- 10. Carrol P.K., Kennedy E.T. // Phys. Rev. Lett. 1977. 38. P. 1068.
- Балашов В.В., Липовецкий С.С., Павличенков А.В. и др. // Вестн. Моск. ун-та. Физ. Астрон. 1971. № 1. С. 65 (Moscow University Phys. Bull. 1971. No. 1. P. 48).
- 12. Балашов В.В., Гришанова С.И., Круглова И.М., Сенашенко В.С. // Опт. и спектр. 1970. 28. С. 859.
- 13. Kheifets A.S. // J. Phys. B. 1993. 26. P. 2053.
- 14. Ho Y.K. // Phys. Rev. 1981. A23. P. 2137.
- 15. Bhatia A.K., Temkin A. // Phys. Rev. 1975. A11. P. 2018.
- 16. Bhatia A.K., Temkin A. // Phys. Rev. 1984. A29. P. 1895.
- 17. Oza H.D. // Phys. Rev. 1986. A33. P. 824.

ФИЗИКА ТВЕРДОГО ТЕЛА

УДК 538.1

- Macias A., Martin F., Riera A., Yanez M. // Phys. Rev. 1987. A36. P. 4187.
- Bachau H., Bahri M., Martin F., Salin A.J. // J. Phys. B. 1991.
 24. P. 2015.
- Brage T., Froese Fisher C., Miecznik G. // J. Phys. B. 1992.
 25. P. 5289.
- Новиков Н.В., Сенашенко В.С. // Опт. и спектр. 1999. 86. С. 371.
- 22. Burke P.G. // Adv. At. Mol. Phys. 1968. 4. P. 173.

Поступила в редакцию 18.02.00

ДЕФОРМАЦИОННЫЕ ВОСПРИИМЧИВОСТИ И АНОМАЛИИ УПРУГИХ КОНСТАНТ ВАНАДАТА ТmVO₄ В МАГНИТНОМ ПОЛЕ

З. А. Казей, Н. П. Колмакова, О. А. Шишкина

(кафедра общей физики для естественных факультетов)

На основе реального энергетического спектра и волновых функций иона Tm в кристаллическом поле ванадата проведены расчеты всех деформационных восприимчивостей и ΔE -эффекта. Получено хорошее описание экспериментальных упругих констант $C^{\delta}(T)$ и $C^{\gamma}(T)$ и их изменения в магнитном поле в тетрагональной и ромбической фазах. Определены магнитоупругие B^{δ} , B^{γ} и парные квадрупольные K^{δ} , K^{γ} коэффициенты. Исследовано влияние магнитного поля, ориентированного вдоль различных симметричных направлений в кристалле, на квадрупольное упорядочение в ванадате TmVO₄.

1. Редкоземельные (РЗ) парамагнетики с тетрагональной структурой циркона RXO₄ (X=P, V; пространственная группа $D^{19}_{4h} = I4_1/amd)$ являются идеальными объектами для исследования эффектов, обусловленных квадрупольными взаимодействиями, например спонтанных и стимулированных магнитным полем структурных фазовых переходов ян-теллеровской природы — квадрупольного упорядочения [1]. Комплексные исследования этих соединений в рамках формализмов кристаллического поля (КП) и обобщенных восприимчивостей позволяют разделить эффекты, обусловленные особенностями электронной структуры РЗ-иона и матрицы, и описать поведение всего семейства РЗ-цирконов в целом. Такие исследования были проведены нами для серии РЗ-фосфатов [2] и для ванадатов Tb, Dy и Ho [3]. Соединение TmVO₄ занимает особое место в ряду РЗ-цирконов, так как для иона Tm³⁺ в матрице ванадата нижним в спектре является орбитальный дублет, для которого реализуется классический эффект Яна-Теллера. Кроме того, для TmVO₄ взаимодействия электронов, находящихся на вырожденном уровне, с γ-и δ-деформационными модами (в других обозначениях B_{1q} - и B_{2q} -моды) сравнимы по величине, что обусловливает специфику этого соединения.

