УДК 621.382

О КОНЦЕНТРАЦИИ ЦЕНТРОВ EL2 В МОНОКРИСТАЛЛАХ GaAs, ВЫРАЩЕННЫХ ИЗ РАСПЛАВОВ РАЗЛИЧНОГО СОСТАВА

В. А. Морозова, О. Г. Кошелев, Е. П. Веретенкин^{*)}, В. Н. Гаврин^{*)}, Ю. П. Козлова^{*)}, А. В. Марков^{**)}, А. Я. Поли ов^{**)}

> (кафедра физики полупроводников) E-mail: scon282@phys.msu.su

Показано, что в нелегированном высокоомном GaAs, выращенном из расплава, обогащенного Ga, концентрация центров EL2 уменьшается в два раза при снижении атомной доли мышьяка от 0.5 до 0.454. Найдено, что термический отжиг в 1.6 раза увеличивает концентрацию центров EL2.

В настоящее время наблюдается значительное усиление интереса к арсениду галлия как материалу для детекторов ионизирующих излучений. В основном для детекторов используются монокристаллы полуизолирующего GaAs, выращенные методом Чохральского. Однако их эффективному использованию препятствуют малые величины времени жизни носителей заряда и удельной глубины проникновения электрического поля в материал (соответственно 10^{-8} с и 1 мкм/В в лучших образцах). Малые значения этих величин обусловлены присутствием в материале глубоких центров, связанных с собственными точечными дефектами и, прежде всего, основного глубокого донора EL2 с энергией ионизации 0.8 эВ от края зоны проводимости. Центр EL2 определяет электрические параметры материала, обеспечивая саму возможность получения нелегированного полуизолирующего GaAs при условии $N_{\rm EL2}>N_a-N_d>0,$ где $N_{\rm EL2}$ — концентрация центров EL2, а $N_a,$ N_d — суммарные концентрации акцепторных и донорных центров (примесных и дефектных), более мелких, чем EL2. В то же вре-мя ионизованные центры EL2+ (их концентрация $N_{\rm EL2}^+ = N_a - N_d$) являются наиболее эффективными центрами захвата электронов, уменьшающими время жизни носителей и контролирующими эффективность собирания заряда в детекторах [1]. В связи с этим представляет интерес получение монокристаллов полуизолирующего GaAs с максимально низкими концентрациями центров EL2 и EL2+.

Идея выращивания таких монокристаллов основывалась на экспериментальной зависимости $N_{\rm EL2}$ от состава расплава, приведенной в работе [2]. По данным авторов этой работы, концентрация $N_{\rm EL2}$ составляла $\sim (1.5 \div 1.8) \cdot 10^{16}$ см⁻³ в интервале значений атомной доли мышьяка в расплаве $X_{\rm As} = 0.505 \div 0.535$, а при уменьшении $X_{\rm As}$ до 0.475 она снижалась до $5 \cdot 10^{15}$ см⁻³. При меньших $X_{\rm As}$ кристаллы меняли тип проводимости с n на p и имели низкое удельное сопротивление.

Цель настоящей работы состояла в получении более детальной информации о концентрации центров EL2 в кристаллах GaAs, выращенных из обогащенных галлием расплавов.

Получение монокристаллов GaAs

Выращивание монокристаллов методом Чохральского с жидкостной герметизацией расплава проводилось на установке с низким избыточным давлением инертного газа (Ar) при использовании тиглей из пиролитического нитрида бора. Для герметизации расплава применялся либо обезвоженный, либо специально увлажненный (для снижения концентрации углерода N_C — основной мелкой акцепторной примеси) борный ангидрид. Для изменения состава расплава в исходную загрузку высокочистого поли-GaAs добавлялось расчетное количество Ga. Состав расплава, отвечающий кристаллизации любого заданного сечения слитка, определялся расчетно-экспериментальным путем; при этом учитывались потери мышьяка на стадиях плавления исходной загрузки и последующего выращивания. После выращивания монокристаллы подвергались отжигу при 950°С в течение 5 ч.

Для проведения измерений $N_{\rm EL2}$ методами емкостной спектроскопии глубоких уровней (DLTS) и DLTS с оптическим возбуждением (ODLTS) в тех же условиях были выращены монокристаллы GaAs (Te), слабо легированные теллуром ($n \leq 10^{17}$ см⁻³).

