Оператор H самосопряженный. Непрерывный спектр оператора H занимает полуось $[0,\infty)$. Для доказательства существования собственного значения оператора H достаточно показать [5], что существует элемент Z(z), для которого отношение Рэлея

$$\frac{(Z',Z')_{L_2}-\mu_n((q-1)Z,Z)_{L_2}}{(qZ,Z)_{L_2}}<0.$$

В качестве функции Z возьмем $\eta(\alpha z),$ где $\eta(z) \in C^\infty, \ 0 \leqslant \eta(z) \leqslant 1$:

$$\eta(z) = \left\{egin{array}{ll} 1, & |z| < 1, \ 0, & |z| > 2. \end{array}
ight.$$

При достаточно большом α имеет место неравенство

$$\Big(\eta'(lpha z),\eta'(lpha z)\Big)_{L_2} - \mu_n\Big((q-1)\eta(lpha z),\eta(lpha z)\Big)_{L_2} < 0. \ \ (3)$$

Действительно,

$$\Big((q-1)\eta,\eta\Big)_{L_2} = \int\limits_{z_1}^{z_2} (q-1)\ dz > 0$$

при достаточно большом α . Первое слагаемое в неравенстве (3) стремится к нулю:

$$\left(\eta'(lpha z)\eta'(lpha z)
ight)_{L_2} = lpha \int\limits_{-2}^2 \left(\eta'(v)
ight)^2 \, dv \, o \, 0, \quad lpha o 0.$$

Таким образом, существует бесконечное множество решений задачи (1), имеющих вид $Z_n(z)\psi_n(x,y)$.

Литература

- 1. Exner P., Seba P. // J. Math. Phys. 1989. 30. P. 2574.
- 2. Bulla W., Gesztesy F., Renger W., Simon B. // Proc. AMS. 1997. 125, No. 5. P. 1487.
- Evans D.V., Levitin M., Vassiliev D. // J. Fluid Mech. 1994.
 P. 21-31.
- 4. Делицын А.Л. // ЖВМ и МФ. 2000. № 4 (в печати).
- 5. $Pu\partial$ A., Caймон B. Методы современной математической физики. М.: Мир, 1982.

Поступила в редакцию 29.12.00

РАДИОФИЗИКА

УДК 621.391

О ГЕНЕРАЦИИ НЕПРЕРЫВНЫХ КЛЮЧЕВЫХ ПОТОКОВ В СИММЕТРИЧНЫХ СИСТЕМАХ КРИПТОГРАФИЧЕСКОЙ СВЯЗИ

Н. В. Евдокимов, В. П. Комолов, П. В. Комолов, А. А. Руденко

(кафедра радиофизики)

E-mail: ne@nist.fss.ru

Рассмотрена возможность формирования непрерывных ключевых потоков в симметричных криптосистемах с помощью использования интерференции радиоколебаний с иррационально-связанными частотами. Такие системы могут иметь скрытые параметры и «реакцию на подслушивание».

При передаче сообщений с помощью криптографической связи потоковое шифрование обеспечивает наибольшую рабочую криптостойкость в случае непрерывных ключевых потоков с пуассоновским распределением. Это эквивалентно однократному использованию ключа (так же как ключа Вернама), что позволяет решить основные проблемы криптографии, относящиеся к передаче и хранению секретного ключа [1]. Естественно, что в таких системах ключевые потоки связанных абонентов должны быть когерентны. Решение этой проблемы возможно с помощью четырехлучевой интерференции радиосигналов, имеющих близкие иррационально-связанные частоты [2].

Несоизмеримость частот иррационально-связанных колебаний означает отсутствие у них общих резонансов. Поэтому их интерференция приводит к детерминированному динамическому хаосу. При ограничении амплитуды колебаний и регулярных выборках их знаковых корреляций такой динамический хаос представляет собой случайную битовую последовательность нулей и единиц, т. е. двоичное иррациональное число. Подобные хаотические последовательности могут быть когерентны в двух пространственно разнесенных точках радиоприема при следующих условиях: 1) в каждой точке прием и задержка колебаний проводятся с частотным разделением, 2) после задержки когерентные

колебания в этих точках синфазны, 3) выборки знаковой корреляции колебаний с несоизмеримыми частотами выполняются в этих точках синхронно, с частотой Ω_s , не превышающей разностной частоты этих колебаний.

На рис. 1, a приведена классическая схема симметричной криптосистемы с передачей секретного ключа абонентам A и B по закрытому каналу связи. На рис. 1, δ и ϵ изображены схемы с когерентными ключевыми потоками E_A и E_B , создаваемыми связанными абонентами E_B и E_B из радиосигналов с несоизмеримыми частотами.

