ФИЗИКА ТВЕРДОГО ТЕЛА

УДК 537.622

МАГНИТНОЕ УПОРЯДОЧЕНИЕ ВБЛИЗИ КРОССОВЕРА В СИНГЛЕТНЫХ ПАРАМАГНЕТИКАХ НоВа $_2$ Си $_3$ О $_{7-\delta}$ ($\delta = 0, 1.0$)

З.А. Казей

(кафедра общей физики для естественных факультетов) E-mail: kazei@plms.phys.msu.su

Рассчитаны эффект Зеемана, намагниченность и дифференциальная магнитная восприимчивость в изотермическом режиме для HoBa₂Cu₃O₆ в тетрагональной фазе с учетом анизотропного билинейного взаимодействия. Показано существование магнитного упорядочения в базисной плоскости во внешнем магнитном поле H || [001] вблизи пересечения энергетических уровней, сопровождающееся отклонением магнитного момента от направления поля. Исследована зависимость фазовой диаграммы от величины параметров анизотропного билинейного взаимодействия, температуры и других факторов.

1. Исследования спонтанных и индуцированных фазовых переходов, связанных с орбитальным и магнитным упорядочением, локализацией носителей заряда и т.д., в перовскитах с ян-теллеровскими ионами Cu²⁺ и Mn³⁺ в настоящее время являются одной из актуальных проблем физики твердого тела. Спонтанные и индуцированные магнитным полем структурные фазовые переходы ян-теллеровской природы исследуются также в редкоземельных (P3) магнетиках с различной кристаллической структурой.

Один из важных аспектов этой проблемы влияние сильного магнитного поля, которое модифицирует спектр и волновые функции РЗ иона и может при определенных условиях сформировать электронную структуру с вырожденным основным состоянием, благоприятную для ян-теллеровских фазовых переходов. Вырожденное состояние в спектре РЗ иона может возникать из-за пересечения уровней (кроссовер). Этот случай можно рассматривать как магнитный аналог эффекта Яна-Теллера. Известно, что система с вырожденным основным состоянием неустойчива и в ней могут иметь место различные фазовые переходы, приводящие к понижению симметрии и снятию вырождения. Таким образом, вблизи кроссовера сильно возрастает роль различных слабых взаимодействий. Вклад квадрупольных взаимодействий вблизи кроссовера экспериментально и теоретически исследовался в работе [1]. Магнитные фазовые переходы вблизи пересечения уровней, насколько нам известно, изучались только для соединений с 3d ионами. Однако имеющиеся модельные расчеты спинового упорядочения в магнитном поле вблизи кроссовера мало пригодны для РЗ соединений.

Кроссовер был обнаружен и детально исследован для ряда РЗ соединений со структурой циркона RXO₄ [2, 3], а также предсказан на основе численных расчетов для РЗ соединений $RBa_2Cu_3O_{7-\delta}$ [4]. Отметим, что магнитное упорядочение при кроссовере для семейства купратов исследовалось теоретически для соединений $HoBa_2Cu_3O_{7-\delta}$ в обеих фазах [5], однако ошибки при записи гамильтонианов кристаллического поля и приближенный характер вычислений ставят под сомнение количественные результаты этой работы. Таким образом, исследование роли билинейных и квадрупольных взаимодействий при кроссовере в РЗ оксидах с различной структурой представляет несомненный интерес с экспериментальной и теоретической точек зрения.