Методики измерений и экспериментальные результаты

Содержание большинства фоновых примесей в полученных кристаллах определялось методом масс-спектрометрии в плазме тлеющего разряда. Концентрация $N_{\rm C}$ находилась путем измерения оптического поглощения на локальных колебательных модах, связанных с присутствием в решетке GaAs атомов углерода в положении $C_{\rm As}$ (углерод в подрешетке мышьяка). Анализ примесного состава исследуемых кристаллов показал, что

^{*)} Институт ядерных исследований РАН, Москва.

^{**)} Институт химических проблем микроэлектроники, Москва.

концентрации присутствующих примесей C, Si, S, Fe и Zn существенны и их следует учитывать в донорно-акцепторном балансе. В нелегированных кристаллах, выращенных с использованием сухого флюса, концентрация углерода составляла $N_{\rm C} \approx (1 \div 4) \cdot 10^{15}$ см⁻³ (кроме образца, выращенного из расплава с $X_{\rm As} = 0.482$, где $N_{\rm C} \approx 10^{16}$ см⁻³). Такие кристаллы при $X_{\rm As} < 0.46 \div 0.47$ меняли тип проводимости с n на p. Использование влажного флюса снизило $N_{\rm C}$ примерно в пять раз и уменьшило величину $X_{\rm As}$, при которой наблюдалась перекомпенсация материала. В результате были впервые получены монокристаллы высокоомного GaAs с $X_{\rm As} = 0.444 \div 0.475$.

При определении концентрации $N_{\rm EL2}$ были использованы две независимые методики: измерение спектров оптического пропускания для нелегированного высокоомного GaAs и методика DLTS для низкоомного GaAs (Te). Спектры оптического пропускания измерялись на оптически полированных образцах толщиной d = 4-5 мм при 300 K в области энергий фотонов $h\nu = 0.5 \div 1.4$ эВ с помощью спектрометров ИКС-21 и Beckman UV5270.

Спектры поглощения $\alpha(h\nu)$ вычислялись с использованием известного выражения: $T = (1 - 1)^{-1}$ $(R)^2 e^{-lpha d} / (1 - R^2 e^{-2lpha d})$, где T, R, α — коэффициенты пропускания, отражения и поглощения соответственно. Значение Т определялось экспериментально по отношению интенсивностей прошедшего и падающего на образец световых сигналов, регистрируемых фотоприемником. Коэффициент R рассчитывался из измеренных коэффициентов пропускания в области прозрачности ($\alpha d \ll 1$), которая наблюдалась у всех исследованных образцов в интервале $h\nu = 0.5 \div 0.7$ эВ. В этой области $T = (1-R)/(1+R) = 0.55 \pm 0.005$, откуда R = 0.29, что согласуется с литературными данными [3]. На рис. 1 представлены типичные спектры $\alpha(h\nu)$ нелегированного GaAs, полученного из расплавов, обогащенных галлием, для термообработанных (TO) и нетермообработанных (НТО) образцов.

Если в области $h\nu = 0.7 \div 1.35$ эВ поглощение определяется только уровнем EL2, то для α справедливо выражение [4]

$$\alpha(h\nu) = \sigma_n(h\nu)N_{\rm EL2}^0 + \sigma_p(h\nu)N_{\rm EL2}^+. \tag{1}$$

Здесь $N_{\rm EL2}^0$ — концентрация нейтральных центров $\rm EL2^0$, $N_{\rm EL2} = N_{\rm EL2}^0 + N_{\rm EL2}^+$; $\sigma_n(h\nu)$ и $\sigma_p(h\nu)$ — поперечные сечения фотоионизации EL2-центра для электронов и дырок, их спектральные зависимости известны из литературы [5] и приведены на рис. 1 (кривые 4, 5; для наглядности кривая 4 смещена по оси ординат до совпадения со спектрами $\alpha(h\nu)$ при $h\nu \cong 1.1$ эВ). Видно, что для TO-образцов в области энергий фотонов $1.1 \div 1.34$ эВ, а для HTO-образца в области $1.1 \div 1.25$ эВ формы спектров $\alpha(h\nu)$ и $\sigma_n(h\nu)$ совпадают, что, по-видимому, свидетельствует о доминирующем вкладе центров EL2⁰ в поглощение. В этом случае для определения

Рис. I. Спектры поглощения ТО (I, 2) и НТО (3) образцов нелегированного GaAs с $X_{\rm As} = 0.495$ (I), 0.444 (2) и 0.479 (3) и спектральные зависимости сечений фотоионизации для электронов (4) и дырок (5) уровня EL2