В настоящей работе рассчитаны температурные и полевые зависимости всех допустимых симметрией кристалла деформационных восприимчивостей $\chi_{\mu}(T, H)$ для TmVO₄ на основе реального энергети-

ческого спектра и волновых функций иона Tm^{3+} , формируемых КП. Зависимости $\chi_{\mu}(T, H)$, определяемые электронной структурой РЗ-иона, являются существенными характеристиками соединения. Они позволяют предсказать наличие квадрупольного упорядочения в системе, определить критические параметры этого фазового перехода, рассчитать магнитоупругий вклад в упругие константы и влияние на них магнитного поля.

2. Для расчета вклада РЗ-иона в температурные и полевые (ΔE -эффект) зависимости упругих констант в тетрагональной и ромбической фазах используем гамильтониан $H = H_{\rm CF} + H_Z + H_{\rm ME} + H_Q$, описывающий взаимодействие с КП ($H_{\rm CF}$), зеемановское взаимодействие магнитного момента **J** с внешним полем **H** (H_Z), одноионное магнитоупругое ($H_{\rm ME}$) и парное квадрупольное (H_Q) взаимодействия, записанные через операторы Стевенса O_n^m и симметризованные деформации ε^{μ} в квадрупольном приближении и в приближении молекулярного поля [2]:

$$\begin{split} H_{\rm CF} &= \alpha_{\rm J} B_2^0 O_2^0 + \beta_{\rm J} (B_4^0 O_4^0 + B_4^4 O_4^4) + \\ &+ \gamma_{\rm J} (B_6^0 O_6^0 + B_6^4 O_6^4), \\ H_{\rm Z} &= g_{\rm J} \mu_B {\bf J} {\bf H}, \\ H_{\rm ME} &= -\alpha_{\rm J} [(B^{\alpha 1} \varepsilon^{\alpha 1} + B^{\alpha 2} \varepsilon^{\alpha 2}) O_2^0 + B^\gamma \varepsilon^\gamma O_2^2 + \\ &+ B^\delta \varepsilon^\delta P_{xy} + B^\varepsilon (\varepsilon_1^\varepsilon P_{zx} + \varepsilon_2^\varepsilon P_{zy})], \\ H_{\rm Q} &= -\alpha_J^2 [K^\alpha < O_2^0 > O_2^0 + K^\gamma < O_2^2 > O_2^2 + \end{split}$$

$$egin{aligned} &+K^{\delta} {<} P_{xy} {>} P_{xy} + K^{arepsilon} ({<} P_{zx} {>} P_{zx} + {<} P_{zy} {>} P_{zy}) \ & \Big(P_{ij} = rac{1}{2} (J_i J_j + J_j J_i) \Big). \end{aligned}$$

В этих выражениях α_J , β_J , γ_J — параметры Стевенса, B_n^m — параметры КП, B^{μ} и K^{μ} — магнитоупругие и парные квадрупольные коэффициенты, описывающие взаимодействие с различными деформационными модами ε^{μ} ($\mu = \alpha 1, \alpha 2, \gamma, \delta, \varepsilon$).

Гамильтонианы $H_{\rm ME}$ и $H_{\rm Q}$ приводятся к обобщенному квадрупольному гамильтониану $H_{\rm QT} = H_{\rm Q} + H_{\rm ME}$:

$$\begin{split} H_{\rm QT} = & -\alpha_J^2 [G^{\alpha} <\!\!O_2^0 \! > \!\!O_2^0 + G^{\gamma} <\!\!O_2^2 \! > \!\!O_2^2 + \\ & + G^{\delta} <\!\!P_{xy} \! > \!\!P_{xy} + G^{\varepsilon} (<\!\!P_{zx} \! > \!\!P_{zx} \! + \! <\!\!P_{zy} \! > \!\!P_{zy})], \end{split}$$

где полные квадрупольные константы $G^{\mu} = G^{\mu}_{ME} + +K^{\mu} = (B^{\mu})^2/C^{\mu}_0 + K^{\mu}$ имеют вклад как от одноионного магнитоупругого, так и от парного квадрупольного взаимодействий (C^{μ}_0 — базовая упругая константа в отсутствие взаимодействий).