2. Для расчета эффекта Зеемана, магнитных характеристик и фазовых диаграмм в сильном магнитном поле использовался гамильтониан, включающий кристаллическое поле (КП), зеемановский член и билинейные взаимодействия, записанные в приближении молекулярного поля,

$$H = \sum_{n,m} \alpha_n B_n^m O_n^m - g_J \mu_B \mathbf{J} \mathbf{H} - g_J \mu_B \mathbf{J} \mathbf{H}_B, \quad (1)$$

 $n = 2, 4, 6; m \leq n; m = 0, 2, 4, 6$ — для орторомбической симметрии; m = 0, 4 — для тетрагональной симметрии. В (1) O_n^m — эквивалентные операторы, $\alpha_2 = \alpha_J, \alpha_4 = \beta_J, \alpha_6 = \gamma_J$ — коэффициенты Стевенса, B_n^m — параметры КП, g_J — фактор Ланде, **J** — оператор углового момента иона \mathbb{R}^{3+}, μ_B — магнетон Бора. Эффективное поле $\mathbf{H}_{\mathrm{B}} = ng_J\mu_B\langle J\rangle$ обусловлено билинейными взаимодействиями, где параметр молекулярного поля n ($n_i = \theta_i/C, i = ||, -; \theta_i$ — парамагнитная температура Кюри, C — константа Кюри), вообще говоря, анизотропен вдоль и перпендикулярно тетрагональной оси.

Определяющим взаимодействием для P3 ионов в исследуемых окисных соединениях $HoBa_2Cu_3O_{7-\delta}$ ($\delta = 0, 1.0$) и $HoVO_4$ в парамагнитной области является кристаллическое поле. Параметры КП для этих соединений известны из экспериментов по неупругому рассеянию нейтронов и оптики [6, 7]. Исполь-

зуемые нами при расчетах параметры КП приведены в таблице. Дипольные и обменные взаимодействия в этих соединениях малы и обусловливают антиферромагнитное упорядочение при температурах ниже 1 К. Оценки значений параметров молекулярного поля $n_{||}$ и n_{-} (или $\theta_i = n_i C$, i = ||, -) для исследованных Но соединений приводятся далее.

3. Расчеты эффекта Зеемана в соединениях RBa₂Cu₃O_{7-δ} на основе определенных из эксперимента параметров кристаллического поля показали существование пересечения энергетических уровней РЗ ионов, которое имеет место для разных направлений и величин магнитного поля в зависимости от типа иона [4]. Для гольмиевых соединений поле кроссовера H_c составляет 42 к \Im , т.е. находится в диапазоне, удобном для экспериментального исследования. На рис. 1 приведены изотермические кривые намагничивания тетрагонального HoBa₂Cu₃O₆ для $H \parallel [001]$, на которых виден скачок намагниченности, связанный с пересечением энергетических уровней. В отсутствие билинейных взаимодействий (кривая 4) скачок намагниченности при 0.1 К очень резкий и с приближением температуры к абсолютному нулю становится бесконечно узким, т.е. дифференциальная восприимчивость $dM/dH(H_c)$ в критическом поле расходится. Такое поведение намагниченности связано с вырожденным основным состоянием системы при кроссовере. Эта ситуация практически не реализуется, и в системе всегда найдутся такие взаимодействия, которые обрежут максимум на кривой дифференциальной восприимчивости.

Учет билинейных взаимодействий в РЗ-подсистеме, в частности, может привести к снятию вырождения в энергетическом спектре при $H = H_c$ за счет появления магнитного упорядочения в базисной плоскости. Таким образом, роль билинейных взаимодействий вблизи кроссовера возрастает. Действительно, в слабом поле соединения HoBa₂Cu₃O_{7-б} $(\delta = 0, 1.0)$ имеют синглетное основное состояние и магнитное упорядочение в них возникает только при очень низких температурах T < 0.2 K за счет примешивания к основному синглету первого возбужденного дублета, при этом магнитный момент иона Но³⁺ ориентирован в базисной плоскости [8]. Вблизи критического поля кроссовера условия для возникновения магнитного упорядочения улучшаются, так как щель между основным синглетом и первым возбужденным уровнем уменьшается. При

Рис. 1. Изотермы продольной M_z и поперечной M_x намагниченности HoBa₂Cu₃O₆ для $H \parallel [001]$ с учетом (1, 1' – T = 0.1 K; 2, 2' – T = 0.2 K; 3, 3' – T = 0.25 K; $\theta_{\parallel} = \theta_{\perp} = -0.65$ K) и без учета (4 – T = 0.1 K) билинейных взаимодействий

этом роль билинейных взаимодействий вдоль тетрагональной оси (вдоль поля) и перпендикулярно ей различна.