Рис. 2. Зависимости α/σ_n от σ_p/σ_n при различных $h\nu$ для образцов с $X_{\rm As}=0.495$ (1), 0.444 (2) и 0.479 (3). Кривая 4 получена для образца с $X_{\rm As}=0.444$ с учетом концентрации $N_{\rm EL2}$, определенной методом DLTS, и значений α/σ_n при $h\nu < 0.95$ эВ

 N_{EL2}^0 и N_{EL2}^+ достаточно измерить lpha для двух значений h
u, имеющих разные σ для EL 2^0 и EL2⁺-центров [4]. С целью повышения точности определения концентраций для каждого образца были построены зависимости $lpha/\sigma_n$ от σ_p/σ_n по 13 точкам в интервале $h\nu = 0.9 \div 1.25$ эВ. Они удовлетворительно аппроксимируются прямыми линиями (на рис. 2 представлены данные для тех же образцов, что и на рис. 1), что также указывает на доминирующее поглощение центрами EL2. При этом угол наклона прямой дает значение $N_{{
m EL}2}^+,$ а величина отрезка, отсекаемого на оси ординат, -N_{EL2} (статистическая ошибка составляет 40% и 5% соответственно). Систематическая ошибка при определении $N_{\rm EL2}^+$ может быть значительно выше. Так, в работе [4] показано, что изменение σ_n на 10% приводит к большой систематической ошибке и вычисленные значения $N_{\rm EL2}^+$ могут изменяться в 2–3 раза. Зависимость полученных $N_{\rm EL2}$ от $X_{\rm As}$ приведена на рис. 3, а.

Рис. 3. Концентрации $N_{\rm EL2}$ (a) и $N_{\rm EL2}^+$ (б) в зависимости от $X_{\rm As}$, определенные методом DLTS: HTO (1) и TO (2) образцы GaAs (Te) и методом оптического пропускания: TO-образцы полуизолирующего GaAs, выращенного с использованием сухого флюса (кружки и кривая 3) и влажного флюса (крестики), и HTO-образцы (треугольники, влажный флюс)

DLTS, отн. ед.

с $X_{\rm As}=0.5$ (1), 0.477 (2), 0.45 (3) и спектр ODLTS для образца с $X_{\rm As}=0.477$ (4)

Спектры DLTS и ODLTS для GaAs (Te) были получены в интервале температур 77 ÷ 400 К на образцах с барьерами Шоттки (~ 1 мм в диаметре), сформированными напылением Au на химически полированную поверхность GaAs. Установка с компьютерным управлением содержала C - V/C - t измеритель HP4280B, импульсный генератор HP8112A и азотный криостат. При каждой температуре измерялась полная кривая релаксации емкости во времени в пределах от 0.2 до 15000 мс, что позволяло в широком диапазоне изменять значения временных окон и облегчало анализ сильно перекрывающихся пиков. Электронные ловушки детектировались посредством приложения к образцу электрического импульса прямого смещения, дырочные ловушки анализировались с использованием оптического возбуждения матрицей красных AlGaAs или Si-GaAs светодиодов. На рис. 4 представлены типичные спектры DLTS и ODLTS для TO-образцов GaAs (Те), выращенных из расплавов различного состава. Спектры DLTS указывают на наличие двух типов электронных ловушек: EL6 (0.35 эВ) и EL2 (0.8 эВ), а спектры ODLTS — двух типов дырочных ловушек: HL6 (0.27 эВ) и EL2_h (0.65 эВ) (обозначения предложены в работе [6]). Ловушка EL2_h соответствует эмиссии дырки с центра EL2⁺ в валентную зону [7]. Наибольший сигнал наблюдается от ловушки EL2; при этом амплитуда пиков снижается по мере уменьшения X_{As} . Вычисленные значения N_{EL2} приведены на рис. 3, *а* для НТО- и ТО-образцов. Из рис. 3, *а* видно, что отжиг приводит к увеличению N_{EL2} в низкоомном GaAs (Те) в 1.3 раза, а в высокоомном в 1.6 раза.

Обсуждение экспериментальных результатов

Спектры $\alpha(h\nu)$ у НТО-образцов (см. рис. 1) имеют характерную особенность: для $h\nu > 1.25$ эВ коэффициент α возрастает при увеличении $h\nu$ заметно быстрее, чем σ_n . Этот факт указывает на присутствие в материале значительной концентрации акцепторных уровней с энергиями ионизации не более 0.2 эВ (ширина запрещенной зоны $E_g \approx 1.45$ эВ), отсчитываемыми от потолка валентной зоны. Переходы с этих уровней в зону проводимости наблюдаются при $h\nu > 1.25$ эВ одновременно с фотоионизацией EL2⁰ центров. В области $h\nu \approx 0.85 \div 1.1$ эВ форма спектров $\alpha(h\nu)$ зависит от соотношения концентраций центров EL2⁰ и EL2⁺, а для $h\nu < 0.85$ эВ определяется центрами EL2⁺ (зависимостью σ_p от $h\nu$).

