Григорьев В.И., Григорьева Е.В. // Вестн. Моск. ун-та. Физ. Астрон. 1995. № 1. С. 61 (Moscow University Phys. Bull. 1995. No. 1. P. 56). 11. Луна / Под ред. Г.А. Манова. М.: ГИФМЛ, 1960.

Поступила в редакцию 06.12.99

АСТРОНОМИЯ

УДК 521.135

ОБ УСТОЙЧИВОСТИ В НЕЛИНЕЙНОМ ПРИБЛИЖЕНИИ КОЛЛИНЕАРНЫХ ТОЧЕК ЛИБРАЦИИ В ПРОСТРАНСТВЕННОЙ ОГРАНИЧЕННОЙ ЭЛЛИПТИЧЕСКОЙ ФОТОГРАВИТАЦИОННОЙ ЗАДАЧЕ ТРЕХ ТЕЛ

А. Ю. Кочеткова

(ГАИШ)

Впервые в нелинейном приближении исследованы области устойчивости коллинеарных точек либрации в ограниченной обобщенной фотогравитационной эллиптической задаче трех тел.

Области устойчивости коллинеарных точек либрации были определены только в случае круговой фотогравитационной задачи в линейном приближении. В работе [1] было впервые установлено, что при определенных значениях параметров существуют области линейной устойчивости коллинеарных точек. Л. Г. Лукьянов в работе [2] установил области устойчивости этих точек для большинства начальных условий.

Постановка задачи, основные уравнения движения и метод нормализации гамильтониана, по коэффициентам которого можно сделать заключение об устойчивости коллинеарных точек либрации, подробно изложены в работе [3]. Перечислим только основные параметры задачи: эксцентриситет орбиты основных тел $M_1, M_2 - e \in [0, 1)$; массовый параметр $\mu = m_2/(m_1 + m_2)$, где m_1 и m_2 — массы этих тел) и фотогравитационные параметры Q_1 и Q_2 , которые, вообще говоря, могут принимать значения в диапазоне $(-\infty, 1]$. Роль независимой переменной выполняет истинная аномалия ν .

Координаты коллинеарных точек либрации $L_i(\alpha_i, 0, 0)$ (i = 1, 2, 3) в системе координат Нехвила [4] находятся из формулы [5]: $\alpha_i = \sigma_i - \mu$, где σ_i — корни уравнения

$$\sigma_i - \mu \stackrel{+}{\underset{-}{\overset{-}{_{-}}}} Q_1(1-\mu) / \sigma_i^2 \stackrel{+}{\underset{-}{\overset{+}{_{-}}}} Q_2 \mu / \sigma_i^2 = 0.$$
 (1)

Верхний знак в (1) соответствует точке либрации L_1 , средний — L_2 и нижний — L_3 .

Нормальная форма функции Гамильтона в полярных координатах ρ_j , θ_j (j = 1, 2, 3) с учетом членов до четвертого порядка включительно по $\rho_j^{1/2}$ будет иметь вид [6]

$$H = \lambda_1 \rho_1 + \lambda_2 \rho_2 + \rho_3 + A \rho_1^2 + B \rho_1 \rho_2 + C \rho_2^2 + \rho_3 (F_1 \rho_1 + F_2 \rho_2 + F_3 \rho_3),$$

$$F_j = D_j + E_j \sin(2\psi) + G_j \cos(2\psi) + K_j \sin(4\psi) + L_j \cos(4\psi),$$
(2)

где $\pm i\lambda_j$ — характеристические показатели линейной системы, причем $\lambda_3 \equiv 1$; $\psi = \theta_3 - \nu$; $A, B, C, D_j, E_j, G_j, K_j, L_j$ являются константами при фиксированных параметрах задачи.

После этого проверяются условия устойчивости исследуемой точки либрации, полученные А. П. Маркеевым [6]:

1) условие достаточной устойчивости для большинства начальных условий: дискриминант

$$D = B^2 - 4AC \neq 0;$$

2) положение равновесия устойчиво при учете в нормальной форме (2) членов до четвертого порядка включительно, если $F_3(\psi) \neq 0$ при любых значениях ψ .

Положение равновесия неустойчиво по Ляпунову, если существуют значения ψ , при которых $F_3(\psi) = 0$, но при этих значениях $dF_3/d\psi \neq 0$.

