РАДИОФИЗИКА

УДК 517.958:621.372.823

ВЫЧИСЛЕНИЕ ПОСТОЯННЫХ РАСПРОСТРАНЕНИЯ ВОЛН ПЛОСКОГО ГРАДИЕНТНОГО ДИЭЛЕКТРИЧЕСКОГО ВОЛНОВОДА С ИМПЕДАНСНОЙ ГРАНИЦЕЙ

В. В. Коншенко, В. П. Моденов

(кафедра математики)

Ортогональным методом Галеркина проведен расчет постоянных распространения электромагнитных волн плоского волновода с импедансной границей и с переменным диэлектрическим заполнением. Показана эффективность метода путем сравнения с решением дисперсионного уравнения.

Постоянная распространения является одной из важнейших характеристик волноведущих электродинамических устройств. Поэтому разработке методов ее расчета уделяется повышенное внимание. В основе многих методов лежит решение трансцендентного уравнения, что для сложных волноведущих систем связано с определенными трудностями. Поэтому весьма перспективным оказывается использование различных проекционных методов [1, 2]. В настоящей работе применяется ортогональный метод Галеркина [3], в котором используется разложение по собственным функциям задачи Штурма–Лиувилля с несамосопряженным граничным условием третьего рода и вычисление соответствующих собственных значений дифференциально-параметрическим методом [4, 5].

Рассмотрим плоский волновод, ограниченный двумя параллельными плоскостями x=0 и x=a. Плоскость x=0 считаем идеально проводящей, а плоскость x=a— сверхпроводящей, определяемой поверхностным импедансом Z_s . Ось z направим в направлении распространения волны.

Заполнение внутри волновода считаем однородным вдоль оси z и характеризующимся диэлектрической проницаемостью $\varepsilon(x)$, которая в общем случае является комплекснозначной функцией. Поля периодически меняются со временем по закону $\mathrm{e}^{-i\omega t}$.

Рассмотрим случай H-волн. Выражая компоненты векторов электромагнитного поля через компоненту $E_y(x,z)=u(x,z)$, приходим к скалярной залаче.

Краевая задача заключается в нахождении решения уравнения Гельмгольца с переменным коэффициентом

$$\Delta u(x,z) + k^2 arepsilon(x) u(x,z) = 0$$

в полосе $(0 < x < a, -\infty < z < +\infty)$, для которого заданы граничное условие первого рода на нижней границе полосы:

$$u\Big|_{x=0}=0$$

и несамосопряженное условие третьего рода на верхней границе этой полосы:

$$\left. \alpha \frac{\partial u}{\partial x} + u \right|_{x=a} = 0,$$

где $\alpha = iZ_s/k$ — приведенный импеданс, $|\alpha| \ll 1$.

Решение данной задачи проводится ортогональным методом Галеркина. Приближенное решение ищется в виде конечного разложения

$$u^N(x,z) = \sum_{n=1}^N C_n \operatorname{e}^{i\gamma_n z} X_n(x),$$

где C_n — неизвестные коэффициенты, γ_n — искомые постоянные распространения, X_n — собственные функции задачи Штурма—Лиувилля со слабо несамосопряженным ($|\alpha| \ll 1$) граничным условием третьего рода:

$$\left\{egin{aligned} X_n''(x) + \lambda_n^2 X_n(x) = 0, & x \in (0,a), \ X_n(0) = 0, & lpha X_n'(a) + X_n(a) = 0 \end{aligned}
ight. \quad (\operatorname{Re} lpha > 0),$$

 λ_n — собственные значения.

При условии $|\alpha|\ll 1$ спектр собственных значений невырожден. Комплекснозначные собственные функции $X_n(x)=\sin\lambda_n x$ ортогональны в комплексном пространстве $L_2(0,a)$ с псевдоскалярным произведением и образуют базис [4], квадрат псевдонормы отличен от нуля и равен $||X_n||^2=\frac{a(1+\alpha+\alpha^2\lambda_n^2)}{2(1+\alpha^2\lambda_n^2)}$. Для нахождения собственных значений, используя

Для нахождения собственных значений, используя дифференциально-параметрический метод (ДП-метод [5]), приходим к задаче Коши:

$$rac{d\lambda_n}{dlpha} = -rac{\lambda_n}{1+lpha+lpha^2\lambda_n^2}, \quad \lambda_n\Big|_{lpha=0} = rac{n\pi}{a} \ \ (n=1,2,\ldots).$$

При $|\alpha|\ll 1$, разлагая собственные значения λ_n в окрестности $\alpha=0$, получаем для них приближенные аналитические выражения:

$$\left|\lambda_n\cong\lambda_n
ight|_{lpha=0}+rac{d\lambda_n}{dlpha}
ight|_{lpha=0}\cdotlpha=rac{n\pi}{a}\Big(1-rac{lpha}{a}\Big).$$