Из рис. 3, *а* видно, что для составов расплава, близких к стехиометрическому, значения $N_{\rm EL2}$, определенные обоими методами для TO-образцов, согласуются и составляют около $1.5 \cdot 10^{16}$ см⁻³. Эти значения соответствуют также многочисленным литературным данным. При снижении $X_{\rm As}$ от 0.5 до 0.454 наблюдалось уменьшение $N_{\rm EL2}$ в два раза (кривые 1, 2). В интервале $X_{\rm As} = 0.5 \div 0.475$ концентрация $N_{\rm EL2}$ уменьшалась всего в 1.3, а не в 3 раза, как в работе [2]. Согласно данным DLTS, при уменьшении $X_{\rm As}$ от 0.454 до 0.45 у TO-образцов GaAs (Te) концентрация $N_{\rm EL2}$ уменьшалась в 1.4 раза.

Для ТО-образцов нелегированного GaAs, выращенных с использованием сухого флюса из расплавов, обогащенных Ga ($X_{As} = 0.485 \div 0.46$), значения N_{EL2} , определенные методом оптического пропускания (кривая 3), были в $1.1 \div 1.3$ раза выше, чем определенные методом DLTS (кривая 2). Для образцов, выращенных с использованием влажного флюса, это различие заметно больше: в $1.3 \div 2.5$ раза ($X_{As} = 0.48 \div 0.445$). Естественно предположить, что с отклонением от стехиометрии возрастает концентрация собственных дефектов, вклад которых в оптическое поглощение становится заметным на фоне поглощения центрами EL2.

О дефектах в нелегированном GaAs можно судить по спектрам фотоэлектрической релаксационной спектроскопии (PICTS) [8] для образцов с диодами Шоттки и *p-i-n* детекторов, а также по спектрам токовой DLTS для p-i-n детекторов, сформированных на выращенных из различных расплавов кристаллах полуизолирующего GaAs [9]. Во всех спектрах наряду с EL2 и EL2_h наблюдались пики от 5-6 электронных и 2-3 дырочных ловушек. Среди них доминировали электронная ловушка EL3 (0.55 эВ) [8, 9] и дырочные ловушки Ga_{As} (0.075 эВ) [9], НL6 (0.27 эВ) [8, 9], ловушка с энергией 0.9 эВ [8]. Концентрации этих дефектов увеличивались с ростом отклонения состава от стехиометрического. Так, амплитуда пика EL3 в спектре PICTS образца с $X_{\rm As} = 0.477$ была всего лишь вдвое меньше амплитуды пика EL2 [8]. В спектрах же DLTS для TO-образцов GaAs (Te) пики от ловушки EL3 не наблюдались (рис. 4), а у НТО-образцов ее концентрация была невелика: $N_{{
m EL}3}\leqslant 10^{14}~{
m cm}^{-3}$ в интервале $X_{{
m As}}=0.455\div 0.49$. По-видимому, дырочная ловушка с энергией

0.9 эВ, наблюдаемая в спектрах PICTS [8] одновременно с электронной ловушкой EL3 (0.55 эВ), соответствует эмиссии дырки с центра EL3+ в валентную зону; по аналогии с ловушкой EL2_h ее можно обозначить как EL3_h. Участие уровня EL3_h в поглощении может привести к завышенным значениям $N_{\rm EL2}$, определенным методом оптического пропускания. Действительно, кривая $\sigma_p(h\nu)$ (см. рис. 1) для этого уровня смещается примерно на 0.25 эВ в область больших $h\nu$, т. е. основной вклад в поглощение от центров EL3⁺ и EL2⁰ находится в одной и той же области hv. Уровень EL3 (0.55 эВ) для нелегированного GaAs свободен от электронов, и если концентрация центров EL3+ значительна, то вклад в поглощение от них может оказаться заметным. С уменьшением X_{As} концентрация N_{EL3} возрастает [8, 9], а N_{EL2} падает, поэтому относительный вклад в поглощение от центров EL3+ увеличивается.

