Из приведенных рассуждений и примеров видно, что метод GCV нельзя использовать для решения некорректно поставленных задач. В случае же корректных СЛАУ необходимо исследовать область применимости метода GCV. Пример 5 показывает, что существуют такие возмущенные системы линейных уравнений, для которых метод GCV дает нормальное псевдорешение системы (1). Но последний пример имеет характерную особенность: параметр регуляризации $\alpha = 0$ независимо от погрешности h. А такие ситуации, когда параметр $\alpha = 0$, часто возникают и при выборе параметра регуляризации другими методами. Поэтому данный пример не характерен для обоснования правильности выбора параметра регуляризации по методу GCV. В любом случае пример 4 показывает несостоятельность метода GCV для корректных задач, так как при одной и той же возмущенной матрице можно, согласно данному методу, различными способами выбрать параметр регуляризации так, что полученные «приближенные решения» находятся на конечном расстоянии друг от друга. Пример 3 показывает, что найденное по методу GCV «решение» таковым не является.

Работа выполнена при поддержке программы «Университеты России — Фундаментальные исследования» (грант 4-5220) и РФФИ (грант 99-01-00447).

Литература

- 1. Тихонов А.Н. // ДАН СССР. 1963. 153, № 1. С. 49.
- 2. Тихонов А.Н. // ДАН СССР. 1963. 151, № 3. С. 501.
- Леонов А.С., Ягола А.Г. // Вестн. Моск. ун-та. Физ. Астрон. 1995. № 4. С. 28 (Moscow University Phys. Bull. 1995. No. 4. P. 25).

- 4. Тихонов А.Н., Леонов А.С., Ягола А.Г. Нелинейные некорректные задачи. М.: Наука, 1995.
- Тихонов А.Н., Гончарский А.Н., Степанов В.В., Ягола А.Г. Численные методы решения некорректных задач. М.: Наука, 1990.
- 6. Тихонов А.Н. // ДАН СССР. 1985. 280, № 3. С. 559.
- 7. Бакушинский А.Б. // ЖВМ и МФ. 1984. 24, № 8. С. 1258.
- 8. Wahba G. // SIAM J. Numer. Anal. 1977. 14, No. 4. P. 651.
- O'Sullivan F., Wahba G. // J. Comput. Phys. 1985. 59, No. 3. P. 441.
- Wahba G. // Remote Sensing Retrieval Methods / Eds. H. Fleming, M. Chahine. Hampton, VA, 1985. P. 385.
- Bates D. M., Wahba G. // Treatment of Integral Equations by Numerical Methods / Eds. C.T.H. Baker, G.F. Miller. L.: Acad. Press, 1982. P. 283.
- Wahba G. Spline Models for Observation Data (CBMS-NSF Regional Conference Series in Applied Mathematics; 59). Philadelphia, Pensilvania: Soc. for Industr. and Appl. Mathem., 1990.
- Gu C., Heckman N., Wahba G. // Statistics and Probability Letters. 1992. 14. P. 283.
- Lukas M.A. // Report No. 43, Centre for Mathematical Analysis, Australian National University. Canberra, 1990.
- Nychka D., Wahba G., Goldfarb S., Pugh T. // J. Amer. Statist. Assoc. 1984. 79, No. 38. P. 832.
- Wahba G. // Remote Sensing Retrieval Methods / Eds. A. Deepak, H. Fleming, J. Theon. Hampton, VA, 1989. P. 347.

Поступила в редакцию 03.11.99

УДК 530.145

СТРУКТУРА ПОЛЯРИЗАЦИОННОГО ОПЕРАТОРА ФОТОНА ВО ВНЕШНЕМ НЕОДНОРОДНОМ НЕАБЕЛЕВОМ ПОЛЕ

В. Ч. Жуковский, В. В. Худяков

(кафедра теоретической физики)

Рассматривается поляризационный оператор (ПО) фотона во внешнем постоянном хромомагнитном поле. Для случая слабого однородного хромомагнитного поля получены однопетлевые вклады в антисимметричную часть ПО за счет скалярных и спинорных кварков, а также индуцированная топологическая масса фотона. Рассмотрен ПО в случае неоднородного внешнего поля на примере поля инстантона.