Отметим, что природа билинейных взаимодействий в $HoBa_2Cu_3O_{7-\delta}$ достаточна сложна, определенный вклад дают суперобменные взаимодействия не только с ближайшими, но и со следующими соседями. Кроме того, дипольные взаимодействия полностью не пренебрежимы. В нашей модели это учитывается введением двух различных параметров эффективного поля вдоль и перпендикулярно тетрагональной оси, при этом вклады от разных соседей и от диполь-дипольного взаимодействия не разделяются. Такая модель оправдана для двухподрешеточного антиферромагнетика, к которым, согласно нейтронным исследованиям [8], относится купрат Ho.

Билинейные взаимодействия вдоль тетрагональной оси приводят к появлению эффективного поля H_B^z , которое добавляется к внешнему и несколько смещает критическое поле кроссовера и меняет ширину скачка кривой намагниченности (ср. кривые 1 и 4 при T = 0.1 К на рис. 1). Изотермы продольной намагниченности M_z вблизи поля кроссовера и полевые зависимости параметра порядка M_x в базисной плоскости для тетрагонального HoBa₂Cu₃O₆

Параметры КП для исследуемых соединений ${
m HoBa_2Cu_3O_{7-\delta}}~(\delta=0,\,1.0)$ и ${
m HoVO_4}$

Соединение	B_2^0 , см $^{\perp 1}$	B_2^2 , см $^{\perp 1}$	B_4^0 , см $^{\perp 1}$	B_4^2 , см $^{\perp 1}$	B_4^4 , см $^{\perp 1}$	B_6^0 , см $^{\perp 1}$	B_6^2 , см $^{\perp 1}$	B_6^4 , см $^{\perp 1}$	B_6^6 , см $^{\perp 1}$	Ссылки
$HoBa_2Cu_3O_6$	167	_	-230	ļ	1041	27.5	-	900	ļ	[6]
$HoBa_2Cu_3O_7$	167	72	-220	15	1017	28	-17	841	-12	[6]
HoVO ₄	-181	_	79	1	1591	-89	_	-161	_	[7]

на рис. 1 рассчитаны в случае изотропного антиферромагнитного обмена с обменными параметрами $n_{||} = n_{-} = \theta/C$ ($\theta = -0.65$ K). Мы использовали различные способы оценки обменного параметра. Оценка из $T_N = 0.8$ К для тетрагонального $DyBa_2Cu_3O_6$ пересчетом через соответствующие факторы Ланде дает heta = -0.37 К. Оценка из $T_N = 0.19$ К для орторомбического HoBa₂Cu₃O₇ несколько сложнее, так как требует учета вклада сверхтонкого взаимодействия в магнитное упорядочение в этом парамагнетике. С использованием данных работы [8] было получено значительно более высокое значение $\theta = -1.56$ К. Далее при расчетах используется величина $\theta = -0.65$ K, близкая к среднему значению для приведенных выше оценок. Отметим, что эта величина соответствует обменным интегралам $I^{
m ii} = \left(rac{g_J \mu_B}{g_J - 1}
ight)^2 n = -0.3$ см $^{-1}$ (i=x,y,z), что в несколько раз меньше $I^{ii} = -1 \, \, \mathrm{cm}^{-1}$, использованного в работе [5] при расчетах для HoBa₂Cu₃O₆.

