неравенство $m_e \ll m$ для легчайших туннелирующих ядер [1].

Литература

- Rabinowitz M., Worledge D.H. // Fusion Technology. 1990. 17, No. 2. P. 344.
- 2. Голашвили Т.В., Чечев В.П., Лбов А.А. Справочник нуклидов. М.: ЦНИИатоминформ, 1995.
- 3. Erma V.A. // Phys. Rev. 1957. 105, No. 6. P. 1784.
- 4. Горячев Б.И., Линькова Н.В. // Ядерная физика. 1999. **62**, № 11. С. 1942.

УДК 537.534.74; 537.533.74

- 5. Preston M.A., Bhaduri R.K. Structure of the Nucleus. Addison-Wesley, Reading, MA, 1975.
- 6. *Чувильский Ю.М.* Кластерная радиоактивность. М.: Изд-во Моск. ун-та, 1997.
- 7. Кадменский С.Г., Кургалин С.Д. // Изв. АН СССР, сер. физ. 1980. 44, № 9. С. 1955.
- Blendowske R., Walliser H. // Phys. Rev. Lett. 1988. 61, No. 17. P. 1930.

Поступила в редакцию 08.09.99

УГЛОВАЯ АНИЗОТРОПИЯ ХАРАКТЕРИСТИЧЕСКОГО ИЗЛУЧЕНИЯ КАНАЛИРОВАННЫХ ИОНОВ В УСЛОВИЯХ РЕЗОНАНСНОГО КОГЕРЕНТНОГО ВОЗБУЖДЕНИЯ

В. В. Балашов, И. В. Бодренко

(НИИЯФ)

E-mail: balvse@anna19.npi.msu.su

В рамках формализма матрицы плотности исследуется выход и угловое распределение характеристического излучения каналированных ионов в условиях резонансного когерентного возбуждения. Расчеты выполнены для случая (2,2)-резонанса при плоскостном (100) каналировании ионов N⁶⁺ с энергией 21 ÷ 23.5 МэВ в монокристалле золота.

Введение

Специфическая резонансная зависимость выхода характеристического электромагнитного излучения каналированных ионов от их начальной энергии [1] явилась первым подтверждением предсказанного В.В. Окороковым в 1965 г. [2, 3] эффекта резонансного когерентного возбуждения ионов (РКВ) при их прохождении через ориентированный монокристалл. Последующие эксперименты группы Ш. Датца [4-7], где эффект Окорокова наблюдался другим способом — по перезарядке каналированных многозарядных ионов, дали более детальное представление о механизме РКВ и способствовали его планомерным теоретическим исследованиям [8-10]. В последнее время в связи со все более интенсивным изучением различных процессов взаимодействия быстрых многозарядных ионов с веществом снова возник интерес к первоначальной схеме наблюдения процесса РКВ — по характеристическому излучению [11–13]. Особую ценность представляют такие эксперименты, которые дают возможность сопоставить резонансную энергетическую зависимость фракции выживания каналированных ионов с соответствующей энергетической зависимостью выхода их характеристического электромагнитного излучения. В работе [12] была замечена угловая анизотропия этого излучения. В дальнейшем природе этого явления было посвящено несколько теоретических работ, однако вопрос о способах его описания, равно как и о влиянии угловой анизотропии излучения на форму

соответствующих РКВ-резонансов, остается до настоящего времени открытым.

Наше рассмотрение основано на формализме матрицы плотности, позволяющем реализовать последовательный статистический квантовомеханический подход как к собственно механизму когерентного возбуждения ионов, так и к его связи с сопутствующими процессами. К этим процессам относятся тепловые колебания решетки кристалла, торможение ионов по мере прохождения через образец и срыв электрона с проходящего иона, эффект фазового сбоя за счет упругих столкновений иона с электронами среды, важный по причине производимого им ослабления когерентности возбуждения. Используя опыт применения аппарата матрицы плотности для рассмотрения других вопросов в ядерной и атомной физике [14], мы прослеживаем влияние всех этих факторов на кривую выхода характеристического излучения ионов и его угловое распределение, вводя статистические тензоры возбужденных состояний ионов по выходе из мишени, которые рассчитываем исходя из динамики рассматриваемого процесса. В настоящей работе мы ограничиваемся процессом РКВ для водородоподобных ионов, при этом все количественные расчеты выполнены для случая плоскостного каналирования в условиях, соответствующих работе [5]: каналирование ионов азота N⁶⁺ с энергией $E = 21 \div 23.5$ МэВ в плоскости (100) монокристалла золота. Предварительные результаты были представлены в работе [15].