Максимальные значения $N_{\rm EL2}$, определенные методом оптического пропускания, были получены для образцов, выращенных в атмосфере избытка кислорода (рис. 3, *a*, влажный флюс). Этот факт указывает на связь ловушки EL3 с содержанием кислорода в материале. Действительно, в работе [10] приведены экспериментальные доказательства того, что донорный центр EL3 (0.55 эВ) представляет собой комплекс Ga–O–Ga.

Дополнительный вклад в поглощение, создаваемый центрами EL3⁺, был учтен при определении концентрации $N_{\rm EL2}^+$ следующим образом. В области $h\nu < 0.95$ эВ, где этот вклад отсутствует, справедливо соотношение (1). С учетом значений α , измеренных при $h\nu < 0.95$ эВ (усреднение проводилось по трем точкам), и величины $N_{\rm EL2}$, определенной методом DLTS для каждого значения $X_{\rm As}$ (рис. 3, a, кривая 2), были вычислены $N_{\rm EL2}^0$ и $N_{\rm EL2}^+$ для всех образцов, выращенных из нестехиометрических расплавов. По полученным значениям $N_{\rm EL2}^0$ и $N_{\rm EL2}^+$ для образца с $X_{\rm As} = 0.444$ построена кривая 4 на рис. 2. Кривая 2 на рис. 2 получена для этого же образца без учета вклада от центров EL3⁺. Видно, что учет дополнительного поглощения приводит к изменению вычисленных значений $N_{\rm EL2}^+$ в два раза. На рис. 3, б приведены значения концентрации $N_{\rm EL2}^+$ с учетом поправки для всех ТО-образцов.

Концентрация $N_{\rm EL2}^+$ у образцов нелегированного GaAs по мере уменьшения $X_{\rm As}$ от 0.495 до 0.444 возрастала от $1\cdot 10^{15}$ до $4.5\cdot 10^{15}$ см⁻³ (рис. 3, δ). Существенные изменения $N_{\rm EL2}^+$ при термообработке кристаллов отсутствовали. Уменьшение $N_{\rm C}$ в пять раз не приводило к ожидаемым изменениям $N_{\rm EL2}^+$, тогда как при увеличении $N_{\rm C}$ в три раза концентрация $N_{\rm EL2}^+$ заметно возрастала (образец с $X_{\rm As} = 0.482$, где $N_{\rm C} \approx 10^{16}$ см⁻³), что указывало на существенный вклад собственных дефектов в компенсацию.

Из спектров ODLTS, PICTS [8] и токовой DLTS [9] исследуемых образцов следует, что возможными акцепторными дефектами являются дырочная ловушка HL6 (0.27 эВ) и антиструктурный дефект Ga_{As} (галлий в подрешетке мышьяка) двойной акцептор с уровнями 0.075 и 0.2 эВ, отсчитываемыми от потолка валентной зоны [9, 11]. По спектрам ODLTS (рис. 4) была определена концентрация $N_{
m HL6}$ в интервале $X_{
m As} = 0.45 \div 0.495$. Она оказалась недостаточно высокой ($\leq 10^{15}$ см⁻³), чтобы объяснить наблюдаемые величины $N_{\rm EL2}^+.$ Концентрация же дефектов Ga_{As} (0.075 эВ) могла изменяться вплоть до значений $N_{\rm EL2}$ [9, 11]. По-видимому, переходы именно с этой дырочной ловушки наблюдались в спектрах $\alpha(h\nu)$ HTO-образцов полуизолирующего GaAs при $h\nu > 1.25$ эВ (см. рис. 1). Значительная концентрация собственных дефектов при отклонении состава расплава от стехиометрического может объяснить большие значения $N_{{
m EL}2}^+$ при заметном уменьшении N_C.

Заключение

Таким образом, зависимость концентрации $N_{\rm EL2}$ от состава расплава оказалась не такой сильной, как ожидалось согласно результатам работы [2]. Для нелегированного GaAs, выращенного из расплавов, обогащенных галлием, величина $N_{\rm EL2}$ возрастала в 1.6 раза при термическом отжиге кристаллов. В нелегированном GaAs с увеличением отклонения от стехиометрии вклад в оптическое поглощение от собственных дефектов EL3 становится заметным на фоне поглощения центрами EL2, и его нужно учитывать при определении концентрации центров EL2⁺ и EL2⁰.

Литература

- Berwick K., Beozel M.R., Buttar C.M. et al. // Nucl. Instr. Meth. Phys. Res. 1996. A380. P. 46.
- Holmes D.E., Chen R.T., Elliott K.R. et al. // Appl. Phys. Lett. 1982. 40, No. 1. P. 46.
- Оптические свойства полупроводников А³ В⁵ / Под ред. Уиллардсона и Бира. М.: Мир, 1970.
- Zach F.X., Winnacker A. // Japan. J. Appl. Phys. 1989. 18, No. 6. P. 957.

