ФИЗИКА ТВЕРДОГО ТЕЛА

УДК 537.632

ВЛИЯНИЕ КВАЗИКЛАССИЧЕСКОГО РАЗМЕРНОГО ЭФФЕКТА НА ОПТИЧЕСКИЕ И МАГНИТООПТИЧЕСКИЕ СВОЙСТВА ГРАНУЛИРОВАННЫХ СПЛАВОВ

А. Б. Грановский, М. В. Кузмичев, А. Н. Юрасов

(кафедра магнетизма)

Показано, что квазиклассический размерный эффект оказывает значительное влияние на оптические и магнитооптические спектры ферромагнитных гранулированных сплавов. В частности, при уменьшении размера гранул возможно изменение амплитуды, профиля и знака экваториального эффекта Керра.

Магнитные гранулированные сплавы представляют собой неоднородные магнетики, содержащие ферромагнитные металлические гранулы, размеры которых близки к размеру домена; при этом гранулы хаотически расположены в пара- или диамагнитной матрице металла или диэлектрика. В этих системах обнаружены гигантское магнетосопротивление, гигантский аномальный эффект Холла (АЭХ) и большая магнитооптическая активность, что представляет значительный практический интерес.

Для описания свойств таких сплавов используются методы эффективной среды: Максвелла–Гарнетта [1], Бруггемана [1–3] и симметризованное приближение Максвелла–Гарнетта [4, 5]. Первый метод применим лишь при малой концентрации одной из компонент сплава [1], второй описывает неоднородные сплавы в достаточно широком диапазоне концентраций, если две компоненты сплава топологически эквивалентны [1]. Симметризованное приближение Максвелла–Гарнетта наиболее адекватно для гранулированных сплавов металл–диэлектрик, так как является обобщением приближения Максвелла–Гарнетта на область произвольных концентраций и корректно описывает перколяционный переход [4, 5].

Теория оптических и магнитооптических спектров ферромагнитных гранулированных сплавов была развита в работах [1] и [2] в предположении, что тензор диэлектрической проницаемости (ТДП) ферромагнитных гранул и матрицы тождествен ТДП соответствующих объемных материалов. При этом, очевидно, не учитывалось, что рассеяние на поверхностях гранул, приводящее к квазиклассическому размерному эффекту (РЭ), модифицирует как диагональные $\varepsilon_{xx} = \varepsilon$, так и недиагональные $\varepsilon_{xy} = \gamma$ компоненты ТДП гранул, если их средний размер (радиус r_0) сравним с длиной свободного пробега электрона *l*. В настоящей работе показано, что квазиклассический РЭ может оказывать существенное влияние как на оптические, так и на магнитооптические спектры ферромагнитных гранулированных сплавов в видимой и ИК-области спектра.

Расчеты спектров проводились в симметризованном приближении Максвелла–Гарнетта [4, 5] и приближении Бруггемана [1] для гранулированного сплава Co–Al₂O₃ с объемной концентрацией Co f = 0,45-0,49, соответствующей порогу перколяции. Выбор сплава определяется тем, что все оптические и магнитооптические параметры, а также его микроструктура хорошо известны [1, 4]

Учет квазиклассического РЭ в выражениях для диагональных $\varepsilon_{xx} = \varepsilon$ и недиагональных $\varepsilon_{xy} = \gamma$ компонент ТДП сводится к следующему. Время свободного пробега электронов в грануле (τ_{part}) меньше, чем в массивном образце (τ_{bulk}), за счет соударений с поверхностью гранул [1]:

$$1/\tau_{\text{part}} = 1/\tau_{\text{bulk}} + v_f/r_0, \qquad (1)$$

где v_f — скорость Ферми. В этом выражении опущен параметр отражения от поверхности гранул Фукса–Зондхаймера, который полагается равным единице (зеркальное отражение). Тогда, принимая во внимание, что частотная зависимость внутризонной проводимости описывается законом Друде–Лоренца, можно, как и в работе [1], записать:

$$\varepsilon_{\rm Co,gr} = \varepsilon_{\rm Co} + \frac{\omega_p^2}{\omega(\omega + i/\tau_{\rm bulk})} - \frac{\omega_p^2}{\omega(\omega + i/\tau_{\rm part})}, \quad (2)$$

где ω — частота света, ω_p — плазменная частота [1], причем последние два члена описывают отличия диагональных компонент ТДП для гранул Со ($\varepsilon_{\rm Co,gr}$) и массивного образца Со ($\varepsilon_{\rm Co}$).

