- 9. Зубов В.Е., Кринчик Г.С., Кудаков А.Д. // Приб. и техн. эксперимента. 1988. **3.** С. 206.
- Kiselev V.F., Krylov O.V. Adsorption Processes on Semiconductor and Dielectric Surfaces. Springer Ser. In Chemical Phys., V. 32. Berlin: Springer-Verlag, 1985.
- 11. Кулешов Б.М., Цепелев В.С. // Сталь. 1993. № 7. С. 69.
- 12. Кушнир И.П. // Кристаллография. 1967. 12. С. 474.

УДК 539.211, 539.27, 547.31

- Heinrich B., Urguhart K.B., Dutcher S.T. et al. // J. Appl. Phys. 1988. 63. P. 3863.
- Zuberec R., Szymezak H., Krishnan R. et al. // J. Magn. Magn. Mater. 1993. 121. P. 510.

Поступила в редакцию 09.07.01

СТРУКТУРА СВЕРХТОНКИХ ПЛЕНОК ЛИНЕЙНО-ЦЕПОЧЕЧНОГО УГЛЕРОДА

Н.Д. Новиков, В.Г. Бабаев, М.Б. Гусева, В.В. Хвостов, Д.Н. Новиков

(кафедра физической электроники)

E-mail: novikov@ph-elec.phys.msu.su

Методами оже-спектроскопии и просвечивающей электронной микроскопии исследованы ультратонкие пленки линейно-цепочечного углерода. Показано, что при толщине до 200 Å исследуемые пленки имеют идеальную упорядоченную кристаллическую структуру. При толщине около 50 Å происходит трансформирование углеродных связей из полиинового в кумуленовый тип.

Введение

-12

 Σ

В настоящее время углеродные пленки испольуются в основном для улучшения механических свойств поверхности — для повышения их износостойкости, снижения коэффициента трения трущихся поверхностей и т. п. Аморфная структура таких пленок исключает их применение в электронике в качестве активных элементов. В то же время использование углерода в наноэлектронике представляется весьма привлекательным, поскольку это один из немногих материалов, имеющих низкоразмерные модификации (двух- и одномерные) с уникальными электронными свойствами. В настоящей работе исследуется атомная и электронная структура тонких (40-600 Å) пленок линейно-цепочечного углерода, полученных импульсно-дуговым методом [1].

Методы исследования

Для исследования атомной структуры пленок линейно-цепочечного углерода использовался просвечивающий электронный микроскоп JEM-100C в режиме электронной дифракции. Пленки наносились на кристаллы NaCl, затем подложка растворялась в воде и пленки осаждались на микроскопическую сетку. С целью предотвращения разрушения образцов для регистрации электронной дифракции использовался электронный пучок низкой интенсивности.

Электронная структура пленок исследовалась методами фотоэлектронной спектроскопии, оже-спектроскопии и спектроскопии потерь энергии электронов. Электронно-спектроскопические исследования углеродных пленок проводились с использованием рентгеновского возбуждения на спектрометре ESCALAB-5 в режиме постоянного разрешения ($\Delta E = 0.2$ эВ). Для этих целей использовались пленки толщиной от 10 до 50 Å.

Спектры характеристических потерь энергии электронов получали из хвоста неупругоотраженных электронов 1*s*-линии углерода, затем, используя преобразования Крамерса-Кронига, вычисляли реальную и мнимую части диэлектрической проницаемости [2].

Исследовались пленки линейно-цепочного углерода со следующими толщинами: 40, 60, 80, 160, 320 и 640 Å.

Экспериментальные результаты

Дифракционная картина тонких пленок (толщиной до 60 Å) представляет собой шесть точечных рефлексов, соответствующих гексагональной структуре с параметром решетки $d_{10.0} = 4.3$ Å (рис. 1, а). Картина дифракции от более толстых пленок ($60 \div 160$ Å) содержит единственное узкое кольцо, отвечающее такому же параметру решетки (рис. 1, δ). При наклонном падении пучка электронов на поверхность пленки дифракционная картина состоит из двух симметричных относительно центра дуг. Такие особенности дифракции свидетельствуют о том, что структура пленки одноосна и двумерно упорядочена. Поскольку на дифракционной картине отсутствуют максимумы интенсивности высшего порядка, то можно сделать вывод о том, что структура пленки представляет собой произвольно смещенные друг относительно друга слои, состоящие из коротких линейных углеродных цепочек.

Полученные негативы дифракционных картин фотометрировались, и с учетом постоянной прибора были получены распределения интенсивности рассеяния в зависимости от вектора дифракции. После вычитания фона определялась ширина дифракционной линии, по которой рассчитывался средний размер кристаллита:

$a = d \cdot D/\Delta,$

где D — диаметр кольца, Δ — ширина кольца, a — размер кристаллита, d — межплоскостное расстояние.