Рис. 1. Симметричные криптосистемы: a — классическая система с передачей секретного ключа по закрытому каналу связи; δ , ϵ — схемы формирования непрерывных ключевых потоков в симметричных криптосистемах

В схеме на рис. 1, б радиосигналы передаются с искусственного спутника Земли (S) службы единого времени и могут использоваться неограниченным числом абонентов. Любая пара связанных абонентов работает как двухканальный четырехлучевой интерферометр. Каждый абонент имеет двухканальный приемник для раздельного приема сигналов с несоизмеримыми частотами ω_1 и ω_2 и двухканальную систему фазовой автоподстройки этих сигналов с аналогичными сигналами, принятыми связанным с ним абонентом [3]. В общем случае такие интерферометры имеют разные базы (расстояния между абонентами) с неопределенным отклонением от равносигнального направления на передатчик S. Поэтому сигналы, принимаемые абонентами, имеют разные задержки. В криптосистеме А-В приемники абонента А принимают сигналы, пропорциональные $\cos(\omega_1 t + \alpha_1)$ и $\cos(\omega_2 t + \alpha_2)$, а приемники абонента В — сигналы, пропорциональные $\cos(\omega_1 t + \beta_1)$ и $\cos(\omega_2 t + \beta_2)$. Задержка сигналов с частотами ω_1 и ω_2 в контурах фазовой автоподстройки абонентов ${
m A}$ и ${
m B}$ одинакова и равна соответственно $2
u_1$ и $2\nu_2$. После автоподстройки фаз сигналы с когерентными частотами у абонентов А и В синфазны и пропорциональны $\cos(\omega_1 t + 2
u_1)$ для частоты ω_1 и $\cos(\omega_2 t + 2\nu_2)$ для частоты ω_2 . Знаковые корреляции таких сигналов и их синхронные выборки с частотой Ω_s дают когерентные ключевые потоки для шифрования и расшифровки передаваемых и принимаемых сообщений. Задержки ν_1 и ν_2 являются скрытыми

параметрами криптосистемы А-В. Свойства детерминированного хаоса (см., напр., [4]) обеспечивают некоррелированность ключевых потоков разных криптосистем.

На рис. 1, в показана схема формирования непрерывных ключевых потоков, рассчитанная на связь только двух абонентов, имеющих собственные невырожденные параметрические генераторы с синхронизированной накачкой и узкополосные приемники. В этой схеме абонент А передает абоненту В непрерывный сигнал на одной из частот генерации, например ω_1 (близкой к частоте ω_1' абонента В), а сигнал на второй частоте ω_2 оставляет у себя в качестве скрытого опорного параметра для сравнения его фазы с фазой сигнала, принимаемого им от абонента B на частоте ω_2' (близкой к частоте ω_2). При синхронных выборках знаковой корреляции фаз у каждого абонента формируются пуассоновские ключевые потоки, которые когерентны, поскольку у каждого невырожденного генератора фазы сигналов антикоррелированы [5]. Так, в двухконтурном генераторе А в соответствии с соотношением Менли-Роу частоты колебаний связаны с частотой накачки ω_3 соотношением $\omega_1 + \omega_2 = \omega_3$. Так же связаны и их фазы φ_1 и φ_2 , которые относительно фазы накачки $arphi_3$ в невырожденном режиме являются антикоррелированными функциями времени: $arphi_1(t)+arphi_2(t)=arphi_3(t)\equiv 0\,;\;\;arphi_1(t)=-arphi_2(t)\,.$ При общей накачке генераторы А и В генерируют колебания с разными несоизмеримыми частотами: генератор A — колебания с частотами ω_1 , ω_2 , а генератор В — колебания с частотами ω_1' , ω_2' . Суммы фаз каждой пары колебаний равны фазе общей накачки, и если она синфазна, то $\varphi_1(t) + \varphi_2(t) = \varphi_1'(t) + \varphi_2'(t)$. Поэтому в синхронные моменты времени разности фаз близких частот разных генераторов $(\omega_1, \ \omega_1')$ и $(\omega_2, \ \omega_2')$ также антикоррелированы. Один из таких моментов (t_1) стохастического фазового синхронизма для колебаний двух генераторов с синфазной накачкой показан на рис. 2, где $arphi_1(t)-arphi_1'(t)=\Deltaarphi_1(t)=arphi_2(t)-arphi_2'(t)=-\Deltaarphi_2(t)$.

Puc. 2. Стохастический фазовый синхронизм в связанных невырожденных двухконтурных параметрических генераторах

При этом синхронная знаковая корреляция колебаний с частотами (ω_1, ω_1') и (ω_2, ω_2') дает когерентные отсчеты (когерентные ключевые потоки).