Зависимость недиагональных компонент ТДП γ от размера частиц сложнее. Поскольку $\gamma \sim \sigma_{xy}(\omega)$, то аналогично (2), с учетом друде-лоренцевского типа частотной зависимости $\sigma_{xy}(\omega)$ [6] можно записать:

$$egin{aligned} &\gamma_{\mathrm{Co,gr}} = \gamma_{\mathrm{Co}} + 4\pi iggl[rac{\sigma_{xy}(0)}{ au_{\mathrm{bulk}}^2 \omega (\omega + i/ au_{\mathrm{bulk}})^2} - & \ &- rac{\sigma_{xy}(0)}{ au_{\mathrm{part}}^2 \omega (\omega + i/ au_{\mathrm{part}})^2} iggr], \end{aligned}$$

где $\sigma_{xy}(0) = 4\pi M_s R_{\rm gr}/\rho_{\rm gr}^2$; M_s — намагниченность насыщения; $\rho_{\rm gr}$ — удельное сопротивление; $R_{\rm gr}$ —

коэффициент аномального эффекта Холла. Квазиклассический РЭ оказывает влияние как на $R_{\rm gr}$, так и на $\rho_{\rm gr}$. Последнее достаточно очевидно и в силу выражения (1) $\rho_{\rm gr} = \rho_{\rm bulk}(1 + l/r_0)$. Влияние РЭ на коэффициент АЭХ гранул, согласно работе [7], в случае $l/r_0 \ge 1$ можно записать в виде

$$R_{\rm gr}=R_{\rm bulk}+0.2R_s\frac{l}{r_0}\Big(1+\frac{l}{r_0}\Big)$$

где R_s — значение коэффициента АЭХ материала поверхности гранул. Подчеркнем, что намагниченности гранул и объемного сплава могут существенно различаться за счет поверхностных эффектов, но этими изменениями мы пренебрегаем по сравнению со значительными эффектами, состоящими в отличии $\rho_{\rm bulk}$, $R_{\rm bulk}$ и $\tau_{\rm bulk}$ от $\rho_{\rm gr}$, $R_{\rm gr}$ и $\tau_{\rm gr}$.

Результаты выполненного в приближении Бруггемана расчета действительной и мнимой частей ε для сплава Со-Al₂O₃ с концентрацией Со f = 0,45(рис. 1) показывают, что в ближней ИК-области спектра размер гранул оказывает значительное влияние на спектры диагональной компоненты эффективного ТДП, а следовательно, и на оптические спектры. Чем меньше размер частиц, тем сильнее это влияние. Этот эффект проявляется только при немалых концентрациях гранул. Именно поэтому в работе [1] не обнаружено влияния размеров частиц на рассчитанные в приближении Максвелла-Гарнетта оптические спектры гранулированных сплавов при $f \leq 0,2$. Следует также подчеркнуть, что чем меньше вклад межзонных переходов в оптическую проводимость, тем больше роль РЭ.

Спектры экваториального эффекта Керра (ЭЭК) $\delta(\omega)$, рассчитанные для того же сплава, представлены на рис. 2. Параметр $\delta(\omega)$ определяется значениями γ и ε [5]. Как видно из рис. 2, РЭ оказывает очень сильное влияние на магнитооптические спектры в ближней ИК-области, изменяя их амплитуду, профиль и даже знак. Столь сильное влияние связано с тем, что $\delta(\omega)$ линейно зависит от γ , нелинейно от ε [5] и в обеих этих функциях — как

Рис. 1. Энергетическая зависимость действительной и мнимой частей диагональной компоненты ТДП в приближении Бруггемана (f = 0,45; формфактор частиц L = 0,31): без учета размерного эффекта (точечная кривая), $r_0 = 7$ нм (штриховая) и 4 нм (сплошная)

в действительной, так и в мнимой частях — проявляется РЭ. Если не учитывать влияние РЭ на АЭХ, то изменения магнитооптических спектров за счет влияния РЭ на γ и ε будут одного порядка (см. рис. 2) и, как видно, приводят к увеличению ЭЭК. Дополнительный учет РЭ в АЭХ может как усилить, так и ослабить ЭЭК, что определяется знаком и величиной отношения R_s/R_{bulk} , т. е. структурой поверхностного слоя гранул. Согласно экспериментальным данным по гигантскому АЭХ [7], это отношение может достигать $10^3 \div 10^4$, что должно приводить к гигантскому изменению ЭЭК в ИК-области спектра.

Сравнение рассчитанных в симметризованном приближении Максвелла–Гарнетта магнитооптических спектров (f = 0,49) с экспериментальными

Рис. 2. Магнитооптические спектры экваториального эффекта Керра, рассчитанные в приближении Бруггемана (f = 0,45; L = 0,31; l = 2 нм; $r_0 = 4$ нм; $R_s/R_{\rm bulk} = -20$): без учета размерного эффекта (точечная кривая), с учетом размерного эффекта для ε согласно (2) при $\gamma_{\rm Co,gr} = \gamma_{\rm Co}$ (штриховая), с учетом размерного эффекта для ε и γ при $R_{\rm gr} = R_{\rm bulk}$ (штрих-пунктирная линия) и с учетом полного размерного эффекта (сплошная линия)

Рис. 3. Магнитооптические спектры экваториального эффекта Керра: теоретические ($L_3 = 0,33$; l = 1,8 нм; $R_s/R_{\rm bulk} = -3,75$) при f = 0,49; $L_1 = 0,65$; $r_0 = 2,2$ нм (штриховая кривая), f = 0,48; $L_1 = 0,6$; $r_0 = 2,3$ нм (сплошная) и экспериментальные при f = 0,49 (кружки) и f = 0,52 (квадраты)

(рис. 3) показывает, что учет полного квазиклассического РЭ приводит к хорошему согласию с экспериментом.