Размер кристаллитов в пленках различной толщины приведен в таблице. Как следует из таблицы, в тонкой пленке (~ 40 Å) размер кристаллитов сравним с толщиной пленки, и практически вся пленка является высокоориентированной, поэтому на дифракционной картине видны четкие рефлексы (рис. 1, *a*). При увеличении толщины до 160 Å размер кристаллитов уменьшается до 20 Å, линейная структура пленок сохраняется. В пленках толщиной более 200 Å происходит аморфизация структуры с образованием межцепочечных связей, что наглядно демонстрируется появлением дифракционных колец, соответствующих аморфной трехмерной фазе углерода, а затем полным исчезновением кольца, соответствующего линейно-цепочечной фазе.

Толщина пленки, Å	40	60	80	160	320	640
Размер кристаллита, Å	35	25	23	20	17	менее 10

На рис. 2 приведены интегральные оже-спектры линейно-цепочечного углерода (сплошная линия) и для сравнения — графита (штриховая) и алмаза (точечная). Оже-спектр пленки линейно-цепочечного углерода в области энергий, больших 260 эВ, сдвинут относительно спектра графита на 6 эВ в сторону меньших кинетических энергий. Положение высокоэнергетического края совпадает с высокоэнергетическим краем спектра алмаза. Отсюда следует, что потолок валентной зоны исследуемого образца смещен в сторону больших энергий связи по крайней мере на 3 эВ по сравнению с графитом [3]. Это можно объяснить значительно более сильной *п*-связью в углеродных цепочках из-за меньшего расстояния между атомами. Отмечается чрезвычайно низкий фон неупругих потерь энергии электрона по сравнению с алмазом и графитом (плечо при энергиях меньше 230 эВ), что объясняется малой толщиной пленки и низкой вероятностью неупругого рассеяния электронов. С увеличением толщины пленок наблюдается смещение высокоэнергетического края оже-спектра на 2 эВ в область высоких кинетических энергий. При этом также возрастает фон неупругих потерь, хотя тонкая структура в области низких энергий не меняется.

На рис. 3, а показана 1s-фотоэлектронная линия углерода (ноль соответствует энергии связи 285 эВ) с участком спектра неупруго рассеянных электронов. Пунктиром показана идеализированная фотоэлектронная линия, полученная по методике [3]. Разница между этими спектрами (штриховая линия) является спектром характеристических потерь. Потери в этой области энергий (0-40 эВ) обусловлены возбуждением как коллективных (плазменных) колебаний, так и одночастичных (межзонных) переходов.

В спектре потерь пленки толщиной 10 Å (рис. 3, б) имеется двойной максимум в области энергий 3–5 эВ и широкий максимум при 22.5 эВ. Первый максимум соответствует межзонным переходам и коллективному возбуждению π -подсистемы (π -плазмон), второй — коллективному возбуждению всей электронной подсистемы ($\pi + \sigma$ -плазмон). Эти значения энергий хорошо соответствуют известным данным для цепочечных углеводородов (для графита энергия возбуждения π -плазмона составляет 7 эВ, а $\pi + \sigma$ -плазмона — 27 эВ). При увеличении толщины пленок высокоэнергетическая часть спектра (максимум при 4 эВ) не изменяется, но интенсивность первого максимума (при 1.8 эВ) уменьшается в несколько раз (см. вставку на рис. 3, δ).

Выделить из функции потерь спектр одночастичных возбуждений можно, используя преобразование Крамерса-Кронига по методике, подробно изложенной в работе [2].

Нормировка спектра потерь осуществлялась таким образом, чтобы при энергии, близкой к нулю (0.2 эВ), выполнялось соотношение $\varepsilon_1 = n^2$, где n — оптический показатель преломления (по данным элипсометрии показатель преломления исследуемых пленок равен 3.3). Результат преобразования приведен на рис. 4 (штриховая линия — ε_1 , сплошная линия — ε_2 , точечная — спектр потерь). Из рис. 4 видно, что условия возбуждения плазмонов ($\varepsilon_1 = 0$ и $\varepsilon_2 < 1$) выполняются при энергии 4 эВ. Следовательно, соответствующий максимум в спектре потерь обусловлен возбуждением коллективных колебаний π -электронов цепочки. Спектр одночастичных возбуждений $\varepsilon_2(E)$ имеет узкий пик при энергии 1.3 эВ и максимум при 2.1 эВ. Максимум при 2.1 эВ объясняется переходом электронов с потолка валентной зоны на дно зоны проводимости. Узкий пик при 1.3 эВ можно объяснить возбуждением экситона с энергией связи 0.8 эВ. Из сравнения полученных результатов с исследованиями экситонного поглощения в цепочках полидиацетилена [4] видно подобие электронной структуры исследуемых пленок и полидиацетилена. В работе [4] отмечено, что интенсивность экситонного поглощения напрямую связана с качеством кристалла (а именно с отсутствием межцепочечных сшивок).