Иная роль билинейных взаимодействий в плоскости, перпендикулярной тетрагональной оси и магнитному полю. При строгой ориентации поля вдоль оси перпендикулярная по отношению к внешнему полю компонента магнитного момента в слабом поле отсутствует. Вблизи Н_с возможно появление перпендикулярной компоненты M_x , или, другими словами, отклонение магнитного момента от внешнего поля (рис. 1). За счет этого вырождение в критическом поле Н_с снимается и в спектре возникает конечная щель $\Delta \sim 0.5$ К (рис. 2). Сравнение эффекта Зеемана, рассчитанного без учета (кривые 1) и с учетом анизотропного ($\theta_{-}=0$) и изотропного билинейного взаимодействия (кривые 2 и 3 соответственно), наглядно показывает его влияние на критическое поле *H_c* и спектр при кроссовере. Из вставки на рис. 2 видно, что эффект Зеемана практически совпадает для тетрагонального и орторомбического соединений HoBa₂Cu₃O_{7-δ} в сильных полях, и критические поля H_c при этом очень близки. Основное отличие для двух фаз в слабых полях состоит в начальном (H = 0) расщеплении возбужденного дублета при понижении симметрии до орторомбической. Таким образом, ромбическую компоненту кристаллического поля в HoBa₂Cu₃O₇ можно рассматривать как возмущение по сравнению с тетрагональной.

Необходимые для расчета поперечной компоненты магнитного момента M_x собственные состояния полного гамильтониана искались самосогласованным образом. В тетрагональном соединении при T = 0.1 К упорядоченная фаза с поперечной компонентой $M_x \neq 0$ стабильна в интервале полей от 40 до 45 кЭ (кривая 1' на рис. 1), и с повышением температуры эта область сокращается и исчезает при T > 0.25 К. Ориентация перпендикулярной компоненты M_- в базисной плоскости определяется, очевидно, анизотропией. Анизотропия кристалличе-

Рис. 2. Эффект Зеемана НоВа $_2$ Си $_3$ О $_6$ при T=0.1 К для ориентации поля $H \parallel [001]$, рассчитанный без учета (линии 1) и с учетом анизотропного (2, $\theta_{\parallel}=-0.65$ К, $\theta_{\perp}=0$) и изотропного (3, $\theta_{\parallel}=\theta_{\perp}=-0.65$ К) билинейного взаимодействия (приведены 2 нижних энергетических уровня основного мультиплета). На вставке показан эффект Зеемана для тетрагонального ($\delta=1.0$) и орторомбического ($\delta=0$) соединений НоВа $_2$ Си $_3$ О $_{7\perp\delta}$ в широком интервале полей

ского поля в базисной плоскости невелика и благоприятствует ориентации поперечной компоненты вдоль оси [100], хотя для ориентации M_{-} вдоль оси [110] отличие критических полей фазовых переходов не превышает 0.5%.

Появление поперечной компоненты сопровождается характерными изломами на продольной намагниченности M_z (кривые 1-3 на рис. 1) или более выраженными аномалиями на дифференциальной восприимчивости $\chi_{||} = dM_z/dH_z$, которая испытывает скачки при фазовом переходе (рис. 3). При этом в области существования поперечной компоненты M_x продольная компонента M_z меняется практически линейно (а восприимчивость $\mathrm{d}M_z/\mathrm{d}H_z$ остается практически постоянной), т. е. формы пика на кривой $\mathrm{d}M_z/\mathrm{d}H_z$ в парамагнитной и магнитоупорядоченной фазе заметно различаются (кривые 1 и 4). В рамках рассмотренной модели переход в магнито-упорядоченное состояние осуществляется фазовым переходом второго рода, поэтому на границах упорядоченной фазы на кривой M_z наблюдаются только изломы, а не скачки, как можно было бы ожидать для фазовых переходов первого рода.