Влияние магнитоупругого и парного квадрупольного взаимодействий на упругие константы при наличии магнитного поля и в его отсутствие рассчитано в формализме деформационных восприимчивостей, а спектр и волновые функции РЗ-иона в поле получены путем численного решения секулярного уравнения для гамильтониана $H_0 = H_{\rm CF} + H_{\rm Z} + H_{\rm QT}$. Вычисляя упругую константу C^{μ} как вторую производную потенциала Гиббса по деформации ε^{μ} , получаем выражение для вклада магнитоупругих взаимодействий в C^{μ} и ΔE -эффект:

$$C^{\mu}(T,H) = C_{0}^{\mu} - (B^{\mu})^{2} rac{\chi_{\mu}(T,H)}{1 - K^{\mu}\chi_{\mu}(T,H)} \quad (\mu = \gamma, \delta, \varepsilon),$$

где деформационные восприимчивости $\chi_{\mu}(T, H)$ определяются электронной структурой РЗ-иона [3]. Расчеты электронной структуры для ромбической фазы проводились с учетом гамильтониана $H_{\rm QT}$, в котором параметр порядка $\langle P_{xy} \rangle$ меняется с температурой. Квадрупольные взаимодействия при значительных величинах параметров B^{μ} и K^{μ} могут обусловливать обращение в нуль соответствующей упругой константы C^{μ} , т.е. структурный фазовый переход ферродисторсионного типа. Условием такого перехода является достаточно большая величина χ_{μ} , удовлетворяющая соотношению $1/\chi_{\mu} \leq G^{\mu}$.

3. Спектроскопические данные для иона Tm³⁺ в матрице ванадата имеются только для легированного соединения YVO₄ : Tm, а параметры его КП неизвестны. Поэтому мы использовали в своих расчетах параметры КП ванадата HoVO₄ [4], которые дают очень близкие к эксперименту расстояние $\Delta = 47,2$ см⁻¹ между нижними дублетом и синглетом и фактор расщепления нижнего дублета $g_z = 10,05$, а также позволяют хорошо описать экспериментальные магнитоупругие аномалии. На основе этих параметров были рассчитаны все деформационные восприимчивости $\chi_{\mu}(T)$ кристалла TmVO₄, показанные на рис. 1.

Рис. 1. Рассчитанные температурные зависимости деформационных восприимчивостей $-\chi_{\alpha}$ и $-\chi_{\varepsilon}$ (внизу) и $1/\chi_{\gamma}$ (вверху, штриховая линия), $1/\chi_{\delta}$ (сплошная линия) ванадата Tm в тетрагональной и орторомбической (кривые O) фазах

Видно, что полносимметричная восприимчивость χ_{α} достаточно велика и ее характерная температурная зависимость с экстремумом (рис. 1, внизу) аналогична наблюдаемым ранее для РЗ-фосфатов [5] и ванадатов Тb, Dy, Ho [3]. Восприимчивость χ^{ε} , определяющая поведение упругой константы $C^{\varepsilon} = 2c_{44}$, в несколько раз меньше и монотонно меняется с температурой. Возникновение квадрупольного упорядочения в TmVO₄ сопровождается характерными аномалиями на зависимостях $-\chi_{\alpha}(T)$ и $-\chi_{\varepsilon}(T)$ (кривые *O* на вставке).

Восприимчивости ромбической симметрии χ_{δ} и χ_{γ} в TmVO₄ достаточно велики и сравнимы по величине (рис. 1, вверху). Зависимости $1/\chi_{\delta}(T)$ и $1/\chi_{\gamma}(T)$ линейны вплоть до температур \sim 5–7 К, в отличие от кривых $1/\chi_{\mu}(T)$ для ванадатов Tb, Dy, Ho, обнаруживающих экстремум или плато при низких температурах. В РЗ-цирконах из-за малой величины базовой упругой константы C_0^{δ} ($C_0^{\delta} \approx C_0^{\gamma}/5$) величина полной квадрупольной константы G^{δ} существенно больше, чем G^{γ} . Поэтому для сравнимых значений χ_{δ} и χ_{γ} в TmVO₄ реализуется структурный фазовый переход δ -симметрии при температуре $T_c = 2,15$ K, определяемой условием $\alpha_J^2/\chi_\delta(T_c) = \alpha_J^2 G^{\check{\delta}} \approx 111$ мК (см. далее), что совпадает с экспериментальным значением. Эта же критическая температура получается при расчете параметра порядка фазового перехода $\langle P_{xy} \rangle$ с ромбическим параметром КП $B_2^2 = -\alpha_J G^{\delta} \langle P_{xy} \rangle$ ($B_2^2(0 \ K) = -25,4 \ K$).

