АТОМНАЯ И ЯДЕРНАЯ ФИЗИКА

УДК 537.591

МЕТОД ИЗМЕРЕНИЯ ЭНЕРГИИ ПРОТОНОВ И ЯДЕР ГЕЛИЯ ПО УДЕЛЬНОМУ ЭНЕРГОВЫДЕЛЕНИЮ В МАКСИМУМЕ АДРОННЫХ КАСКАДОВ В ПЛОТНОМ ВЕЩЕСТВЕ

И. Д. Рапопорт, А. Н. Турундаевский, В. Я. Шестоперов

(НИИЯФ)

E-mail: ant@eas.npi.msu.ru

Предлагается метод измерения энергии протонов и ядер Не (в диапазоне энергий более 1 ТэВ), который основан на регистрации удельного энерговыделения в максимуме адронных каскадов, инициированных этими частицами в плотном веществе. Оценена достижимая точность энергетических измерений. Проводится сравнение результатов моделирования и эксперимента «Сокол-2».

Основным методом энергетических измерений для частиц в области высоких энергий (>1 ТэВ) является метод ионизационного калориметра [1]. При этом используется поглощающее вещество, и его значительная масса ограничивает возможности метода в экспериментах на больших высотах. Некоторым решением проблемы стали ионизационные калориметры неполного поглощения, в ограниченном поглотителе которых регистрируется лишь часть адронного каскада, инициируемого первичной частицей [2]. Однако различные алгоритмы восстановления первичной энергии приводят к различным результатам. Оптимизация метода, его развитие продолжают оставаться актуальной задачей в связи с продвижением эксперимента в область все более высоких энергий, на баллонах и спутниках [3, 4].

Традиционный подход к восстановлению исходной энергии частицы заключается в измерении выделяемой в поглотителе энергии Е_b и учете (по модельным представлениям) ее отношения к исходной. Это позволяет с учетом флуктуаций каскада связать искомые характеристики энергетического спектра частиц с детектируемым спектром энерговыделений. Можно, однако, полагать, что при значительной коррелятивной связи величины Е_b, которая выражается через интеграл от регистрируемых в поглотителе удельных энерговыделений dE/dX (ось X направлена вдоль трека первичной частицы), с экстремальным значением удельного энерговыделения $K_m = dE/dX_{\rm max}$ последняя величина может служить достаточно чувствительной альтернативной мерой исходной энергии Е.

Уточним определение K_m для некоторых частных случаев. При достаточной глубине поглотителя каскадная кривая удельных энерговыделений может обладать несколькими экстремумами вследствие повторных неупругих взаимодействий частиц [5], особенно характерных для более тяжелых первичных ядер, начиная с Не, при большой доле энергии,

уносимой нуклонами-спектаторами. Выбор экстремума с наибольшим удельным энерговыделением в таких «многогорбых» каскадных кривых позволяет уменьшить флуктуации измеряемой величины по сравнению с флуктуациями коэффициента неупругости. С другой стороны, при ограниченной толщине поглотителя экстремум в каскадной кривой может не наблюдаться; в этом случае в качестве величины K_m обычно принимается наибольшее из реализуемых значений удельного энерговыделения в поглотителе.

Для исследования удельного энерговыделения в максимуме каскада и возможности использования этой величины для энергетических измерений было предпринято математическое моделирование адронных каскадов, инициированных протонами и ядрами Не в железном и свинцовом поглотителях. Моделирование осуществлялось с использованием программного комплекса GEANT [6]. Сравнительный анализ результатов, полученных с разными программами-генераторами неупругих адронных взаимодействий (GHEISHA [6, 7], FLUKA [6, 8, 9], QGSM [10, 11]), позволяет оценить чувствительность результата к модельным представлениям.

Максимальное удельное энерговыделение определяется преимущественно электромагнитной компонентой, генерируемой при первом неупругом взаимодействии; средняя глубина экстремума в каскаде медленно увеличивается с ростом энергии первичной частицы (для протона, в частности, примерно от 8 каскадных единиц при 0.5 ТэВ до 11 при 32 ТэВ). Для определения максимального удельного энерговыделения анализировался участок длиной в 17 каскадных единиц после первого неупругого взаимодействия.