1. Теория

Взаимодействие иона с кристаллом. Характеристическое излучение водородоподобных ионов при каналировании связано с переходом $2p \rightarrow 1s$ из состояния n = 2, возбуждаемого при прохождении иона через кристалл. Действующее на ион постоянное неоднородное электрическое поле атомов решетки, а также поляризационная волна в электронном «газе» мишени, образующаяся вслед за проходящим ионом («кильватерный эффект»), снимают вырождение уровня n = 2, что проявляется как расщепление резонансной частоты возбуждения перехода $1s \rightarrow 2p$ (рис. 1):

$$\omega_{RCE} = \frac{2\pi v}{a} (l\cos\theta \pm k\sin\theta). \tag{1}$$

Здесь v — скорость иона, a — постоянная решетки, θ — угол между направлением падающего пучка (совпадающим с осью x) и ближайшей осью кристалла, l и k — индексы векторов обратной решетки \mathbf{G}_{hkl} . Индексы (l, k) нумеруют РКВ-резонансы при плоскостном каналировании.

Кривые, приведенные на рис. 1, построены в приближении непрерывного потенциала путем усреднения потенциала Мольер [9], описывающего взаимодействие проходящего иона с отдельным атомом кристалла, в котором учитывается искажение электронной оболочки атома ионом. Для учета тепловых колебаний в потенциал взаимодействия иона с решеткой вводится фактор Дебая–Валлера [2]. При вычислении кильватерного потенциала, а также в расчетах торможения иона за счет столкновений с электронами использовано приближение локальной плотности в рамках диэлектрической теории.

Рис. I. Расщепление уровня n = 2 иона N⁶⁺ с энергией 22,5 МэВ, каналированного в плоскости (100) монокристалла золота; по оси абсцисс отложено смещение иона относительно середины канала

Электронная плотность в канале рассчитана на основании потенциала решетки с помощью уравнения Пуассона [16].

При значительном удалении от середины канала величина расщепления уровня n = 2 сильно зависит от поперечной координаты иона (в нашем случае — координаты z). Учет этого обстоятельства и использование экспериментальных данных о величине расщепления позволяет установить границы $\pm z_{\max}$ той области канала, внутри которой происходит резонансное когерентное возбуждение проходящего иона.

Действующий на ион, движущийся вдоль канала, периодический во времени потенциал решетки, ответственный за его когерентное возбуждение, рассчитывается с учетом криволинейности траектории иона. Матричные элементы периодического возмущения в обкладках состояний n = 1 и n = 2 вычисляются непосредственно с волновыми функциями иона; при расчете ионизационных ширин этих состояний, а также вероятностей прямых (нерезонансных) переходов между ними, индуцируемых столкновениями с электронами среды, данные о соответствующих сечениях взаимодействия иона с электронами взяты из работ [17, 18].

Матрица плотности иона и статистические тензоры его возбужденного состояния. Система уравнений для матрицы плотности иона $\rho_{pp'}(t)$ строится в базисе пяти состояний: 1s, 2s, $2p_0$, $2p_{-1}$, $2p_{+1}$ и решается численно для набора траекторий иона в интервале значений прицельного параметра

$$-z_{\max} < z_0 < z_{\max}, \tag{2}$$

определяющих вместе со скоростью иона на входе в мишень начальные условия для их решения. Матрица плотности в начальный момент (x=0) нормируется обычным образом:

$$ho_{p,p'} = \delta_{p,1s} \cdot \delta_{p',1s}.$$

Тогда ее след Tr $\hat{\rho}(x = X)$, где X — толщина мишени (в нашем случае X = 850 Å), дает вероятность $R_{\rm res}$ выхода иона из мишени без изменения его зарядового состояния («фракция выживания»); в рассматриваемом конкретном случае (ионы азота)

$$R_{
m res} = rac{N(6^+)}{N(6^+) + N(7^+)},$$

где $N(6^+)$, $N(7^+)$ — число ионов азота указанной зарядности. Усреднение по прицельному параметру в интервале (2) дает матрицу плотности всей совокупности ионов выходного пучка, прошедших через мишень в зоне действия механизма РКВ. С учетом другой части ионов, входящих в мишень вне интервала (2), итоговое значение фракции выживания рассчитывается по формуле

$$R = rac{z_{
m max}R_{
m res} + (d/2 - z_{
m max})R_{
m dir}}{d/2},$$
 (3)

где d/2 — полуширина канала (в нашем случае $d/2 = 1.93a_0$). Данные о фракции выживания $R_{\rm dir}$ для ионов, которые входят в мишень при $|z_0| > z_{\rm max}$ и перезарядка которых обусловлена лишь прямыми (нерезонансными) процессами ионизации и возбуждения, взяты из эксперимента [5].