На рис. 1–4 приведены в основном данные для тетрагонального соединения $HoBa_2Cu_3O_6$, которое хотя и имеет более узкий диапазон существования упорядоченной фазы по магнитному полю и температуре, более подходит для экспериментального исследования благодаря отсутствию вкладов, связанных со сверхпроводимостью. Для орторомбического соединения $HoBa_2Cu_3O_7$ получены

Рис. 3. Изотермические кривые дифференциальной восприимчивости $\chi_{\parallel} = \mathrm{d}M_z/\mathrm{d}H_z$ HoBa $_2$ Cu $_3$ O $_6$ для ориентации поля $H \parallel [001]$ при различных температурах, рассчитанные с учетом изотропного билинейного взаимодействия $\theta_{\parallel} = \theta_{\perp} = -0.65$ K (1 - T = 0.1 K; 2 - T = 0.2 K; 3 - T = 0.25 K; 4 - T = 0.4 K)

Рис. 4. Изотермические кривые поперечной восприимчивости $\chi_{\perp} = dM_x/dH_x$ НоВа $_2$ Си $_3$ О $_6$ для ориентации поля $H \parallel [001]$ при различных температурах, рассчитанные с параметром $\theta_{\perp} = 0$ и различными значениями параметра θ_{\parallel} ($\theta_{\parallel} = -0.65$ К: I - T = 0.1 К; 2 - T = 0.2 К; 3 - T = 0.25 К). Кривые I ($\theta_{\parallel} = -0.65$ К), I' ($\theta_{\parallel} = 0$), I'' ($\theta_{\parallel} = 0.65$ К) показывают влияние параметра θ_{\parallel} на границы области существования упорядоченной фазы при T = 0.1 К. На вставке показаны кривые $\chi_{\perp}(H_z)$ HoVO4 для ориентации поля $H \parallel [001]$ при различных температурах (I - T = 0.1 К; 2 - T = 0.25 К)

качественно похожие результаты. Например, при T = 0.1 К и тех же значениях билинейной константы ($\theta = -0.65$ K) скачок на продольной намагниченности $\Delta M_z(H_z) = 3\mu_B$ несколько меньше, а поперечная компонента, наоборот, достигает большей величины $M_x(H_z) = 6\mu_B$. Таким образом, упорядоченная фаза более устойчива и существует при T < 0.6 K, а при T = 0.1 K реализуется в диапазоне полей от 34 до 48 кЭ.

При наличии только билинейных взаимодействий вопрос о возникновении магнитного упорядочения (появление поперечной компоненты) достаточно просто и наглядно можно исследовать с помощью поперечной восприимчивости $\chi_{-} = \mathrm{d}M_x/\mathrm{d}H_x(H_z)$. Известно, что спонтанное магнитное упорядочение реализуется, когда начальный наклон кривой намагниченности M(H) достигнет критической величины, определяемой величиной обменного параметра. Это рассмотрение можно расширить и на случай появления поперечной компоненты вблизи кроссовера, а именно компонента M_x появляется при условии $\chi_{-}(H) \geqslant 1/n_{-} = C/\theta_{-}$. Это справедливо для простой кривой поперечной намагниченности $M_x(H_x, H_z)$ без точек перегиба и в частности для рассматриваемой модели.

На рис. 4 видно, что поперечная восприимчивость $\chi_{-}(H_z)$ в слабом поле мала, но сильно возрастает вблизи критического поля, так что при низких температурах выполняется вышеуказанное условие. Расчеты кривой $\chi_{-}(H_z)$ проводились в магнито неупорядоченной фазе с параметрами $heta_{||}=-0.65~{
m K}$ и $heta_-=0$, поскольку компонента M_z отлична от нуля за счет внешнего поля и индуцирует эффективное поле H_B^z , а поперечное эффективное поле H_B^x отсутствует. Границы упорядоченной фазы при заданной температуре определяются тогда из условия $\chi_{-}(H_z) = 1/n_{-} = C/\theta_{-}$. Поскольку для соединений HoBa $_2$ Cu $_3$ O $_{7-\delta}$ максимум на кривой $\chi_-(H_z)$ при понижении температуры возрастает, упорядоченная фаза возникает при достаточно низкой температуре при любом значении обменной константы *n*_, а для $\theta_{-} = -0.65$ К максимальная температура в тетрафазе составляет примерно 0.25 К.