- Silverberg P., Omling P., Samuelson L. // Appl. Phys. Lett. 1988. 52, No. 20. P. 1689.
- Martin G.M., Mitonneau A., Mircea A. // Electron. Lett. 1977. 13, No. 7. P. 191.
- Osaka J., Okamoto H., Kobayashi K. // Semi-Insulating III-V Materials / Ed. H. Kukimoto, S. Miyazawa. Hakone, Japan: Ohmsha Publishers, 1986. P. 156.
- Markov A.V., Polyakov A.Y., Smirnov N.B. et al. // Nucl. Instrum. Meth. Phys. Res. 2000. A439. P. 651.

ГЕОФИЗИКА

УДК 551.511.32

- Verbitskaya E., Eremin V., Ivanov A. et al. // Nucl. Instrum. Meth. Phys. Res. 2000. A439. P. 634.
- Neild S.T., Skowronski M., Lagowski J. // Appl. Phys. Lett. 1991. 58, No. 8. P. 859.
- Bourgoin J.C., Bardeleben H.J., Stievenard D. // J. Appl. Phys. 1988. 64. R 65.

Поступила в редакцию 05.02.01

НЕКОТОРЫЕ СТАТИСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛОТНОСТИ АТМОСФЕРЫ ПО ДАННЫМ ГЛОБАЛЬНОГО КЛИМАТИЧЕСКОГО АРХИВА NCDC

А. Б. Володин, В. П. Юшков

(кафедра физики атмосферы)

E-mail: atmos@phys.msu.su

Представлены основные статистические характеристики распределения плотности воздуха в целом по земному шару. Проведен пространственно-временной анализ глобальных метеорологических данных. Рассчитаны не только точные значения амплитуды и фазы годового хода, но и зональный, вертикальный и меридиональный разрезы поля плотности распределения. Предложенный подход позволяет с помощью относительно небольшого числа коэффициентов описать главные статистические характеристики климата Земли.

Введение

К настоящему времени предложено много различных моделей климата. Хорошие и достаточно полные обзоры есть, например, в работах [1, 2]. Обычно используются два подхода. Первый — динамический, к нему относятся как сложные гидродинамические, так и простые энергобалансовые модели. Однако динамическое моделирование вряд ли полностью адекватно наблюдениям: все известные временные ряды наблюдений длительностью от нескольких суток до миллионов лет демонстрируют стохастический характер, а в динамических моделях не учитываются статистические характеристики. Гидродинамические уравнения, например, допускают для переменных, которые описывают средние поля, весьма произвольное распределение флуктуаций.

Второй подход — статистический, в котором изучаются статистические свойства климатических процессов, т. е. их стационарность, время и масштаб корреляции, другие характеристики распределений. Применение статистического анализа в климатических исследованиях — широко распространенная практика. Хорошо известны работы Адема [3], Хассельмана [4], Норта [5] и др. Среди последних работ можно отметить книгу С. Г. Добровольского [1], в которой приведена также обширная библиография. Однако традиционный статистический анализ почти всегда описывает климатические аномалии по отношению к норме климатического распределения, которая полагается известной.

В то же время само определение климатической нормы характеристик атмосферы остается серьезной проблемой для климатологов. Традиционный подход состоит в привязке данных наблюдений к узлам регулярной географической сетки с помощью методов объективного анализа и последующем усреднении данных в пределах каждого месяца года. Однако такое определение климатической нормы еще оставляет в климатических полях значительную случайную пространственную изменчивость, неоправданно сглаживая (из-за усреднения) временные колебания.

Цель настоящей работы — проверка возможности сглаживания климатических полей путем разложения их в ряды по эмпирическим собственным функциям на основе разложения второго момента. Эта идея была предложена еще А.М. Обуховым в 1950-х гг. (см. [6]). Главный вопрос заключается в следующем: можно ли наблюдаемые метеорологические поля описать с помощью небольшого числа таких функций? Как показывают исследования многих авторов, для аномалий, в частности, поля температуры такие ряды разложения сходятся очень медленно (см., напр., [5]). Однако сходимость этих рядов существенным образом зависит от выбора исследуемой характеристики. Поэтому в настоящей работе, в отличие от подавляющего большинства подобных работ, в качестве основной случайной