Введение

Структура физического вакуума квантовой хромодинамики (КХД) во многом определяется наличием кваркового и глюонного конденсатов, $\langle \bar{q}q \rangle$ и $\langle (\alpha_s/\pi) G^a_{\mu\nu} G^a_{\mu\nu} \rangle$ соответственно [1]. Неабелевы калибровочные поля, описывающие глюоны, обладают нетривиальными топологическими свойствами. Конденсат может быть выбран в виде таких классических решений уравнений калибровочного поля, как монополи и инстантоны [2]. На фоне подобных полей поведение взаимодействующих кварков и глюонов является существенно непертурбативным [3]. В (2+1)-мерном аналоге КХД учет радиационных поправок индуцирует топологический член Черна–Саймонса, что сопровождается появлением массы калибровочного поля, не нарушающей калибровочную инвариантность теории (этот процесс альтернативен по отношению к механизму спонтанного нарушения симметрии [4]). Индуцированная топологическая масса играет важную роль в регуляризации инфракрасных расходимостей многопетлевых диаграмм [5]. Появление антисимметричной части ПО означает возникновение анизотропии пространства, проявляющейся при распространении электромагнитного поля. К этому эффекту в (3+1)-мерной теории может приводить наличие конденсата калибровочного поля [6].

В однопетлевом приближении вклад скалярных кварков в ПО на фоне неабелевого конденсата был вычислен в работе [7]. Для спинорных кварков была определена индуцируемая слабым внешним полем топологическая масса фотона [8]. В настоящей работе приведены выражения для вклада скалярных и спинорных кварков в антисимметричную часть ПО в низшем порядке разложения по слабому внешнему однородному полю, вычисленные в рамках SU(2) модели КХД [9]. Рассматривается ПО на фоне инстантона и обсуждается влияние неоднородности внешнего поля на вид ПО.

1. Вклад скалярных кварков

Воспользуемся моделью кварков, описываемых скалярным полем $\phi(x) = \phi^a T^a$ в фундаментальном представлении, которое взаимодействует с электромагнитным полем $\mathcal{A}_{\mu}(x)$ и неабелевым калибровочным полем $\mathcal{A}_{\mu} = A^a_{\mu} T^a$ в группе SU(2). Поле \mathcal{A}_{μ} в дальнейшем будем называть полем глюонов. Предполагая наличие глюонного конденсата \mathcal{A}_{μ} , пренебрежем на его фоне квантовыми флуктуациями калибровочного поля. Лагранжиан системы имеет вид

$$\mathcal{L} \!=\! - rac{1}{4} F_{\mu
u} F^{\mu
u} \!+\! |D_{\mu}\phi|^2 \!-\! m^2 |\phi|^2 \!+\! e J_{\mu} \mathcal{A}^{\mu} \!+\! e^2 |\phi|^2 \mathcal{A}_{\mu} \mathcal{A}^{\mu}.$$

Здесь $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ — тензор электромагнитного поля и $J_{\mu} = i\phi^+(D_{\mu}\phi) - i(D_{\mu}\phi)^+\phi$ — электромагнитный ток скалярных кварков в поле глюонного конденсата, $D_{\mu} = \partial_{\mu} - iA_{\mu}$. Рассмотрим глюонный конденсат в виде однородного хромомагнитного поля, предполагая, что вектор-потенциал не зависит от координат и $[A_{\mu}, A_{\nu}] = iG_{\mu\nu}$ [10]. Тогда уравнение для скалярной функции Грина $(P^2 - m^2)G(p) = 1$ имеет решение [7]

$$egin{aligned} G(p) &= (p^2 - m^2 + Y/4 - 2p_\mu A^\mu) imes \ & imes \left[(p^2 - m^2 + Y/4)^2 - p_\mu arphi^{\mu
u} p_
u
ight]^{-1}, \end{aligned}$$

где введены обозначения: $P_{\mu} = iD_{\mu}$, $Y^{ab} = A^a_{\mu}A^b_{\nu}g^{\mu\nu}$, $Y = Y^{aa}$, $\varphi_{\mu\nu} = A^a_{\mu}A^a_{\nu}$, $g^{\mu\nu}$ — метрический тензор в пространстве Минковского.