Полученные в результате моделирования для указанной глубины каскада средние величины $\overline{K_m}$ представлены на рис. 1 в виде функции энергии

Таблица 1

частиц — протонов (a) и ядер Не (b) — для железного и свинцового поглотителей. Там же приведены данные для железного поглотителя, полученные при анализе результатов эксперимента «Сокол-2» [12, 13] с учетом переходных эффектов [14], обусловленных структурой поглотителя в этом эксперименте. Как видно из рис. 1, модельные представления дают близкие результаты, согласующиеся с экспериментальными в пределах статистических ошибок измерений. Зависимость $(dE/dX)_{\rm max}$ от первичной энергии Е для протонов и ядер Не может быть аппроксимирована линейным или степенным образом: $\overline{K_m} = AE^a$ или $\overline{K_m} = CE + c$ с параметрами аппроксимации, приведенными в табл. 1. Эти аппроксимации можно использовать для определения первичной энергии: $E = (K_m/A)^{1/a}$ или $E = (K_m - c)/C.$

Рис. 1. Среднее удельное энерговыделение в максимуме адронного каскада $\overline{K_m} = \overline{(dE/dX)_{max}}$ в зависимости от энергии первичных частиц — протонов (a) и ядер Не (б) в железном и свинцовом поглотителях, рассчитанное по разным моделям для участка длиной 17 каскадных единиц от первого взаимодействия (сплошная линия — FLUKA, пунктир — GHEISHA, данные по QGSM в используемом масштабе сливаются с зависимостью для FLUKA). Экспериментальные точки получены путем обработки данных [12, 13]

Значения относительной флуктуации $D(K_m) = \left(\overline{(K_m - \overline{K_m})^2}\right)^{1/2} / \overline{K_m}$ слабо зависят от энергии (табл. 2). Это обстоятельство позволяет сравнивать распределения по K_m , рассчитанные для фикси-

Параметры аппроксимации среднего энерговыделения в максимуме каскада $\overline{K_m} = \overline{(dE/dX)_{\max}}$ степенной $(\overline{K_m} = AE^a)$ и линейной $(\overline{K_m} = CE + c)$ функциями $(E - B T \Im B, K_m - B \Gamma \Im B/cM)$

Реакция	Модель	A	a	C	с
pFe	FLUKA GHEISHA QGSM Эксперимент [12, 13]	22.9 20.9 23.6 19.7	0.941 0.961 0.938 0.949	19.4 18.9 19.9 16.1	2.7 1.5 2.8 13.3
HeFe	QGSM+FLUKA Эксперимент [12, 13]	20.4 18.7	0.937 0.948	17.1 13.5	$2.4 \\ 22.7$
pPb	FLUKA GHEISHA QGSM	49.6 41.3 53.4	$0.952 \\ 1.008 \\ 0.948$	43.5 42.1 46.3	$4.5 \\ -0.5 \\ 5.3$
HePb	QGSM+FLUKA	47.5	0.933	39.7	5.7

Таблица 2

Относительная флуктуация энерговыделения в максимуме каскада

D	$(K_m) = \Big($	$(K_m -$	$\left(\overline{K_m}\right)^2$	$\left \overline{K_m} \right $	
	Μ			Е , ТэВ	

Реакция	Молель	Е, ТэВ			
1 000000	Тюдоль	0.5	2	8	32
pFe	FLUKA GHEISHA QGSM	0.37 0.41 0.38	$0.36 \\ 0.40 \\ 0.38$	0.38 0.40 0.39	0.38 0.39 0.38
HeFe	QGSM+FLUKA	0.30	0.30	0.30	0.29
pPb	FLUKA GHEISHA QGSM	$0.48 \\ 0.56 \\ 0.46$	$0.49 \\ 0.62 \\ 0.52$	$0.48 \\ 0.63 \\ 0.52$	$0.52 \\ 0.63 \\ 0.62$
HePb	QGSM+FLUKA	0.44	0.39	0.43	0.53

рованной энергии с обобщенными экспериментальными данными довольно широкого энергетического диапазона (выше 2.5 ТэВ), поскольку энергетическая зависимость распределений по безразмерной величине $K_m/\overline{K_m}$ также незначительна. На рис. 2 представлено распределение зарегистрированных событий по величине $K_m/\overline{K_m}$ для железного поглотителя в случае протонов (*a*) и ядер Не (б), полученное с использованием аппроксимации данных эксперимента [12, 13] для $\overline{K_m}(E) = AE^a$ при энергиях более 2.5 ТэВ. Для сравнения приведены соответствующие результаты моделирования при энергии 8 ТэВ.