В схеме на рис. 1, в обмен сигналами вносит задержки и сдвиги фаз $heta_1$ и $heta_2$ в разности фаз $\Delta arphi_1(t)$ и $\Delta arphi_2(t)$, по которым абоненты формируют последовательности $Z_{
m A}$ и $Z_{
m B}$. В работе [6]было показано, что в зависимости от суммарного сдвига фаз $0 \leqslant (\theta_1 + \theta_2) \leqslant \pi$ корреляция последовательностей меняется от полной до нулевой при $(heta_1+ heta_2)=\pi/2$ и далее до антикорреляции при $(\theta_{1} + \theta_{2}) = \pi$. На рис. 2 показан также результат синхронных выборок корреляции между опорными фазами и фазами $arphi_1^*$ и $arphi_2'^*$ принятых сигналов, сдвинутых на углы $heta_1$ и $heta_2$ при их передаче от одного абонента к другому. Момент выборки t_2 выбран отличным от t_1 для наглядности результата: $\Delta arphi_1^*(t) = arphi_1^*(t) - arphi_1'(t)
eq |\Delta arphi_2^*(t)| = |arphi_2(t) - arphi_2'^*(t)|,$ т.е. различие в задержке сигналов разрушает когерентность ключевых потоков. Поэтому для управления корреляцией должна быть предусмотрена компенсация фазового сдвига $(\theta_1 + \theta_2)$. Этот сдвиг устраняется путем задержки опорного сигнала со стороны любого абонента с помощью фазовой автоподстройки по максимальной корреляции контрольных криптограмм, т.е. согласно принятому протоколу криптографической связи [1]. Управление корреляцией ключевых потоков в одной из таких криптосистем рассмотрено в работе [7].

Рабочая криптостойкость рассмотренных схем обеспечивается скрытыми параметрами. В схеме, показанной на рис. $1, \theta$, помимо скрытых опорных частот скрытыми могут быть также частота и фаза накачки параметрических генераторов, задержка сигналов при их передаче, тактовая частота и, наконец, секретные ключи (в том числе и алгоритмические), которые можно использовать для дополнительного шифрования потоков. Классические криптосистемы, естественно, не могут обладать такой же реакцией на подслушивание, какой обладают квантовые криптосистемы, однако наличие у них скрытых параметров может придать им подобное свойство. Прослушивание сигналов без знания скрытых параметров не дает криптоаналитику С (третий «абонент» на рис. $1, \delta$) доступа к информации, которой обмениваются абоненты А и В. При активном участии «абонента» С в фазовой автоподстройке криптосистем, показанных на рис. 1, б и в, абоненты А и В, сравнивая результаты передачи по секретному и открытому каналам, имеют возможность обнаружить потерю прямой синхронизации друг с другом из-за навязывания им фазы «абонента» С и тем самым установить факт подслушивания передачи информации.

В эксперименте для генерации иррационально-связанных радиоколебаний использовались невырожденные двухконтурные емкостные парамет-

рические генераторы с частотой накачки 3 МГц и частотами генерации ~ 1.2 и ~ 1.8 МГц. Колебания пропускались через узкополосные фильтры, соответствующие этим частотам, и формировались в меандры в отдельных делителях частоты. Заметим, что деление частот не разрушает их иррациональной связи, что может быть широко использовано при реализации рассмотренных схем. Знаковая корреляция сигналов проводилась в фазовых компараторах типа XOR [8]. На выходе XOR формировались последовательности длиной до 10^4 бит при частотах выборок Ω_s до 30 кГц. Хаотические свойства последовательностей определялись функциями автокорреляции, которые имели единственный пик с отношением к пьедесталу порядка 10² и соответствовали контрольной функции автокорреляции клиппированного шумового сигнала генератора Г2-37.

THE THIRD IN THE HEALTH CHANNEL THE TELEVISION FROM THE HEALT CHANNEL TO NUMBER NAMED AND A REPORT OF THE PROPERTY OF T - 11111 | 11111111 | 111 | 111 | 111 | 11 THE THE RESIDENCE OF THE SHOW OF BELLEVILLE OF BUILDING FOR THE PROPERTY OF THE THE HUMBER HE HE TO THE TENTO OF THE TENTO OF THE TOTAL O

Рис. 3. Экспериментальный ключевой поток (фрагмент) — а и его функция автокорреляции — б; нули и единицы заменены пробелами и штрихами соответственно

Взаимная корреляция синхронных последовательностей при $\Delta \varphi_1(t_1) = \Delta \varphi_2(t_1)$ составляла 95%. На рис. З показан фрагмент формируемых потоков (a) и соответствующая ему функция автокорреляции (δ) . Фрактальная случайность потоков, типичная для динамического хаоса, инвариантна к частоте выборок Ω_s .

