АТОМНАЯ И ЯДЕРНАЯ ФИЗИКА

УДК 539.172.3

КОНКУРЕНЦИЯ НЕЙТРОННОГО И ПРОТОННОГО КАНАЛОВ В РЕАКЦИЯХ ФОТОРАСЩЕПЛЕНИЯ АТОМНЫХ ЯДЕР

С. С. Бородина, Б. С. Иманов, В. И. Мокеев, С. И. Павлов

(НИИЯФ)

Представлена модель описания отношений интегральных сечений (γ, Xn) - и (γ, p) -реакций на ядрах с 10 < A < 10. Предлагаемый метод основан на феноменологической параметризации основных механизмов формирования и распада гигантского дипольного резонанса с использованием всей совокупности экспериментальной информации в области энергий $10 < E_{\gamma} < 30$ МэВ. Отношения экспериментально измеренных интегральных сечений (γ, Xn) - и (γ, p) -реакций воспроизводятся в пределах точности измерения $(\sim 30\%)$.

В области энергий возбуждения гигантского дипольного резонанса (ГДР) основными каналами фоторасщепления ядер являются (γ, n) -, (γ, p) и $(\gamma, 2n)$ -реакции [1, 2]. Фотонейтронный канал (γ, Xn) равен сумме (γ, n) - и $(\gamma, 2n)$ -каналов.

В предлагаемом модельном описании отношений интегральных сечений (γ, Xn) - и (γ, p) -реакций на самосопряженных ядрах (N = Z = A/2) процесс фоторасщепления рассматривается как возбуждение и последующий распад одного эффективного дипольного уровня с изоспином $T_0 + 1$, где T_0 — изоспин основного состояния ядра-мишени. Энергия этого состояния совпадает с энергией центра тяжести ГДР E_m , которая хорошо аппроксимируется соотношением [3]

$$E_m = 31, 2A^{-1/3} + 20, 6A^{-1/6}$$
 (M3B), (1)

где А — массовое число ядра.

Основным фактором, определяющим конкуренцию фотонейтронного и фотопротонного каналов на самосопряженных ядрах, является отношение фазовых объемов, зависящее от порогов (γ, n) - и (γ, p) -реакций и положения эффективного дипольного уровня E_m .

Фоторасщепление ядер с $N \neq Z$ рассматривается как возбуждение и последующий распад двух эффективных дипольных уровней с изоспинами $T_{<} = T_0$ и $T_{>} = T_0 + 1$. Эти уровни разнесены по энергии на величину изоспинового расщепления ΔE_{is} и расположены симметрично относительно энергии центра тяжести E_m . Величины ΔE_{is} и сечения возбуждения состояний с изоспинами $T_{<}$ и $T_{>}$ ($\sigma_{<}$ и $\sigma_{>}$) определяются соотношениями [4, 5]

$$\Delta E_{is} = \frac{60}{A} (T_0 + 1) \text{ (M3B)},$$

$$\frac{\sigma_{>}}{\sigma_{<}} = \frac{1}{T_0} \frac{1 - 1,5T_0 A^{-2/3}}{1 + 1,5A^{-2/3}},$$

(2)

$$\sigma_{<} + \sigma_{>} = 60 \frac{14 Z}{A}$$
 (МэВ · мб).

При фоторасщеплении ядер с эмиссией протонов заселение состояний ядра-продукта происходит через возбуждение и последующий распад состояний с изоспином $T_{<}$ и $T_{>}$, в то время как при фоторасщеплении ядер с эмиссией нейтронов распад состояний с изоспином $T_{>}$ на основное состояние ядра-продукта запрещен правилами отбора по изоспину. Поэтому эмиссия нейтрона из этого состояния может происходить только на возбужденное состояние ядра-продукта, имеющего изоспин $T_0 + \frac{1}{2}$, энергию которого можно оценить [6] из соотношения

$$\Delta E = W(N, Z) - W(N + 1, Z - 1) + + 1,44(Z - \frac{1}{2})A^{-1/3} - 1,13 \text{ (M3B)},$$
(3)

где W(N, Z) — энергия связи ядра-продукта, заселяемого в фотонейтронном канале и содержащего N нейтронов и Z протонов.

Предполагается, что эмиссия двух нейтронов является каскадным процессом. Поэтому полная ширина распада дипольного уровня Г, являющаяся суммой ширин всех открытых парциальных каналов, может быть представлена суммой ширин эмиссии протона и нейтрона:

$$\Gamma = \Gamma^{Xn} + \Gamma^p \quad (N = Z),$$

 $\Gamma_{\gtrless} = \Gamma^{Xn}_{\gtrless} + \Gamma^p_{\geqslant} \quad (N \neq Z),$

где Г, Γ^{Xn} и Γ^p — полная и парциальные ширины распадов состояний ГДР с эмиссией нейтрона или протона. Индексы «<» и «>» соответствуют состояниям с изоспинами $T_{<}$ и $T_{>}$.