Внисления и результаы

Вычисления проводились с использованием численных и аналитических средств программирования языка МАТLAB. Качественная зависимость области линейной устойчивости точки L_2 от фотогравитационных параметров на плоскости e, μ показана на рис. 1. Линия 1 соответствует значениям фотогравитационных параметров $Q = Q_2 = 0,100$, линия 2 — значениям $Q_1 = Q_2 = 0,114$, линия 3 — $Q_1 = Q_2 = 0,122$, линия 4 — $Q_1 = Q_2 = 0,124$.

В силу того что анализ нелинейной устойчивости требовал много машинного времени (расчет для одной точки занимал 10–20 мин в зависимости от значений параметров e и μ), исследование проводилось лишь для двух случаев: $Q_1 = Q_2 = 0,100$ и параметров, соответствующих полуконтактной двойной звезде РҮ Рег. Результат вычислений для $Q_1 = Q_2 = 0,100$ показан на рис. 2 в плоскости e, μ .

На рис. 2 (так же, как и на рис. 3–5) жирной линией обозначена граница области линейной устойчивости, тонкими сплошными линиями — резонансные

кривые, заштрихованы области, в которых дискриминант $D = B^2 - 4AC$ принимает отрицательные значения, штриховые линии соответствуют случаю D = 0, когда критерий устойчивости для большинства начальных условий не выполняется. Из рис. 2 видно, что вдоль резонансных кривых $3\lambda_2 = -1$ и $3\lambda_2 = -2$ также проходят линии D = 0 и, следовательно, не выполняется условие устойчивости для большинства начальных условий. Параметры орбиты РҮ Рег взяты из каталога [7]: e = 0.48, $\mu = 0.17$.

Фотогравитационные параметры Q_1 и Q_2 изменяются в интервале [0, 1]. На рис. 3 изображена область устойчивости точки L_2 в плоскости Q_1, Q_2 . Часть этого графика представлена в увеличенном масштабе, откуда видно, что вблизи границ линейной устойчивости проходят линии нелинейной неустойчивости. Заштрихованы области, в которых D < 0, в незаштрихованных частях дискриминант положительный. На границе этих областей D = 0 и критерий устойчивости для большинства начальных условий не выполняется. В областях D < 0 выбраны две точки, P_1 и P_2 , и в плоскости e, μ построены графики нелинейной устойчивости для соответствующих этим точкам фотогравитационных параметров (рис. 4, 5).

На рис. 4 $(Q_1 = 0,020, Q_2 = 0,374)$ показано местоположение точки P_1 (см. первую область D < 0 на рис. 3). На рис. 5 $(Q_1 = 0,020, Q_2 = 0,385)$

спроецирована точка P_2 из второй области D < 0 рис. 3. Всюду для точки L_2 функция F_3 принимала положительные значения. Области устойчивости точек либрации L_1 и L_3 обнаружены не были.

Заклнение

Для данной задачи показана возможность устойчивости точки L_2 . Проведен нелинейный анализ устойчивости этой точки для РҮ Рег в плоскости Q_1, Q_2 . Исследованы области устойчивости для большинства начальных условий коллинеарных точек либрации данной задачи в нелинейном приближении в плоскости e, μ .

Литература

- Куницын А.Л., Турешбаев А.Т. // Celest. Mech. 1985. 35, No 2. P. 105.
- 2. Лукьянов Л.Г. // Астрон. журн. 1986. 63, № 6. С. 1222.
- Кочеткова А.Ю. // Вестн. Моск. ун-та. Физ. Астрон. 1999.
 № 5. С. 69 (Moscow University Phys. Bull. 1999. No. 5. Р. 90).
- 4. Дубошин Г.Н. Небесная механика. Аналитические и качественные методы. М., 1978.
- 5. *Маркеев А.П.* Точки либрации в небесной механике и космодинамике. М., 1978.
- 6. *Маркеев А.П*. Препринт Ин-та прикл. математики. 1973. № 49.
- 7. Свечников М.А. Каталог орбитальных элементов, масс и светимостей тесных двойных звезд. Иркутск: Изд-во Иркутск. ун-та, 1986.

Поступила в редакцию 25.10.99