Антисимметричная часть ПО, $\Pi^{\rm a}_{\mu\nu}(q,q')$, в однопетлевом приближении записывается следующим образом:

$$egin{aligned} \Pi^{\mathrm{a}}_{\mu
u}(q,q') &= -4ie^2\delta^4(q+q') imes\ & imes\int d^4p \operatorname{tr}\left[P_\mu G(p-q/2)P_
u G(p+q/2)-(\mu\leftrightarrow
u)
ight], \end{aligned}$$

где q — это 4-импульс фотона. След в (2) включает также суммирование по цветовым индексам. Наличие в (2) δ -функции — прямое следствие трансляционной инвариантности фонового потенциала A_{μ} . Учитывая диагональность ПО по импульсу, в дальнейшем будем использовать обозначение $\Pi_{\mu\nu}(q,q') = (2\pi)^4 \delta(q+q') \Pi_{\mu\nu}(q)$. В случае слабого внешнего поля можно разложить функцию Грина G(p), определенную соотношением (1), в ряд по степеням A_{μ} . Из (1) и (2) видно, что $\Pi^{\rm a}_{\mu\nu}(q)$ зависит только от трех размерных параметров: $A^{\rm a}_{\mu}$, q_{μ} и m. Принимая во внимание ковариантность и поперечность ПО, заключаем, что в антисимметричную часть ПО, $\Pi^{\rm a}_{\mu\nu}$, должны давать вклад третья, пятая и более высокие нечетные степени потенциала поля конденсата A_{μ} .

Диаграмма Фейнмана ПО фотона, соответствующая порядку $O(A^3)$ разложения по потенциалу внешнего поля

Подставляя (1) в (2) и вычисляя след, получим разложение в ряд по степеням A_{μ} для ПО. Как показывают вычисления, член порядка $O(A^3)$ в разложении $\Pi^a_{\mu\nu}$ тождественно равен нулю. Соответствующая диаграмма Фейнмана представлена на рисунке, на котором волнистые линии соответствуют электромагнитному полю, пунктирные — внешнему неабелевому полю, а сплошные — полю скалярных кварков. Первым неисчезающим приближением будет $O(A^5)$. Для сферически симметричной конфигурации внешнего хромомагнитного поля $A_i^a = \sqrt{\lambda} \delta_i^a$, $A_0^a = 0$ имеем $Y = -3\lambda$, $(Aq)^2 = (\mathbf{q})^2\lambda$. Пренебрегая высшими степенями внешнего поля, в результате получаем

где $r^2 = q_{\mu}q^{\mu}/(4m^2)$ и $E = q_0/(2m)$. Последняя формула (3) справедлива при $0 \leq r^2 \leq 1$. Предположение о наличии у массы кварка малой мнимой добавки $m^2 \to m^2 - i\epsilon$, задающей обход полюсов при интегрировании, позволяет аналитически продолжить (3) в область произвольного действительного r^2 . Представим антисимметричную часть ПО в виде $\Pi^{\rm a}_{\mu\nu} = i\epsilon_{\mu\nu\alpha}q^{\alpha}\tilde{\Pi}^{\rm a}(q^2)$. Конечный предел $ilde{\Pi}^{\rm a}(q^2) \neq 0$ при r = 0 означает наличие индуцированной топологической массы фотона

$$heta_{
m ind} = \lim_{q o 0} ilde{\Pi}^{
m a}(q^2) = rac{1}{96\pi^2} rac{e^2}{m^4} \lambda^{5/2}.$$

При r = 1 ПО имеет неинтегрируемую особенность. Результат, полученный в первом порядке разложения при $r^2 \to -\infty$, совпадает со значением, найденным в статье [7].

2. Вклад спинорных кварков

Рассмотрим спинорное поле кварков $\psi(x)$ в рамках той же модели, что и в предыдущем разделе. Лагранжиан взаимодействия $\psi(x)$ с электромагнитным полем $\mathcal{A}_{\mu}(x)$ на фоне хромомагнитного поля имеет вид

$${\cal L}_{
m sp} = {i\over 2} (\overline{\psi} D_\mu \gamma^\mu \psi - \overline{D_\mu \psi} \gamma^\mu \psi) - m \overline{\psi} \psi + e J_\mu {\cal A}^\mu,$$

где $D_{\mu} = \partial_{\mu} - iA_{\mu}$ и $J_{\mu} = \overline{\psi}\gamma_{\mu}\psi$. В этом случае ПО в импульсном представлении

$$egin{aligned} \Pi_{\mu
u}(q,q') &= ie^2 \delta^4(q+q') imes \ & imes \int d^4 p ext{tr} \left[\gamma_\mu S(p+rac{q}{2}) \gamma_
u S(p-rac{q}{2})
ight] \end{aligned}$$

выражается через функцию Грина спинорных кварков во внешнем поле $S(p) = (\gamma P - m)^{-1}$. Вычислим в однопетлевом приближении вклад в $\Pi^{\rm a}_{\mu\nu}(q,q')$ спинорных кварков $\psi(x)$ по аналогии с тем, как это было сделано для скалярных кварков. Антисимметризуем (4) по индексам μ, ν и подставим в него разложение S(p) в ряд по слабому внешнему полю A_{μ} . В отличие от скалярного случая здесь главный вклад в ПО (4) дают слагаемые порядка $O(A^3)$. Этот вклад пропорционален спиновой матрице $\sigma_{\mu\nu}$.