В рамках сформулированных предположений отношения интегральных сечений фотонейтронного и фотопротонного каналов $\sigma_{int}(\gamma, Xn)/\sigma_{int}(\gamma, p)$ определяются следующим образом:

$$rac{\sigma_{
m int}(\gamma,Xn)}{\sigma_{
m int}(\gamma,p)} = rac{\Gamma^{Xn}}{\Gamma^p} ~~(N=Z),$$

$$egin{aligned} &rac{\sigma_{ ext{int}}(\gamma,Xn)}{\sigma_{ ext{int}}(\gamma,p)} = \left[\sigma_<rac{\Gamma^{Xn}_<}{\Gamma^{Xn}_<+\Gamma^p_<}+\sigma_>rac{\Gamma^{Xn}_>}{\Gamma^{Xn}_>+\Gamma^p_>}
ight] imes \ & imes \left[\sigma_<rac{\Gamma^p_<}{\Gamma^{Xn}_<+\Gamma^p_<}+\sigma_>rac{\Gamma^p_>}{\Gamma^{Xn}_>+\Gamma^p_>}
ight]^{-1} \ (N
eq Z). \end{aligned}$$

При описании ширин распадов Γ^{Xn}_{\gtrless} , Γ^p_{\gtrless} учитываются эффекты прохождения через центробежный и кулоновский барьеры, плотность заселяемых состояний ядер-продуктов, а также изоспиновая симметрия:

$$egin{aligned} \Gamma^{Xn,p}_\gtrless &= C^{n,p}_q \int \sum_l lpha_l B^{n,p}_l(qR)
ho(E) \, dE imes \ & imes \langle T_{\mathrm{fin}} M_{\mathrm{fin}} \ ^1\!\!/_2 \ M_{\mathrm{in}} |T_{\mathrm{in}} M_{\mathrm{in}}
angle, \end{aligned}$$

где $B_l^{n,p}(qR)$ — проницаемость потенциального барьера с радиусом канала R для нейтрона (протона), вылетающего с импульсом q и орбитальным моментом l. Радиус канала R определяется соотношением $R = R_0 - R_n = (1,18A^{1/3} - 0,48) - 0,5$ (ферми), где R_0 — радиус ядра, определенный в экспериментах по рассеянию электронов с ферми-плотностью распределения заряда, R_n — средний радиус нуклона [7], $\rho(E)$ — плотность заселяемых уровней конечного ядра, определяемая в модели фер-

ми-газа. Интегрирование проводится по всем кинематически разрешенным энергиям возбуждения ядра-продукта. Предполагается, что энергия состояния ядра-продукта, заселяемого в фотонейтронном канале с изоспином $T_0 + \frac{1}{2}$, равна ΔE (3). Коэффициенты $C_q^{n,p}$ определяют вероятность вылета нуклона с импульсом q при распаде заселяемого состояния. Вследствие изотопической инвариантности они одинаковы для протона и нейтрона. Коэффициенты α_l определяют долю нуклонов, вылетающих из дипольного состояния с орбитальным моментом *l*. Проведенные расчеты показали, что доминирующий вклад в ширины Γ^{Xn}_{\gtrless} вносит эмиссия нуклонов с минимальным орбитальным моментом l, что делает отношения $\sigma_{\rm int}(\gamma, Xn)/\sigma_{\rm int}(\gamma, p)$ слабо зависящими от выбора конфигурационной структуры дипольного состояния. Коэффициенты α_l оценивались в предположении равномерного смешивания всех одночастичных конфигураций, вносящих вклад в формирование дипольных возбуждений.

Изоспиновая симметрия учитывается изоспиновыми коэффициентами Клебша–Гордана $\langle T_{\rm fin} M_{\rm fin} \ ^{1}/_{2} M_{\rm in} | T_{\rm in} M_{\rm in} \rangle$, где $T_{\rm in}$ и $M_{\rm in}$ — изоспин и проекция начального состояния ядра-мишени, $^{1}/_{2}$ и $M_{\rm in}$ — изоспин и проекция изоспина нуклона,

Отношения $\sigma_{int}(\gamma, Xn)/\sigma_{int}(\gamma, p)$: результаты расчетов при вычисленных по формуле (1) (черные кружки) и при экспериментально определенных (светлые) положениях центров тяжести ГДР E_m ; звездочки — определенные из эксперимента отношения

 $T_{\rm fin}$ и $M_{\rm fin}$ — изоспин и проекция заселяемого состояния.

В рамках описанной выше модели выполнены расчеты отношений интегральных сечений фотонейтронного и фотопротонного каналов $\sigma_{int}(\gamma, Xn)/\sigma_{int}(\gamma, p)$ для ядер с массовыми числами 10 < A < 150. В расчет включены все изотопы, расположенные в указанном интервале массовых чисел, для которых имеются экспериментальные данные по интегральным сечениям соответствующих реакций [1, 2].

