_1 + \frac{\dot{z}_0}{\alpha_1} \sin \alpha_1 \tau_1$, $\dot{z}_1 = -z_0 \alpha_1 \sin \alpha_1 \tau_1 + \dot{z}_0 \cos \alpha_1 \tau_1$. Таким образом, фильтрующая функция имеет вид

$$v(t) = \begin{cases} z_0 \cos \alpha_{\rm Re} t \operatorname{ch} \alpha_{\rm Im} t + \\ + \frac{\dot{z}_0}{|\alpha_1|^2} (\alpha_{\rm Re} \cos \alpha_{\rm Re} t \operatorname{sh} \alpha_{\rm Im} t - \alpha_1 \sin \alpha_{\rm Im} t \operatorname{ch} \alpha_{\rm Im} t); \\ t \in [0; \ \tau_1], \\ \operatorname{Im} z_1 \cos \omega_0 (t - \tau_1) + \frac{\operatorname{Im} \dot{z}_1}{\omega_0} \sin \omega_0 (t - \tau_1); \\ t \in (\tau_1; \ \tau_1 + \tau_2/2). \end{cases}$$

Вид функций z(t) и v(t) на промежутке $[\tau_1 + \tau_2; 2\tau_1 + \tau_2]$ определяется из их четности относительно точки $t = \tau_1 + +\tau_2/2$.

Отношение сигнал/шум с учетом того, что сила действовала кратковременно в точке $t = \tau_1 + \tau_2/2$, равно

$$\frac{s}{n} = \int_{-\infty}^{\infty} F(t)v(t) dt = Pv\left(\tau_1 + \frac{\tau_2}{2}\right) = \frac{P^2}{m\hbar} \frac{1}{D} \left(\operatorname{Im} T_{12} \operatorname{Im} T_{21} - \operatorname{Im} K_{11} \operatorname{Im} K_{22}\right).$$

Подставив выражения для $\text{Im} K_{ij}$ и $\text{Im} T_{ij}$, после упрощения получим формулу (7).

Литература

- 1. Брагинский В.Б., Воронцов Ю.И. // УФН. 1974. 114. С. 41.
- Брагинский В.Б., Воронцов Ю.И., Халили Ф.Я. // Письма в ЖЭТФ. 1978. 27. С. 296.
- 3. Braginsky V.B., Khalili F.Ya. // Phys. Lett. 1999. A257. P. 241.
- 4. Брагинский В.Б., Манукин А.Б. Измерение малых сил в физических экспериментах. М.: Наука, 1974.
- 5. Braginsky V.B., Khalili F.Ya. Quantum Measurement. Cambridge University Press, 1992.
- 6. *Левин Б.Р.* Статистическая радиотехника. М.: Наука, 1975.

Поступила в редакцию 27.10.99

УДК 519.6

ПРИМЕНЕНИЕ МЕТОДА GCV ДЛЯ КОРРЕКТНЫХ И НЕКОРРЕКТНЫХ ЗАДАЧ

В. Н. Титаренко, А. Г. Ягола

(кафедра математики)

На примере систем линейных алгебраических уравнений показано, что алгоритм решения некорректных задач, основанный на методе GCV, в общем случае не является регуляризирующим.

Многие практические задачи можно записать в форме операторного уравнения

$$Az = u, \quad z \in Z, \quad u \in U,$$
 (1)

где пространства Z, U являются нормированными.

Задача (1) называется корректной (по Адамару) на классе «допустимых» данных $\Sigma = \{(A, u)\}$, если: 1) задача имеет решение для любых данных

(A, u) $\in \Sigma$, 2) решение задачи единственно для любых данных

2) решение задачи единственно для любых данных $(A, u) \in \Sigma$,

 решение задачи устойчиво относительно возмущения исходных данных задачи.

Последнее означает, что для любых данных $(A_h, u_\delta) \in \Sigma$ таких, что

$$\|A_hz-Az\|_U\leqslant h\|z\|_Z, \quad \|u_\delta-u\|_U\leqslant \delta_Y$$

8 ВМУ, физика, астрономия, №4

решение $z(A_h, u_\delta) \xrightarrow{Z} z(A, u)$ при $h, \delta \to 0$. Если хотя бы одно из условий корректности не выполняется, то задача (1) называется некорректной. При нарушении условий существования и единственности за обобщенное решение задачи (1) обычно принимается нормальное псевдорешение, т.е. решение в смысле метода наименьших квадратов с минимальной нормой, если оно существует. В дальнейшем в качестве обобщенного решения задачи (1) будем рассматривать нормальное псевдорешение.

А. Н. Тихонов в работах [1, 2] определил, что подразумевается под решением некорректной задачи (1), и привел регуляризирующий алгоритм, основанный на минимизации сглаживающего функционала

$$M^{\alpha}[z] = ||A_h z - u_{\delta}||^2 + \alpha ||z||^2, \qquad (2)$$

где $\alpha > 0$ — параметр регуляризации. Для случая, когда пространства Z и U гильбертовы, можно запи-