Кривые $\chi_{-}(H_z)$ позволяют также наглядно исследовать вопрос о влиянии анизотропии билинейных взаимодействий на магнитное упорядочение. При заданном значении билинейной константы $n_{||}$ увеличение билинейной константы в базисной плоскости n_{-} приводит к понижению горизонтальной линии на рис. 4 и, как и следовало ожидать, к расширению области существования упорядоченной фазы. Наоборот, при заданном значении n_{-} увеличение константы $n_{||}$ (кривые 1, 1', 1") приводит к уменьшению ширины пика $\chi_{-}(H_z)$ и смещению максимума в область более низких полей, т.е. к сужению области существования упорядоченной фазы.

4. Для сравнения коротко рассмотрим возникновение поперечной компоненты магнитного момента вблизи критического поля кроссовера для другого соединения HoVO₄. Кроссовер для HoVO₄ экспериментально исследовался разными методами [9, 10], в частности был обнаружен двухступенчатый характер скачка продольной намагниченности при температурах ниже 2 К [2]. Особенностью ванадата Но является то, что поперечная восприимчивость $\chi_{-}(H_z)$ вблизи кроссовера возрастает не очень сильно (врезка на рис. 4), поэтому упорядочения можно ожидать только если билинейные взаимодействия будут достаточно сильными. В отличие от купрата Но в ванадате Но при кроссовере определенную роль могут сыграть квадрупольные взаимодействия, как полносимметричные, так и низко симметричные, которые модифицирует зависимость $\chi_{-}(H_z)$.

5. Проведенные расчеты показывают, что учет обменного взаимодействия в РЗ-подсистеме может привести к снятию вырождения в энергетическом спектре вблизи критического поля кроссовера за счет появления магнитного упорядочения в базисной плоскости, т.е. к отклонению магнитного момента от направления поля. Этот эффект, известный как магнитный аналог эффекта Яна-Теллера, рассмотрен в настоящей статье для реальных систем НоВа₂Си₃О_{7-б} и НоVО₄ с учетом особенностей расщепления в кристаллическом поле и анизотропии билинейных взаимодействий. Численные расчеты с реальными параметрами взаимодействий показывают, что в купратах Но при низких температурах вблизи критического поля H_c должно возникать магнитоупорядоченное состояние с $M_x \neq 0$.

Автор выражает благодарность Н.П. Колмаковой

за полезные советы при обсуждении статьи. Работа выполнена при финансовой поддержке Международного научно-технического центра (проект № 2029).

Литература

- 1. *Казей З.А., Снеригев В.В.* // Письма в ЖЭТФ. 2001. **73**, № 2. С. 95.
- Morin P., Rouchy J., Kazei Z. // Phys. Rev. 1995. B51, № 21. P. 15103.
- Казей З.А., Колмакова Н.П., Платонов В.В. и др. // ЖЭТФ. 2000. 118, № 3(9). С. 602.
- Демидов А.А., Казей З.А., Колмакова Н.П. // Вестн. Моск. ун-та. Физ. Астрон. 2002. № 3. С. 53 (Moscow University Phys. Bull. 2002. No. 3. P. 73).
- 5. Завадский Э.А., Заворотнев Ю.Д. // Сверхпроводимость: физ. хим. техн. 1991. **4**, № 11. С. 2113.
- Allenspach P., Furrer A., Bruesch P. et al. // Phys. C. 1989. 157, No. 1. P. 58.
- Bischoff H., Pilawa B., Kasten A., Kahle H.G. // J. Phys.: Condens. Matter. 1991. 3, No. 51. P. 10057.
- Roessli B., Fischer P., Staub U. et al. // J. Appl. Phys. 1994. 75, No. 10. P. 6337.
- Battison J.E., Kasten A., Leask M.J.M., Lowry J.B. // J. Phys. C. 1977. 10, No. 2. P. 323.
- Goto T., Tamaki A., Fujimura T., Unoki H. // J. Phys. Soc. Japan. 1986. 55, No. 5. P. 1613.

Поступила в редакцию 26.06.02