Как следует из данных, приведенных на рисунке, для большинства ядер рассчитанные отношения $\sigma_{
m int}(\gamma, Xn)/\sigma_{
m int}(\gamma, p)$ согласуются в пределах 30% с отношениями экспериментальных сечений, что соответствует точности их измерений, в то время как сами значения этих отношений различаются на порядок величины. Отклонения оказываются наибольшими для некоторых ядер с A < 40. Это связано с тем, что при энергиях выше 30 МэВ сечение фоторасщепления этих ядер еще значительно велико. Этот эффект обусловлен конфигурационным расщеплением ГДР — переходами нуклонов из глубокой р-оболочки. Экспериментальные сечения парциальных каналов фоторасщепления в основном получены для энергии ниже 30 МэВ, поэтому существуют дополнительные неопределенности в измеренных величинах интегральных сечений фотонейтронных и фотопротонных реакций на ядрах с A < 40.

Было исследовано влияние выбора положения энергии центра тяжести ГДР E_m на отношение сечений $\sigma_{int}(\gamma, Xn)/\sigma_{int}(\gamma, p)$. Для этого были выполнены расчеты этих отношений как при рассчитанных по формуле (1), так и при экспериментально определенных положениях центров тяжести ГДР E_m (соответственно черные и светлые кружки на рисунке). Согласие между рассчитанными и экспериментальными отношениями сечений $\sigma_{int}(\gamma, Xn)/\sigma_{int}(\gamma, p)$ улучшается при использовании измеренного значения энергии центра тяжести ГДР.

Для ядер с N = Z отношение $\sigma_{int}(\gamma, Xn)/\sigma_{int}(\gamma, p)$ уменьшается с ростом массового числа A от 1 для ¹⁶ О до 0,2 для ⁴⁰ Са. Это связано с тем, что энергия центра тяжести ГДР этих ядер меняется незначительно, в то время как пороги (γ, p) -реакций сильно уменьшаются, что и приводит к возрастанию сечений (γ, p) -реакций.

Отношения интегральных сечений (γ, Xn) и (γ, p) -реакций на ядрах ¹⁴C, ¹⁸O и ²⁶Mg $(N \neq Z)$ в несколько раз превышают эти отношения на ядрах с N = Z (¹⁶O и ²⁴Mg), что обусловлено энергией

симметрии. Для ядер с нейтронным избытком (14 С, ¹⁸О и ²⁶Mg) характерны высокие пороги (γ , p)- и низкие пороги (γ, n) -реакций, в то время как для ядер с N = Z пороги (γ, p) -реакций ниже порогов (γ, n) -реакций. На ядрах с A < 40 пороговые эффекты и обусловленные ими различия фазовых объемов для нейтронных и протонных распадов являются основными факторами, определяющими конкуренцию фотонейтронного и фотопротонного каналов. На ядрах с A > 40 конкуренция фотонейтронного и фотопротонного каналов в основном определяется изоспиновыми эффектами. Эмиссия нейтронов из состояний с изоспином $T_>$ для этих ядер оказывается подавленной вследствие большой величины энергии ΔE , определяемой выражением (3). Это обстоятельство в сочетании с высоким кулоновским барьером для эмиссии протонов приводит к доминирующему вкладу нейтронной эмиссии из состояний с изоспи-HOM $T_{<}$:

$$\Gamma^{Xn}_{>}=0, \quad \Gamma^{Xn}_{<}\gg\Gamma^{p}_{\geqq}.$$

Из неравенств видно, что фотопротонная реакция протекает преимущественно через возбуждение состояний с изоспином $T_>$, а фотонейтронная — с изоспином $T_<$. Поэтому отношения $\sigma_{int}(\gamma, Xn)/\sigma_{int}(\gamma, p)$ оказываются равными отношениям $\sigma_>/\sigma_<$ (2) и мало зависят от других параметров модели. Таким образом, зависимость отношений $\sigma_{int}(\gamma, Xn)/\sigma_{int}(\gamma, p)$ от массового числа A на изотопах с A > 60 обусловлена изменением изоспина T_0 и может быть использована для определения сечений возбуждения состояний ГДР с изоспинами $T_<$ и $T_>$ из условия наилучшего воспроизведения измеренных отношений $\sigma_{int}(\gamma, Xn)/\sigma_{int}(\gamma, p)$.

Литература

- Varlamov A.V., Varlamov V.V., Rudenko D.S., Stepanov M.E. // Atlas of Giant Dipole Resonances. International Nuclear Data Committee, INDC(NDS)-394, Distr. GN+NM. 1999.
- Dietrich S., Berman B.L. // Atomic Data and Nuclear Data Tables. 1988. 38, No. 2. P. 199.
- 3. Варламов В.В., Ишханов Б.С., Степанов М.Е. Препринт НИИЯФ МГУ № 96-32/439. М., 1996.
- 4. Fullieros S., Gouland B. // Nucl. Phys. 1970. A147. P. 593.
- 5. Akyuz R.O., Fallieros S. // Phys. Rev. Lett. 1971. 27. P. 1016.
- Anderson S.D., Wong C., McClare J.W. // Phys. Rev. 1965. 138. P. 615.
- 7. Fef F. // Statist. and Theor. Phys. 1965. No. 1.

Поступила в редакцию 24.09.99