В отсутствие этого перехода деформация у-симметрии имела бы место при температуре $T_{c2} = 0,2$ K, определяемой константой $lpha_J^2 G^\gamma \approx 11\,$ мК (см. далее). Возникновение квадрупольного упорядочения и соответствующее изменение в спектре иона Tm^{3+} сопровождаются резким уменьшением деформационной восприимчивости χ_{δ} и выходом χ_{γ} на плато в ортофазе (кривые О на рис. 1, вверху). Характерной особенностью зависимостей $\chi_{\delta}(T)$ и $\chi_{\gamma}(T)$ для TmVO₄, обусловленной орбитальным вырождением основного дублета в тетрафазе, является их расходимость при низких температурах. Это означает, что при любом значении параметра взаимо-полнено условие для структурного фазового перехода $1/\chi_{\delta}(T_c(x)) = G^{\delta}(x)$ и критическая температура $T_c(x)$ падает практически линейно при уменьшении x вплоть до критической концентрации $x_c = 0$.

Рассчитанные зависимости $\chi_{\mu}(T)$ позволяют описать аномальное поведение упругих констант $C^{\delta} = 2c_{66}$ и $C^{\gamma} = (c_{11} - c_{12})$ (рис. 2), измеренных акустическим методом (см. обзор [6]), и определить независимым образом магнитоупругий B^{μ} и парный квадрупольный К^µ коэффициенты. Так же как и ранее для ванадатов Tb, Dy и Ho, фононный вклад в $C^{\mu}(T)$ аппроксимировался линейной зависимостью с коэффициентом $(dC^{\mu}/dT)/C^{\mu} \approx 10^{-4}$ 1/К в температурном диапазоне от 300 до 50 К и полагался нулевым при T < 50 К. Отметим, что для ванадата TmVO₄, у которого наблюдается большой магнитоупругий вклад в упругие константы C^{δ} и C^{γ} , неопределенность фононного вклада не приводит к существенным ошибкам. Наилучшее описание эксперимента в тетрафазе получается при использовании параметров $B^{\delta} = 18,6 \cdot 10^3$ K, $\alpha_J^2 K^{\delta} = -50$ мK, $C_0^{\delta} = 2,18 \cdot 10^5$ К для δ -моды и $B^{\gamma} = 14,3 \cdot 10^3$ К, $\alpha_J^2 K^{\gamma} = -5,8$ мК, $C_0^{\gamma} = 11,95 \cdot 10^5$ К для γ -моды. При этом получаются следующие значения

Рис. 2. Экспериментальные (точки) и рассчитанные с указанными параметрами (кривые) температурные зависимости упругой моды C^{δ} ($C_0^{\delta} = 2,18 \cdot 10^5$ K, $\alpha_J^2 K^{\delta} = -50$ мК) кристалла TmVO₄. На вставке показаны экспериментальные и рассчитанные зависимости упругой моды C^{γ} ($C_0^{\gamma} = 11,95 \cdot 10^5$ K, $B^{\gamma} = 14,3 \cdot 10^3$ K, $\alpha_J^2 K^{\gamma} = -5,8$ мК)

полных квадрупольных констант: $\alpha_J^2 G^{\delta} = 111$ мК и $\alpha_J^2 G^{\gamma} = 11$ мК. При сравнимых значениях магнитоупругих коэффициентов B^{δ} и B^{γ} значение квадрупольной константы для δ -моды оказывается на порядок больше из-за малой величины упругой константы C_0^{δ} . Отношение $K^{\mu}/G_{\text{ME}}^{\mu}$ для обеих мод при данных наборах параметров близко к теоретическому значению (1/3), которое имеет место в отсутствие вклада оптических фононов.

4. Было рассчитано также влияние поля различной симметрии на фазовый переход и деформационные восприимчивости $\chi_{\mu}(T, H)$ в TmVO₄, что дает возможность проанализировать ΔE -эффект $\Delta C^{\mu}(H)/C^{\mu}(0)$ (рис. 3). В расчетах ΔE -эффекта использовались коэффициенты, определенные ранее при описании температурных зависимостей $C^{\delta}(T)$ и $C^{\gamma}(T)$. При этом без каких-либо дополнительных подгоночных параметров были получены очень близкие к экспериментальным значения критической температуры T_c и критического поля $H_c(T)$, при которых разрушается квадрупольное упорядочение.