Доля ионов, выходящих из мишени в возбужденном состоянии 2p, а тем самым и интенсивность характеристического излучения при переходе $2p \rightarrow 1s$, а также поляризационные характеристики этого излучения и параметры его угловой анизотропии определяются элементами субматрицы матрицы плотности $ho_{pp'}$ в базисе состояний $2p_0, 2p_{-1}, 2p_{+1}$. В общем случае состояние системы с угловым моментом L = 1 характеризуется статистическими тензорами $ho_{kq}(L=1,L=1),$ где k=0,1,2 и $q=-k,\ldots,k$. Условия симметрии системы позволяют уменьшить число независимых параметров. В нашем случае мы имеем дело с симметрией отражения в плоскости канала, и при выборе оси квантования вдоль нормали к этой плоскости (у нас это ось z) все элементы статистических тензоров с нечетным q обращаются в нуль.

Угловое распределение фотонов $W_{\gamma}(\theta_{\gamma}, \phi_{\gamma}; E)$ при разных значениях энергии иона E на входе в канал определяется приведенными статистическими тензорами $A_{2q}(E) = \rho_{2q}(1, 1)/\rho_{00}(1, 1)$ по формуле

$$W_{\gamma}(\theta_{\gamma},\phi_{\gamma};E) =$$

$$= \frac{W_{0}(E)}{4\pi} \left(1 + \sqrt{\frac{2\pi}{5}} \sum_{q=0;\pm 2} A_{2q}(E) \cdot Y_{2q}(\theta_{\gamma},\phi_{\gamma})\right).$$
⁽⁴⁾

Обратим внимание на то, что в отсутствие симметрии отражения в плоскости xz, перпендикулярной плоскости канала, угловое распределение фотонов в плоскости xy асимметрично относительно оси x. Другими словами, в этом случае ось симметрии углового распределения фотонов в плоскости канала смещается относительно направления падающего пучка.

2. Расчеты

Следуя условиям эксперимента [5], мы рассмотрели движение ионов азота N⁶⁺ с энергией $E = 21 \div 23.5$ МэВ в плоскости (100) монокристалла золота при значении угла входа в канал $\theta = 38^{\circ}$. Согласно уравнению (1), при этом значении θ выбранный интервал энергии соответствует резонансу (l, k) = (2, 2). На рис. 2 показана зависимость выхода фракции выживания ионов N⁶⁺ от их начальной энергии, рассчитанная для разных размеров области когерентного возбуждения. Наиболее близкой к экспериментальным данным оказывается кривая, соответствующая значению $z_{\text{max}} \approx 0.2(d/2)$.

Выбрав это значение z_{max} , мы рассчитали интегральный выход $W_0(E)$ характеристического излучения ионов N⁶⁺ как функцию энергии иона E на входе в мишень (рис. 3, a). Общий вид кривой $W_0(E)$ согласуется с энергетической зависимостью фракции

Рис. 2. Выход фракции выживания ионов N⁶⁺, каналированных в плоскости (100) монокристалла золота в окрестности (2,2)-резонанса в зависимости от энергии иона на входе в канал: точки — экспериментальные данные [5], кривые — наши расчеты для различных размеров области

 $[-z_{\max}, z_{\max}]$, в которой действует механизм РКВ

Рис. 3. Результаты расчета выхода характеристического излучения ионов N^{6+} , каналированных в плоскости (100) монокристалла золота в окрестности (2,2)-резонанса: a — интегральный выход излучения; δ — выход излучения в плоскости xy для различных значений азимутального угла

выживания R(E), показанной на рис. 2 при значении $z_{\text{max}} = 0.2(d/2)$; главный максимум на этой кривой соответствует левому минимуму на кривой R(E).

Излучение ионов N⁶⁺ обнаруживает сильную угловую анизотропию (рис. 3, δ), так что характер энергетической зависимости выхода излучения при изменении угла его детектирования может изменяться даже качественно.