Напомним, что в чистой электродинамике, согласно теореме Фарри, диаграммы, содержащие хотя бы одну спинорную петлю с нечетным числом звеньев, взаимно компенсируются. В нашем случае это утверждение неверно, так как в теории присутствует некоммутативное внешнее поле. Вычисляя след по спинорным и цветовым индексам, после интегрирования по импульсу получим антисимметричную часть ПО в явном виде:

В случае сферически симметричного потенциала имеем:

$$egin{aligned} \Pi^{\mathrm{a}}_{ab}(q) &= rac{i\pi^2 e^2 \lambda^{3/2}}{(2\pi)^4 m^2} arepsilon_{abc} q^c \Pi^{\mathrm{a}}, \ a,b,c &= \{1,2,3\}, \quad \Pi^{\mathrm{a}}_{0\mu} = 0. \end{aligned}$$

Предел $\Pi^{\rm a}_{\mu\nu}(0)$, приводящий к топологической массе фотона

$$heta_{
m ind} = rac{5}{24\pi^2} \, rac{e^2}{m^2} \lambda^{3/2},$$

совпадает со значением, полученным в работах [8]. Антисимметричная часть ПО в силу своей тензорной структуры поперечна (ее свертка с 4-импульсом фотона тождественно обращается в нуль).

3. Вычисление ПО на фоне инстантона

Вернемся к скалярной модели кварков, но в качестве внешнего поля выберем инстантонное решение уравнений калибровочного поля:

$$egin{aligned} &A^a_\mu = 2\eta_{a\mu
u}rac{x_
u}{x^2+
ho^2}, \ &\eta_{a\mu
u} = egin{cases} arepsilon_{a\mu
u}; & \mu,
u=1,2,3, \ &-\delta_{a
u}; & \mu=4; &\delta_{a\mu}; &
u=4. \end{aligned}$$

Функция Грина скалярных кварков на фоне неодноро поля не обладает трансляционной инвариантностью и, следовательно, зависит от двух переменных: G(k, k'). То же справедливо и для ПО, который в этом случае недиагонален по импульсу (см. (2)). Не вдаваясь в подробные вычисления, отметим, что функция Грина теперь не имеет явного представления (как, например, в случае однородного поля, см. (1)), но при разложении по степеням слабого поля (при больших ρ) представляется в виде суммы многократных интегралов по 4-импульсу $G(k, k') = G_0 + G_1 + G_2 + \dots$, где

$$G_{0} = \frac{-(2\pi)^{4}\delta(k+k')}{(k^{2}+m^{2})}, \quad G_{1} = \frac{(k-k')_{\mu}A_{\mu}(k+k')}{(k^{2}+m^{2})(k'^{2}+m^{2})},$$
(5)
$$G_{2} = \int \frac{d^{4}q}{(2\pi)^{4}} \frac{A_{\alpha}(k+q)A_{\beta}(k'-q)}{(k^{2}+m^{2})(k'^{2}+m^{2})} \times \\ \times \left[-\frac{g_{\alpha\beta}}{4} + \frac{(k-q)_{\alpha}(k'+q)_{\beta}}{q^{2}+m^{2}} \right].$$

Раскрывая Т-произведение в определении ПО

$$\Pi^{
m a}_{\mu
u}(x,y)=ie^2\langle 0|TJ_{\mu}(x)J_{
u}(y)|0
angle -(\mu\leftrightarrow
u)$$

и используя разложение функции Грина (5), получим соответствующее разложение по степеням внешнего поля. Непосредственные вычисления дают следующее выражение для ПО в порядке $O(A^2)$:

$$\Pi^{(2)}_{\mu\nu}(q,q') = ie^2 \Big(f_1 \delta_{\mu\nu} + f_2 (q_\mu q'_\nu + q_\nu q'_\mu) + f_3 (q_\mu q'_\nu - q_\nu q'_\mu) + f_4 \varepsilon_{\mu\nu\alpha\beta} q_\alpha q'_\beta \Big).$$
(6)

Коэффициенты $f_n = f_n(q^2, q'^2, qq', \rho)$ представляются в виде многократных интегралов, которые не удается вычислить точно из-за их громоздкости. Однако можно проанализировать общую структуру этих