Литература

- 1. Месси Д.Л. // ТИИЭР. 1988. 76, № 5. С. 24.
- 2. *Евдокимов Н.В., Комолов В.П.* // Вестн. Моск. ун-та. Физ. Астрон. 2000. № 5. С. 57 (Moscow University Phys. Bull. 2000. No. 5. P. 68).

- 3. *Мартынов Е.М.* Синхронизация в системах передачи дискретных сообщений. М.: Связь, 1972.
- 4. Шустер Г. Детерминированный хаос. М.: Мир, 1988.
- 5. *Каплан А.Е.*, *Кравцов Ю.А.*, *Рылов В.А.* Параметрические генераторы и делители частоты. М.: Сов. радио, 1966.
- 6. Евдокимов Н.В., Клышко Д.Н., Комолов В.П., Ярочкин В.А. // УФН. 1996. **166**, № 1. С. 91.
- 7. Евдокимов Н.В., Клышко Д.Н., Комолов В.П., Ярочкин В.А. Описание к патенту RU 2117402 C1. 1998.
- 8. *Шило В.Л.* Популярные цифровые микросхемы. М.: Радио и связь, 1989.

Поступила в редакцию 20.11.00

ФИЗИКА ТВЕРДОГО ТЕЛА

УДК 539.1

ОСОБЕННОСТИ СТАТИЧЕСКИХ СМЕЩЕНИЙ ВОКРУГ ОДИНОЧНЫХ ПРИМЕСНЫХ АТОМОВ В ОЦК РЕШЕТКЕ

В. М. Силонов, И. В. Харламова, А. Ю. Гениев

(кафедра физики твердого тела)

E-mail: silonov_v@mail.ru

Для ОЦК структуры в микроскопическом приближении выявлена нехаотичность в расположении векторов смещений атомов матрицы вокруг одиночных примесных атомов замещения.

В работе [1] были предприняты попытки расчета полей статических смещений вокруг точечных дефектов в ГЦК структуре. При этом рассматривались лишь дефекты в твердом аргоне. В работах [2–4] в рамках макроскопической теории проводились расчеты статических смещений вдали от дефектов. В настоящей работе рассчитаны поля статических смещений в ОЦК металлах вблизи одиночной примеси замещения в рамках модели Борна-Бегби с целью выявления их возможных особенностей в ОЦК структуре.

В рамках метода флуктуационных волн [5] при внесении одного дефекта в кристалл его атомы смещаются из узлов идеальной периодической решетки на величину

$$\delta \mathbf{R}_{s} \left(\mathbf{r} \right) = \frac{1}{N} \sum_{\mathbf{k}} \mathbf{A}_{\mathbf{k}} \sin \mathbf{k} \mathbf{r}, \tag{1}$$

где ${\bf k}$ — волновой вектор волны смещений, ${\bf R}_s$ — вектор s-го узла идеальной решетки кристалла, N — число точек суммирования в зоне Бриллюэна. Амплитуды волн статических смещений ${\bf A}_{\bf k}$ могут быть найдены в результате решения системы линейных уравнений

$$D_{\mathbf{k}ij}\mathbf{A}_{\mathbf{k}j} = \mathbf{P}_{\mathbf{k}i} \quad (i = 1, 2, 3). \tag{2}$$

Конкретные выражения для динамических матриц $D_{kij'}$ и квазиупругих сил были получены в модели Борна-Бегби [6, 7].

Расчеты полей статических смещений проводились для одиночных примесей атома алюминия в решетке железа. Были выбраны следующие параметры:

$$a_{\mathrm{Fe}} = 2.866 \text{ Å}, \quad c_{11} = 2.43 \cdot 10^{12}, \quad c_{12} = 1.38 \cdot 10^{12},$$

$$c_{44}=1.22\cdot 10^{12}$$
 дин/см $^2,~~rac{1}{V}rac{\partial V}{\partial c}=0.3,$

где a — параметр решетки, V — объем элементарной ячейки, c — концентрация второго компонента, c_{ij} — упругие постоянные.

Правильность использованного в работе выражения для динамической матрицы проверялась с помощью расчетов фононных спектров $\nu(k)$. Рассчитанные и экспериментальные значения [8] удовлетворительно соответствовали друг другу. При вычислении величины δR_s суммирование проводилось по неприводимой части зоны Бриллюэна с увеличением числа точек суммирования до достижения сходимости результатов.

Результаты расчета статических смещений при замещении какого-либо атома железа атомом примеси большего радиуса (Al) приведены на рисунке.