Заключение

Используя формализм матрицы плотности, мы предлагаем последовательный подход к рассмотрению свойств характеристического излучения каналированных ионов в условиях резонансного когерентного возбуждения. При этом основным (и единственным) фитируемым параметром подхода являются размеры области канала, в которой действует этот механизм возбуждения. Выполненные расчеты выхода фракции выживания ионов N⁶⁺ при плоскостном каналировании в монокристалле золота находятся в качественном согласии с имеющимися экспериментальными данными. Установление сильной угловой анизотропии характеристического излучения имеет важное практическое значение в связи с расширяющимся использованием метода экспериментального изучения процесса РКВ, основанного на регистрации этого излучения.

Авторы благодарны проф. Ш. Датцу, привлекшему их внимание к рассматриваемому вопросу.

Работа выполнена при поддержаке РФФИ (грант 00-02-17207).

Литература

 Okorokov V.V., Tolchenkov D.L., Khizhnyakov I.S. et al. // Phys. Lett. 1973. A43. P. 485.

- 2. Окороков В.В. // Ядерная физика. 1965. 2. С. 1009.
- 3. Окороков В.В. // Письма в ЖЭТФ. 1965. 2. С. 175.
- Datz S., Moak C.D., Crawford O.H. et al. // Phys. Rev. Lett. 1978. 40. P. 843.
- Datz S., Moak C.D., Crawford O.H. et al. // Nucl. Instr. and Meth. 1980. 170. P. 15.
- Moak C.D., Datz S., Crawford O.H. et al. // Phys. Rev. 1979. A19. P. 977.
- Krause H.F., Datz S., Dittner P.F. et al. // Phys. Rev. 1986.
 B33. P. 6036.
- 8. Crawford O.H., Ritchie R.H. // Phys. Rev. 1979. A20. P. 1848.
- 9. *Оцуки Е.-Х.* Взаимодействие заряженных частиц с твердыми телами. М.: Мир, 1985.
- Кривошеев О.Э., Пивоваров Ю.Л. // Письма в ЖЭТФ. 1992.
 56. С. 246.
- 11. Fujimoto F. // Radiat. Eff. Def. Solids. 1993. 25. P. 157.
- 12. *Datz S., Dittner P.F., Krause H.F.* et al. // Nucl. Instr. and Meth. 1995. **B100**. P. 272.
- Ito T., Takabayashi Y., Komaki K. et al. // Nucl. Instr. and Meth. 2000. B164–165. P. 68.
- Балашов В.В., Беляев В.Б., Коренман Г.Я. и др. Теоретический практикум по ядерной физике. М.: Изд-во Моск. ун-та, 1965; Balashov V.V., Grum-Grzhimailo A.N., Kabachnik N.M. Polarization and Correlation Phenomena in Atomic Collisions, Kluwer Academic / Plenum Publishers, 2000.
- 15. *Бодренко И.В.* Дипл. работа, физ. ф-т МГУ, 1995; Дис. ... канд. физ.-мат. наук. М. (физ. ф-т МГУ), 1998.
- 16. Neskovic N. // Phys. Rev. 1986. B33. P. 6030.
- 17. Golden L.B., Sampson D.H. // J. Phys. 1977. B10. P. 2229.
- 18. Parks A.D., Sampson D.H. // Astrophys. J. 1972. 178. P. 571.

Поступила в редакцию 03.11.00

ОПТИКА И СПЕКТРОСКОПИЯ

УДК 535.37;621.373.8

РОЛЬ АССОЦИАЦИИ МОЛЕКУЛ РОДАМИНА 6Ж В ПРОЦЕССАХ ГЕНЕРАЦИИ ИЗЛУЧЕНИЯ

А. И. Акимов, А. Н. Баранов, Л. В. Левшин, А. М. Салецкий

(кафедра обый физики)

E-mail: saletsky@gen566a.phys.msu.su

Исследованы спектрально-люминесцентные и генерационные характеристики водных растворов родамина 6Ж в широком диапазоне концентраций красителя и температур. Обнаружена и изучена генерация излучения ассоциатами родамина 6Ж. Установлена доминирующая роль процессов переноса энергии электронного возбуждения с мономерных молекул красителя на его ассоциаты в формировании ими вынужденного излучения.

Введение

Среди обширного экспериментального материала, посвященного исследованию генерационных характеристик родаминовых красителей, встречаются противоречивые данные об участии ассоциатов их молекул в процессе генерации. Так, в работе [1] сообщалось, что при добавлении в спиртовой раствор родамина 6Ж (Р6Ж) воды возникает процесс ассоциации его молекул, который приводит к уменьшению эффективности лазера. В то же время в работе [2]