Таким образом, наличие ярко выраженного экситонного пика при E = 1.3 эВ свидетельствует о высоком совершенстве пленки линейного углерода, что хорошо согласуется с дифракционной картиной высокоупорядоченного линейно-цепочечного углерода, полученной в том же диапазоне толщин (рис. 1, a).

Более детальную информацию о структуре можно получить на основании данных о плотности валентных состояний, рассчитанных путем обращения самосвертки оже-спектра углерода. Результаты приведены на рис. 5 для пленок толщиной 15 и 50 А. Энергия отсчитывается от уровня вакуума. Плотность валентных состояний для образца толщиной 15 Å имеет четыре максимума (12.25, 16, 19 и 27 эВ). Известно, что плотность состояний в валентной зоне одномерных систем характеризуется наличием максимумов на краях зон. В одномерной углеродной цепочке плотность состояний имеет максимумы на границах подзон π и σ . В соответствии с теоретическими расчетами максимумы 19 и 27 эВ соответствуют потолку и дну σ -подзоны, а низкоэнергетические максимумы — π -подзоне. Для сравнения: в графите максимум о-подзоны лежит при энергии 12 эВ, а максимум *т*-подзоны — при энергии 7 эВ. По мере увеличения толщины пленки (до 50 Å) π -подзона смещается в сторону более

низких энергий примерно на 1 эВ, что можно объяснить трансформированием связей в цепочке из полииновых ($-C \equiv C-$) в кумуленовые (=C=C=). В этом случае длина π -связей увеличивается от 1.21 до 1.28 Å, что означает ослабление π -связей и сдвиг соответствующей подзоны в сторону меньших энергий.

Выводы

Исследования показали, что сверхтонкие (толщиной до 200 Å) пленки линейно-цепочечного углерода имеют идеальную упорядоченную кристаллическую структуру. При толщине около 50 Å происходит трансформирование связей из полиинового в кумуленовый тип.

Литература

- Kudryavcev Yu.P., Babaev V.G., Guseva M.B. et al. // Carbon. 1992. 30. P. 272.
- 2. Бабаев В.Г., Гусева М.Б., Хвостов В.В. // Вестн. Моск. ун-та. Физ. Астрон. 1989. № 6. С. 53 (Moscow University Phys. Bull. 1989. No. 6. P. 46).
- Анализ поверхности методами Оже- и рентгеновской фотоэлектронной спектроскопии / Под ред. Д. Бриггса и М.П. Сиха. М.: Мир, 1987.
- Dreshler S.L., Bobeth M. // Solid State Commun. 1985. 56, No. 3. P. 261.

Поступила в редакцию 16.11.01

ГЕОФИЗИКА

УДК 532.529.2:551.481.1

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ВЕСЕННЕГО ТЕРМОБАРА В НЕГЛУБОКОМ ВОДОЕМЕ

Н.С. Блохина, А.В. Овчинникова, А.Е. Орданович

(кафедра физики моря и вод суши)

E-mail: blokhina@phys.msu.su

Методом математического моделирования исследуются термогидродинамические процессы вблизи термобара в период весеннего прогрева водоема. На основе нелинейной системы уравнений Навье-Стокса в приближении Буссинеска с использованием специальной методики выделения крупномасштабных структур в турбулентной среде построена замкнутая система уравнений типа Рейнольдса. Оценены распределение термогидродинамических характеристик в водоеме, скорость перемещения термобара, влияние ветра различной силы и направления на структуру течений и месторасположение термобара и др. Результаты расчетов удовлетворительно согласуются с данными натурных наблюдений.

Весной, после вскрытия озер и слабосоленых морей средних широт ото льда начинается их интенсивный прогрев. Поток тепла, поступающий через водную поверхность, определяется в основном метеорологическими факторами и мало изменчив по горизонтали. В силу того что мелководная прибрежная зона озера имеет меньшую теплоемкость, она прогревается быстрее, чем удаленная от берега его глубоководная часть. В связи с этим поверхностные воды, находящиеся ближе к берегу, быстрее достигают температуры максимальной плотности ($T_m = 4$ °C). При этом наиболее плотные воды опускаются вниз. образуя в озере узкую вертикальную область с температурой 4°С от поверхности до дна. Эта область является фронтальным разделом и ее, следуя классическим работам А.И. Тихомирова [1–3], называют термическим баром. По обе стороны от термического бара развиваются две противоположно вращающиеся конвективные ячейки с мощным нисходящим течением во фронтальной зоне. Благодаря этому линия термического фронта нередко видна невооруженным глазом: на ней собираются плавающие по поверхности клочья пены, планктон, водоросли, пленки различного рода загрязнений. По мере прогрева водоема прибрежная конвективная ячейка увеличивается в размере, область термического бара смещается к его