Литература

- Niklasson G.A., Granqvist C.G. // J. Appl. Phys. 1984. 55, No. 9. P. 3382.
- Khan H.R., Granovsky A., Brouers F. et al. // J. Magn. Magn. Mater. 1997. 183. P. 127.
- Ganshina E., Granovsky A., Gushin V. et al. // Physica A. 1997.
 241. P. 45.

УДК 677.463.5

- Granovsky A., Kuzmichov M., Clerc J.P. // J. Magn. Soc. Japan. 1999. 23. P. 382.
- 6. Ведяев А.В., Грановский А.Б., Котельникова О.А. Кинетические явления в неупорядоченных сплавах. М.: Изд-во Моск. ун-та, 1992.
- Brouers F., Granovsky A., Sarychev A., Kalitsov A. // Physica A. 1997. 241. P. 284.

Поступила в редакцию 29.03.00

ВЛИЯНИЕ ТЕРМООБРАБОТКИ НА КОЭФФИЦИЕНТЫ ПУАССОНА В ОДНООСНЫХ ОРИЕНТИРОВАННЫХ СИСТЕМАХ

И. В. Платонова, О. В. Сидоров*)

(кафедра общей физики для естественных факультетов)

Измерены коэффициенты Пуассона анизотропных волокон с малым поперечным сечением. Определено влияние термообработки на структуру этих волокон и на значения коэффициентов Пуассона.

Одноосные системы, такие, как высокопрочные, высокомодульные и высокоориентированные волокна (ВВ) на основе полимеров с различной жесткостью цепи [1], обладают, как правило, цилиндрической анизотропией и являются в общем случае ортотропными.

Определение значений коэффициентов Пуассона (КП) важно с точки зрения как прикладных, так и фундаментальных исследований, поскольку КП структурно-чувствительны [2]. Так, например, с повышением пористости КП уменьшается, а с увеличением температуры растет, если при этом не происходит фазового перехода [3]. Модули упругости и КП определяют экспериментально [4–7] или путем моделирования на основе методов молекулярной динамики [8]. Моделирование позволяет получить либо предельные значения механических характеристик для данного вещества, либо значения для идеальной структуры кристалла или паракристалла.

Экспериментальным путем модули Юнга и КП для ВВ непосредственно измерить не удается, так как диаметр волокон составляет 10–20 мкм. Уверенно измеряется лишь продольный модуль растяжения, а продольный и поперечные модули сжатия и растяжения измеряются уже с трудом. КП при поперечном сжатии можно определить путем гидростатического сжатия [9, 10].

Для измерения КП был использован следующий метод. В общем случае BB — неоднородные ортотропные тела с цилиндрической анизотропией, но в первом приближении их можно считать однородными. В случае гидростатического сжатия с учетом высокой степени анизотропии BB для относительной деформации ε_i можно записать [9]

$$\varepsilon_{r} = \frac{\sigma_{r}}{E_{r}} - \frac{\nu_{\theta r} \sigma_{\theta}}{E_{r}} = \frac{p(1 - \nu_{\theta r})}{E_{r}},$$

$$\varepsilon_{\theta} = -\frac{\nu_{r\theta} \sigma_{r}}{E_{r}} + \frac{\sigma_{\theta}}{E_{\theta}} = \frac{p(1 - \nu_{r\theta})}{E_{r}},$$
(1)
$$\varepsilon_{z} = -\frac{\nu_{rz} \sigma_{r}}{E_{r}} - \frac{\nu_{\theta z} \sigma_{\theta}}{E_{\theta}} = -\frac{p(\nu_{rz} + \nu_{\theta z})}{E_{r}},$$

где E_i — модуль Юнга, ν_{ij} — КП, p — давление в жидкости, σ_i — механическое напряжение, $i, j = (r, \theta, z)$. (Используется цилиндрическая система координат.)

Из системы (1) находим изменение объема волокна $\Delta V/V$ в этом случае:

$$\frac{\Delta V}{V} = -\frac{1}{E_r} p(2 - \nu_{r\theta} - \nu_{\theta r} - \nu_{rz} - \nu_{zr}), \qquad (2)$$

а так как для трансверсально-изотропного волокна $\nu_{ij} = \nu_{ji}$, то формула (2) приобретает вид

$$rac{\Delta V}{V}=-rac{2}{E_r}p(1-
u_{r heta}-
u_{rz}),$$

где ν_{rz} — КП при продольном растяжении, $\nu_{r\theta}$ — КП при поперечном сжатии.

КП ν_{rz} обычно находят из рентгенографических измерений [10]. Тогда, зная кривую сжимаемости волокна [11], можно найти $\nu_{r\theta}$ по известному поперечному модулю Юнга E_r и наоборот.

В качестве образцов были взяты свежесформованные и термообработанные по методике работы [1] блок-сополимерные ВВ на основе поли-*n*-фенилентерефталамида и полиамидбензимидазола. Специфика

^{*)} МГТУ им. А.Н. Косыгина.