Рис. 3. Экспериментальные (точки: T = 4,2 (1) и 1,5 К (2)) и рассчитанные с указанными параметрами (кривые) полевые зависимости упругой моды C^{δ} кристалла TmVO₄. На вставке показаны экспериментальные (точки: T = 4,2 (1) и 1,5 К (2)) и рассчитанные (кривые) зависимости упругой моды $C\gamma$ ($H_{\rm dm} = 0,70$ кЭ для T = 1,5 К)

Прежде всего, было исследовано влияние поля, направленного вдоль оси [001], для которого *q*-фактор максимален. Это влияние достаточно подробно изучалось ранее в рамках псевдоспинового формализма. Для δ -моды ΔE -эффект при $T = 4,2 \text{ K} > T_c$ положительный, монотонный и при H = 100 кЭ составляет $\Delta C^{\delta}/C^{\delta} pprox 1,4$. Для T=1,5 К $< T_c$ на рассчитанной зависимости $C^{\delta}(H)$ имеется глубокий минимум при $H_c(T) = 5,3$ кЭ, соответствующий обращению в нуль упругой константы $C^{\delta}(H)$ при обратном переходе из орто- в тетрафазу. Этот участок слабых полей недоступен для измерения упругих констант, по-видимому, из-за большого поглощения звука при переориентации ян-теллеровских доменов. В полях в 3–5 раз выше критического изотермы $C^{\delta}(H)$ для 4,2 и 1,5 К в соответствии с экспериментом практически совпадают. Для упругой константы $C^{\gamma}(H)$ эффект почти на порядок меньше, а критическое поле $H_c(T)$ проявляется в виде излома на кривых $C^{\gamma}(H)$ при $T < T_c$. При сравнении с экспериментом следует учитывать влияние размагничивающего поля, которое для T = 1,5 К и $H \approx 6$ кЭ составляет $H_{\rm dgn} \approx 0,7$ кЭ.

Влияние поля, направленного вдоль осей [110] и [100], на квадрупольное упорядочение и упругие свойства TmVO₄ мало исследовано и с экспериментальной, и с теоретической точек зрения. Поскольку значения д-фактора в базисной плоскости существенно меньше, чем вдоль оси [001] ($g_x \sim 0.1 g_z$), для достижения сравнимого эффекта нужны более сильные поля. В сильных полях уже существен вклад от возбужденных уровней, и анализ следует проводить на основе реального спектра иона Tm³⁺. Поле, направленное вдоль оси [110], индуцирует деформацию той же симметрии, что и спонтанная, и влияет прежде всего на параметр порядка и доменную структуру образца при $T < T_c$. Поле увеличивает параметр порядка в «выгодном» (с максимальным значением *g*-фактора вдоль поля) домене и уменьшает его в «невыгодном». Расчеты с реальными параметрами взаимодействия показывают, что решение для гамильтониана с «невыгодным» доменом существует вплоть до полей порядка 25 кЭ, т.е. в полях выше этого образец неизбежно должен находиться в монодоменном состоянии. Отметим, однако, что на процессы переориентации доменов в реальных кристаллах оказывают сильное влияние такие факторы, как механические напряжения и дефекты в кристалле [7]. Для обеих констант (C^{δ} и C^{γ}) ΔE -эффект при $T = 1,5 \, \mathrm{K} < T_c$ положителен, монотонен и в поле 100 кЭ достигает величины ~1,0 и ~0,11 соответственно (рис. 4, вверху). При температурах выше T_c величина эффекта резко уменьшается.