коэффициентов. Так, например, в пределе m = 0, $q\rho \gg 1$, $q'\rho \gg 1$ имеем:

$$egin{split} f_n(q^2,q'^2,qq',
ho) &\simeq ilde{f}_n(q^2,q'^2,qq',
ho) imes \ & imes \exp\left(-
ho \sqrt{C_{1n}q^2+C_{2n}qq'+C_{3n}q'^2}
ight) \end{split}$$

где f_n является некоторой степенной функцией своих аргументов. Для моделирования физического вакуума необходимо провести суммирование по размерам, положениям центров, ориентациям и плотности распределения инстантонов. Таким образом, степенное убывание потенциала инстантона приводит к экспоненциальному убыванию ПО с ростом импульса. Наличие экспоненциального члена в ПО является следствием чисто мнимых полюсов в пропагаторе кварка, что подробно обсуждается в работе [11]. Вклад спинорных кварков в ПО в координатном представлении был вычислен в работе [12], там же получено импульсное представление усредненного ПО (см. также [13]). Антисимметричная часть ПО при усреднении, очевидно, исчезает.

Заключение

Наличие антисимметричной части ПО в рассмотренной модели означает, что внешнее неабелево цветовое поле приводит к анизотропии пространства [6]. Недавние астрофизические наблюдения [14] указывают на то, что вращение плоскости поляризации электромагнитного излучения удаленных объектов не объясняется одним лишь эффектом Фарадея. Можно предположить, что определенный вклад вносят наличие конденсата и связанная с ним нетривиальная топологическая структура вакуума.

Из (6) следует, что в случае неоднородного внешнего поля антисимметричная часть ПО возникает уже в порядке $O(A^2)$, в отличие от однородного конденсата [8], где она имеет порядок $O(A^3)$ благодаря неабелевой структуре потенциала A_{μ} .

Работа выполнена в рамках совместного проекта физического факультета МГУ и Немецкого научно-исследовательского общества (грант DFG 436 RUS 113/477).

Литература

- Shifman M.A., Vainshtein A.I., Zakharov V.I. // Nucl. Phys. 1979. B147. P. 385; 448.
- Belavin A., Polyakov A., Schwartz A. et al. // Phys. Lett. 1975.
 B59. P. 85; Callan C.G., Dashen R., Gross D.J. // Phys. Rev. 1978. D17. P. 2717.
- 3. Dubovikov M.S., Smilga A.V. // Nucl. Phys. 1981. B185. P. 109.
- Jackiw R., Templeton S. // Phys. Rev. 1981. D23. P. 2291; Schonfield N. // Nucl. Phys. 1981. B185. P. 157.
- Жуковский К.В., Эминов П.А. // Ядерная физика. 1996. 59.
 С. 1265; Zhukovskii K.V., Eminov P.A. // Phys. Lett. 1995. B359.
 Р. 155; Жуковский В.Ч., Песков Н.А., Афиногенов А.Ю. // Ядерная физика. 1998. 61. С. 1408.
- Carroll S.M., Field G.B., Jackiw R. // Phys. Rev. 1990. D41. P. 1231.
- Averin A.V., Borisov A.V., Zhukovskii V.Ch. // Z. Phys. 1990. C48. P. 457.
- Ebert D., Zhukovsky V.Ch. // Theory of Elementary Particles: Proc. 31st Intern. Symp. Ahrenshoop on the Theory of Elementary Particles, Buckow, 2–6 September, 1997. Singapore: World Scientific Publishing Company, 1998. P. 189; Ebert D., Zhukovsky V.Ch. Preprint HU-EP-97/87, 1997; E-print Archive: hep-th/9712016.
- 9. Жуковский В.Ч., Худяков В.В. // Ядерная физика. 1999. **62**. С. 1889.
- 10. Brown L.S., Weisberger W.I. // Nucl. Phys. 1979. B157. P. 285.
- Chibisov B., Dikeman R.D., Shifman M., Uraltsev N.G. // Int. J. Mod. Phys. 1997. A12. P. 2075; E-print Archive: hep-ph/9605465.
- Carlitz R., Lee Ch. // Phys. Rev. 1978. D17. P. 3238; Andrei N., Gross D.J. // Ibid. 1978. D18. P. 468.
- 13. Dubovikov M.S., Smilga A.V. // Nucl. Phys. 1981. B185. P. 109.
- 14. Nodland B., Ralston J.P. // Phys. Rev. Lett. 1997. 79. P. 1958.

Поступила в редакцию 05.11.99