Далее, для того чтобы $u^N(x,z)$ было приближенным решением рассматриваемой краевой задачи, необходимо выполнение соотношения

$$\int\limits_0^a (\Delta u + k^2 arepsilon(x) u) X_m(x) \, dx = 0.$$

В силу ортогональности собственных функций

$$egin{align} -\gamma_m^2 C_m &= \sum_{n=1}^N \Bigg(\lambda_m^2 \delta_{mn} - \ &-rac{k^2}{||X_m||^2} \int\limits_0^a arepsilon(x) X_n(x) X_m(x) \ dx \Bigg) C_n = 0. \end{split}$$

Таким образом, для расчета постоянных распространения получена задача на собственные значения:

$$\Lambda C = AC$$
,

где C — столбец неопределенных коэффициентов размерности N, A — заданная матрица размером $N\times N$, а $\Lambda=-\gamma^2$ — столбец искомых собственных значений.

В случае слоистого заполнения (однородный слой с диэлектрической проницаемостью ε_1 , заполняющий волновод вдоль оси x от 0 до d) проводилось сравнение с решением дисперсионного уравнения.

Дисперсионное уравнение записывалось в виде равенства нулю определителя третьего порядка:

где
$$u = \sqrt{k^2 arepsilon_0 - \gamma^2}, \; \omega = \sqrt{k^2 arepsilon_1 - \gamma^2}.$$

Данное дисперсионное уравнение решалось итерационным методом Ньютона-Рафсона. На первом шаге рассматривалось начальное приближение для

пустого волновода: $\varepsilon_1=\varepsilon_0$, задавался шаг $\Delta\varepsilon$ и осуществлялся поиск решения γ при $\varepsilon_1=\varepsilon_0+\Delta\varepsilon$, причем в качестве начального приближения использовались постоянные распространения для пустого волновода ($\gamma_n=\sqrt{k^2\varepsilon_0-\lambda_n^2}$). Если выполнялось условие сходимости метода, на следующем шаге рассматривалось приближение $\varepsilon_1=\varepsilon_0+2\Delta\varepsilon$ и в качестве начального приближения использовалось решение на предыдущем шаге. В противном случае шаг по ε_1 уменьшался. Далее процедура последовательно продолжалась.

Численное сравнение двух методов проводилось для волновода ($a=15\,$ мм) со слоем из поликора ($\varepsilon=9,6,\ d=0,2\,$ мм) и импедансной стенкой из сверхпроводника YBCO (импеданс $Z_s=0,004+0,003i$ Ом на частоте $f=10\,$ ГГц).

В табл. 1 приведены значения постоянных распространения при данных параметрах волновода, вычисленные ортогональным методом Галеркина и полученные путем решения дисперсионного уравнения. Наблюдается совпадение результатов с высокой точностью.

Таблица 1

Постоянные распространения	Метод Ньютона	Метод Галеркина
γ_2	$1,5038 \cdot 10^{-5} + 3,1802i$	

В табл. 2 приведены значения постоянных распространения, вычисленные при различных значениях N ($d=1\,$ мм).

Таким образом, численный эксперимент показал как хорошую внутреннюю сходимость ортогонального метода Галеркина, так и совпадение с высокой точностью полученных этим методом численных результатов с решением дисперсионного уравнения. Это позволяет сделать вывод о возможности эффективного использования ортогонального метода Галеркина для расчета импедансных волноводов с диэлектрическим или иным заполнением.

Таблица 2

N	γ_1	γ_2	γ_3	γ_4
	$5,9021 + 1,0247 \cdot 10^{-7}i$			
	$5,9045 + 5,4978 \cdot 10^{-8}i$			
	$5 5,9048 + 6,7280 \cdot 10^{-8}i$			
20	$5,9048 + 6,8081 \cdot 10^{-8}i$	$3,7639 + 1,4091 \cdot 10^{-6}i$	$1,8187 \cdot 10^{-5} + 3,7529i$	$3,4057 \cdot 10^{-5} + 6,4074i$

Литература

- 1. Никольский В.В. Вариационные методы для внутренних задач электродинамики. М: Наука, 1967.
- 2. *Моденов В.П.* // Вычислительные методы и программирование. Вып. XX. М.: Изд-во Моск. ун-та, 1973. С. 50.
- 3. Моденов В.П. // ЖВМ и МФ. 1987. 27, № 1. С. 144.
- Modenov V.P. // Proc. Intern. Simp. «Physics and Engineering of Millimetre and Submillimetre Waves». Vol. I. Kharkov, 1994. P. 98.
- 5. Моденов В.П. // ДАН СССР. 1987. 296, № 3. С. 536.

Поступила в редакцию 27.10.99