Более сложное поведение наблюдается в поле $H \parallel [100]$, имеющем иную симметрию, чем параметр порядка. В ромбической фазе кристалла для температур в окрестности T_c параметр порядка $\langle P_{xy} \rangle$ увеличивается по мере роста поля вплоть до ~ 40 кЭ. Далее так же, как и в поле вдоль оси [001], квадрупольное упорядочение (параметр порядка $\langle P_{xy} \rangle$) подавляется, однако величина критического поля $H_{c2} \approx 87$ кЭ почти на порядок больше. В соответствии с этим упругая константа $C^{\delta}(H)$ уменьшается в нуль (рис. 4, внизу). Упругая константа $C^{\gamma}(H)$ растет при возрастании поля, и величина эффекта для H = 100 кЭ составляет $\sim 0,15$, а критическое поле проявляется в виде излома на зависимости $C^{\gamma}(H)$.

Интересно, что при $T \gtrsim T_c$ поле $H \parallel [100]$ индуцирует квадрупольно упорядоченную фазу, которая существует в ограниченном интервале полей. Таким образом, поле вдоль оси [100] повышает температуру перехода, и фазовая диаграмма $H_{c2}(T)$ в этом случае более сложная, чем для $H \parallel [001]$ (вставка на рис. 4). Этот эффект по сути аналогичен стимулированному эффекту Яна–Теллера в виртуальном эластике TmPO₄ в поле $H \parallel [100]$ [8]. Повышение критической температуры невелико ($\Delta T_c < 0,1$ K) и, по-видимому, сильно зависит от реального спектра и волновых функций иона Tm³⁺, формируемых КП.

Рис. 4. Рассчитанные полевые зависимости упругих констант $\Delta C^{\delta}(H)/C^{\delta}(0)$ и $\Delta C^{\gamma}(H)/C^{\gamma}(0)$ (ΔE -эффект) кристалла TmVO₄ для ориентации поля вдоль осей [110] (вверху) и [100] (внизу) при T = 1,5 К $< T_c$ (сплошные линии) и T = 4,2 К $> T_c$ (штриховые линии). На вставке показана рассчитанная фазовая диаграмма $H_{c2}(T)$ для поля вдоль оси [100], подавляющего квадрупольное упорядочение

5. Проведенные исследования позволяют установить и проанализировать изменение параметров взаимодействия для серии ванадатов RVO₄ (таблица). Значения магнитоупругих коэффициентов B^{γ} и B^{δ} для ванадатов Tb, Dy, Но и Tm сравнимы по величине и примерно в 1,5 раза выше, чем известные для фосфатов [2], а B^{δ} оказывается несколько выше B^{γ} . При этом как одноионные магнитоупругие $(G_{\rm ME}^{\mu})$, так и парные квадрупольные (K^{μ}) вклады для δ -моды почти на порядок больше, чем для у-моды. Значения базовой константы C_0^{γ} лежат в диапазоне $(9,6\div12)\cdot10^5$ К, а C_0^{δ} — в диапазоне $(1,7\div2,2)\cdot10^5$ К, т.е. они близки к используемым в литературе средним значениям. Соотношение $K^{\mu}/G^{\mu}_{\rm ME} = -1/3$ достаточно хорошо выполняется для мягких упругих мод в TbVO₄ и TmVO₄ и несколько хуже в $HoVO_4$, а для DyVO₄ с учетом различных наборов параметров B^{μ} и K^{μ} лежит в пределах от -0,20 до 0,40. Эти результаты согласуются с данными обзора [6]. Таким образом, расчеты деформационных восприимчивостей $\chi_{\mu}(T, H)$, проведенные на основе реального энергетического спектра и волновых функций РЗ-иона, позволили проанализировать квадрупольное упорядочение в ванадатах Tb, Dy, Ho, Tm, получить хорошее описание экспериментальных упругих констант и ΔE -эффекта в тетрагональной и ромбической фазах. Определенные из сравнения с экспериментом магнитоупругие коэффициенты B^{δ} , B^{γ} мало

Базовые упругие константы C_0^{μ} , магнитоупругие коэффициенты B^{μ} , одноионные магнитоупругие $\alpha_J^2 G_{\rm ME}^{\mu}$ и парные квадрупольные $\alpha_J^2 K^{\mu}$ вклады в полный квадрупольный коэффициент $\alpha_J^2 G^{\mu}$ для магнитоупругих мод γ -, δ -, ε -симметрии в РЗ-ванадатах