Из данных, приведенных в табл. 2, следует, что энерговыделение в первом максимуме каскада флуктуирует сильнее в свинце, чем в железе. При различии средних коэффициентов неупругости в свинце и железе не более чем на 15% (табл. 3) флуктуации парциального коэффициента неупругости K_{γ} различаются сильнее за счет большего числа глубоконеупругих взаимодействий на тяжелых ядрах. Это позволяет предпочесть для первого взаимодействия детектируемой частицы легкую

Рис. 2. Распределение событий по энерговыделению в максимуме каскадов $(1/N) (dN/d (K_m/\overline{K_m}))$, инициированных протонами (а: жирная линия — FLUKA, тонкая — GHEISHA, точечная — QGSM) и ядрами Не (б: сплошная линия — FLUKA) при E = 8 ТэВ. Экспериментальные точки получены путем обработки данных [12, 13]

Таблица 3 Средний парциальный коэффициент неупругости K_γ

Реакция	Модель	Е , ТэВ				
		0.125	0.5	2	8	32
pC	FLUKA	0.182	0.182	0.179	0.194	0.194
	GHEISHA	0.127	0.143	0.159	0.183	0.179
	QGSM	0.166	0.173	0.175	0.175	0.178
pFe	FLUKA	0.201	0.201	0.199	0.203	0.202
	GHEISHA	0.140	0.152	0.178	0.187	0.196
	QGSM	0.197	0.200	0.196	0.209	0.201
pPb	FLUKA	0.207	0.203	0.203	0.209	0.214
	GHEISHA	0.163	0.173	0.182	0.205	0.210
	QGSM	0.226	0.233	0.226	0.230	0.233

мишень при тяжелом поглотителе в ионизационном калориметре.

Сравнение коэффициентов аппроксимации величины $\overline{K_m}(E)$, полученных по результатам эксперимента [12, 13], с расчетными значениями (см. табл. 1) может привести к заключению, что результаты моделирования занижают оценки энергии частиц: на 15% для протона, на 7% для ядер Не. Это расхождение, однако, вполне сопоставимо с погрешностью используемых экспериментальных данных [13] и не выходит за пределы статистических ошибок.

Рис. 3. Точность определения энергии в зависимости от глубины развития каскада по полному энерговыделению (1 - p, 2 - He) и по максимальному удельному энерговыделению (3 - p, 4 - He) при E = 8 ТэВ $(a - \text{железо}, \delta - \text{свинец})$. Глубина каскада отсчитывается от точки первого взаимодействия X_0

В этой связи целесообразно сравнить относительные среднеквадратичные отклонения D(E) для случаев определения энергии Е по максимальному удельному энерговыделению (К_m) и по полному энерговыделению в поглотителе (Е_b). На рис. 3 величины D(E) представлены как функции глубины каскада, инициируемого протонами и ядрами Не с энергией 8 ТэВ в железном (а) и свинцовом (б) поглотителях. Характерной особенностью приведенной зависимости является большая точность в определении энергии Е по величине К_т на малых глубинах каскада и по E_b — на больших. В пограничной области равенство методических погрешностей достигается в железном поглотителе на глубине $L_{\rm Fe}=30$ см (16.8 каскадных единиц от точки взаимодействия протонов), в свинцовом на глубине $L_{\rm Pb} = 10$ см (17.7 каскадных единиц). Этим глубинам соответствуют относительные погрешности в определении энергии $D_{\rm Fe}(E) = 0.40$ и $D_{\rm Pb}(E) = 0.50$. Для ядер Не аналогичные величины составляют $L_{
m Fe}=35\,$ см (19.6 каскадных единиц), $L_{
m Pb}=8$ см (14.2 каскадных единиц) при $D_{\rm Fe}(E) = 0.30$ и $D_{\rm Pb}(E) = 0.43$. Указанная пограничная область слабо зависит от энергии Е.

Хотя при малой толщине поглотителя оба метода дают довольно высокие погрешности, ограничения массы в баллонных и орбитальных экспериментах ведут к необходимости создания легкой аппаратуры. Поэтому целесообразно рассматривать варианты с различной толщиной поглотителя. При большом геометрическом факторе прибор с поглотителем толщиной примерно 5 см свинца или 7 см железа позволит восстанавливать спектры космических лучей, несмотря на высокую погрешность определения энергии в индивидуальном случае (0.60–0.70). Разумеется, измерения с более высокой точностью более предпочтительны, однако выбор схемы установки будет определяться условиями эксперимента.