РЗ- ванадаты	Мода	С ^µ ₀ , 10 ⁵ К	В ^{µ} , 10 ^{3} К	$lpha_J^2 G^{\mu}_{\mathrm{ME}},$	$lpha_J^2 K^{\mu},$ MK	$lpha_J^2 G^{\mu},$ MK	$K^{\mu}/G^{\mu}_{ m ME}$
TbVO ₄ DyVO ₄ HeVO	δ γ	1,73 12,0	18,3 15,1	197 7,6	-59 -1,5	138 6,1	-0,30 -0,20 0,25
TmVO4	γ ε δ γ	9,8 5,71 2,18 11,95	6,4 18,6 14,3	1,19 161 16,8	-50 -5,8	1,16 111 11	-0,23 -0,31 -0,35

*) Данные из работы [2].

меняются по величине в пределах РЗ-ряда ванадатов и являются характеристиками серии в целом.

Литература

- Gehring G.A., Gehring K.A. // Rep. Progr. Phys. 1975. 38, No. 1. P. 1.
- Morin P., Kazei Z. // J. Phys.: Condens. Matter. 1999. 11, No. 4. P. 1289.
- 3. *Казей З.А., Колмакова Н.П., Шишкина О.А.* // Вестн. Моск. ун-та. Физ. Астрон. 2000. № 3. С. 33 (Moscow University Phys. Bull. 2000. No. 3, P. 34).
- Bleaney B., Gregg J.F., Hansen P. et al. // Proc. Roy. Soc. (Lond.). 1988. A416, No. 1850. P. 63.
- 5. Соколов В.И., Казей З.А., Колмакова Н.П., Соловьянова Т.В. // ЖЭТФ. 1991. 99, № 3. С. 945.
- Melcher R.L. // Physical Acoustics. Vol. XII / Ed. W.P. Mason, R.N. Thurston. N.Y.: Academic Press, 1976.
- 7. Kaseŭ 3.A. // ФТТ. 1998. 40, №4. С. 701.
- 8. Morin P., Kazei Z. // Phys. Rev. 1997. B55, No. 14. P. 8887.

Поступила в редакцию 05.01.00

УДК 537.226.33

ТЕПЛОЕМКОСТЬ ТОНКИХ ПЛЕНОК СЕГНЕТОЭЛЕКТРИКОВ ВБЛИЗИ ФАЗОВОГО ПЕРЕХОДА ВТОРОГО РОДА

С. В. Павлов, О. Ю. Полнова

(кафедра общей физики для естественных факультетов)

В рамках феноменологической модели Ландау для тонких пленок одноосных сегнетоэлектриков исследованы зависимости теплоемкости от температуры и толщины вблизи фазового перехода второго рода. Обнаружено, что при уменьшении толщины тонкой пленки скачок теплоемкости уменьшается, размывается и смещается в сторону более низких температур. При определенной толщине тонкой пленки аномалия теплоемкости исчезает (в частности, для триглицинсульфата — при толщине в несколько нанометров).

Введение

Теоретические исследования фазовых переходов, а также сегнетоэлектрических и магнитных явлений все чаще проводятся с помощью модельных объектов, в которых по возможности учитываются свойства реальных материалов, известные из эксперимента. На характеристики реальных объектов влияют примеси, облучение, различного рода дефекты (в частности, дислокации, двойникование), наличие доменной структуры, а также конечные размеры исследуемого образца.

Особый интерес представляют тонкопленочные структуры. Магнитные тонкие пленки давно используются в элементах памяти ЭВМ, в различных устройствах хранения, обработки и передачи информации. В последнее десятилетие и сегнетоэлектрические пленки рассматриваются как перспективный материал, эффективно работающий в элементах памяти ЭВМ.

Развитие феноменологической теории фазовых переходов в тонких ферромагнитных пленках впервые проведено в работе [1]. В этой работе обоснована необходимость учета поверхностной энергии, рассчитан профиль намагниченности, а также теоретически исследована зависимость температуры фазового перехода от толщины пленки.

Позднее, в 1979 г., была опубликована работа [2], в которой теория Ландау фазовых переходов II рода применена к случаю тонких пленок сегнетоэлектриков. В феноменологической модели [2] учитывается пространственная неоднородность спонтанной поляризации и влияние границ.

В большинстве работ, посвященных тонким пленкам сегнетоэлектриков, приводятся в основном ре-