Приведенные результаты исследования удельного энерговыделения в максимуме адронного каскада, инициируемого частицами высокой энергии, мало зависят от использованной модели неупругого взаимодействия. С учетом того, что модельные представления FLUKA, QGSM близки к использованным экспериментальным данным, можно заключить, что указанную величину целесообразно взять в качестве основы для метода восстановления первичной энергии частиц. При этом возможная методическая точность составляет 30–40% в энергетической области выше 1 ТэВ.

Литература

1. Григоров Н.Л, Мурзин В.С., Рапопорт И.Д. // ЖЭТФ. 1958. **34**, № 2. С. 506.

- Иваненко И.П., Подорожный Д.М., Рапопорт И.Д. и др. // Каскадная теория ливней. М.: Изд-во Моск. ун-та, 1996. С. 102.
- Guzik T.G., Adams J., Ampe J. et al. // Proc. 26 ICRC. Salt Lake City, USA, 1999. V. 5. P. 9.
- Watts J.W., Lee J., Lowell L.W. et al. // Proc. 26 ICRC. Salt Lake City, USA, 1999. V. 5. P. 457.
- 5. Демьянов А.И., Мурзин В.С., Сарычева Л.И. Ядерно-каскадный процесс в плотном веществе. М.: Наука, 1977.
- 6. GEANT User's Guide. CERN DD/EE/83/1. Geneva, 1983.
- Fesefeldt H.C. Simulation of hadronic showers, physics and applications. Technical Report PITHA 85-02, III Physikalisches Institut, RWTH Aachen Physikzentrum. 1985.
- 8. Ranft J., Ritter S. // Z. f. Phys. C. 1983. C20, No. 4. P. 347.
- Fasso A., Ferrari A., Ranft J. et al. // Nucl. Instrum. Meth. in Phys. Res. 1993. A332, No. 2. P. 459.
- 10. Амелин Н.С., Гудима К.К., Сивоклоков С.Ю., Тонеев В.Д. // Ядерная физика. 1990. **52**, № 1. С. 272.
- 11. *Амелин Н.С., Гудима К.К., Тонеев В.Д.* // Ядерная физика. 1990. **51**, № 2. С. 512.
- Иваненко И.П., Рапопорт И.Д., Шестоперов В.Я. и др. // Препр. НИИЯФ МГУ № 89-29/106. М., 1989.
- 13. Иваненко И.П., Рапопорт И.Д., Шестоперов В.Я. и др. // Препр. НИИЯФ МГУ № 88-6/83. М., 1988.
- Kolchuzkin A.M., Bespalov V.I. // Proc. 16 ICRC. Kyoto, Japan, 1979. V. 9. P. 222.

Поступила в редакцию 09.02.01

УДК 537.591.15

АНТАРКТИЧЕСКИЙ АЭРОСТАТНЫЙ ЭКСПЕРИМЕНТ ПО РЕГИСТРАЦИИ КОСМИЧЕСКИХ ЛУЧЕЙ ПРЕДЕЛЬНО ВЫСОКИХ ЭНЕРГИЙ

Р. А. Антонов, Л. А. Кузьмичев, М. И. Панасюк, Д. В. Чернов,

С. И. Никольский^{*)}, Т. И. Сысоева^{*)}

 $(HИИЯ\Phi)$

E-mail: antr@dec1.npi.msu.su

Приводится описание проектируемого антарктического эксперимента на базе модернизированной аэростатной установки СФЕРА. В течение длительного полета на высоте 30–40 км по замкнутой циркумполярной траектории может быть измерен энергетический спектр космических лучей в области энергий от 10^{18} до $(3-5) \cdot 10^{20}$ эВ. Подобный эксперимент имеет ряд преимуществ по сравнению с проектируемыми спутниковыми экспериментами.

Изучение космических лучей предельно высоких энергий (КЛ ПВЭ) в области энергий $E > 10^{20}$ эВ является одной из наиболее интересных проблем астрофизики. По современным представлениям, источники частиц такой энергии не могут находиться вне нашей Галактики, так как они должны испытывать взаимодействие с реликтовыми гамма-квантами (эффект «реликтового обрезания», предсказанный Зацепиным-Кузьминым-Грейзеном).

В то же время за период многолетних измерений с помощью больших наземных установок («Акено», «Хавера-Парк», «Мушиный глаз», Якутская

^{*)} Физический институт им. П.Н. Лебедева РАН.