УДК 537.632

МАГНИТОРЕФРАКТИВНЫЙ ЭФФЕКТ В НАНОКОМПОЗИТАХ

 $oxed{{f B. C. Гущин}}$, Е. А. Ганьшина, А. А. Козлов, И. В. Быков *

(кафедра общей физики; кафедра магнетизма)

E-mail: eagan@magn.ru

В инфракрасном диапазоне длин волн 1.5–20 мкм исследованы оптическое отражение и четный по намагниченности магниторефрактивный эффект (MPЭ) в нанокомпозитах ферромагнетик (Co, Fe, CoFe, CoFeZr) — диэлектрическая матрица (Al₂O₃, SiO₂, TiO₂, MgF), обладающих в составах вблизи порога перколяции туннельным магнитосопротивлением. Изучена дисперсия этих эффектов в зависимости от поляризации, угла падения излучения и внешнего магнитного поля. Показано, что экстремальные значения MPЭ соответствуют минимальным значениям оптического отражения и достигают величин, в десятки раз превосходящих традиционные эффекты Керра. Экспериментальные данные свидетельствуют о природе этого эффекта как о результате спин-зависимого туннелирования электронов проводимости на оптических частотах.

Введение

Нанокомпозиты ферромагнитный металл-диэлектрик с содержанием металла вблизи порога перколяции в последние 10-15 лет вызывает большой интерес и экспериментаторов, и теоретиков, и технологов. Наряду с большим эффектом туннельного магнитосопротивления (ТМС) в этих материалах наблюдаются эффекты, связанные с изменением диэлектрической проницаемости в высокочастотных диапазонах электромагнитного излучения при намагничивании ферромагнитного композита. Эффект изменения импеданса в радио- и СВЧ-диапазонах получил название высокочастотного магнитосопротивления, или магнитоимпенданса [1, 2], а в случае оптических частот — магниторефрактивного эффекта [3]. В настоящей работе речь пойдет о МРЭ в металлодиэлектрических гранулированных структурах.

Магниторефрактивный эффект заключается в изменении оптических свойств (коэффициентов отражения, пропускания и поглощения света) магнетиков с большим МС при их намагничивании [3-5] и является частотным аналогом ТМС. Так же как и последний, МРЭ, по-видимому, возникает в результате спин-зависимого туннелирования поляризованных электронов проводимости через диэлектрические прослойки между ферромагнитными гранулами. МРЭ должен проявляться наиболее ярко в ИК области спектра, где вклад электронов проводимости играет доминирующую роль. Известно, что изменение интенсивности вследствие классических магнитооптических (МО) эффектов во всех ферромагнитных металлах и сплавах на их основе (нечетные и четные по намагниченности эффекты Керра [6-9] и ориентационный MO эффект [10]) не превышает $10^{-2}-10^{-4}$ в УФ и видимой областях спектра. В противоположность этому в многослойных структурах [3-4] и в нанокомпозитах [11] обнаружили магнитоиндуцированные изменения оптических параметров в ИК диапазоне, в десятки раз большие традиционных МО эффектов на отражение. Большие значения $\sim 1\%$ МРЭ найдены в пленках гранулированного ферромагнитного кобальта, внедренного в диэлектрическую матрицу сапфира [12], но максимальное значение МРЭ $\sim 1.3\%$ получено в нанокомпозите ($\rm Co_{0.4}\,Fe_{0.6}$)48 (MgF)52 [13, 14]. МРЭ в наноструктурах проявляет своеобразную частотную зависимость [5, 11, 15], а также этот эффект является нелинейным по намагниченности. Все это позволяет говорить о МРЭ как о новом негироэлектрическом эффекте, природа которого отлична от природы традиционных магнитооптических эффектов.

Впервые МРЭ был предсказан, теоретически исследован и экспериментально подтвержден для мультислоев Fe/Cr [3]. Теория этого эффекта развита для металлических многослойных систем в [16–18] и для гранулированных металлических систем в [19, 20]. Наиболее простое соотношение для МРЭ металлических систем в спектральной области Хагена-Рубенса получено в [19], где показано, что при нормальном падении света величина магнитоиндуцированного отклика имеет вид

$$\frac{\Delta R}{R} = \frac{R(H=0) - R(H)}{R(H=0)} =$$

$$= -\frac{1}{2}(1-R)\frac{\rho(H=0) - \rho(H)}{\rho(H=0)} = -\frac{1}{2}(1-R)\frac{\Delta\rho}{\rho}.$$
(1)

Здесь R(H=0) и R(H) — коэффициенты отражения света образцом, $\rho(H=0)$ и $\rho(H)$ — электросопротивления в отсутствие магнитного поля и в магнитном поле H соответственно; $\Delta \rho/\rho$ — абсолютное значение MC. Из выражения (1) следует, что большие значения MPЭ должны наблюдаться

^{*)} Институт геохимии и аналитической химии РАН им. В. И. Вернадского.

в системах с большим МС и малым коэффициентом отражения, т. е. не в металлических системах, а в наноструктурах. Необходимо отметить, что выражение (1) заведомо неприменимо к магниторефрактивному эффекту в нанокомпозитах, так как его вывод основан на частотной зависимости металлической проводимости типа Друде-Лоренца.

При низких частотах вероятность туннелирования не зависит от частоты. Однако при высоких частотах возможно как уменьшение туннельной прозрачности, когда период электромагнитной волны становится меньше характерного времени туннелирования, так и увеличение вероятности туннелирования за счет поглощения туннелирующим электроном кванта света. Из простых оценок характерного времени туннелирования t, которое при ширине туннельного барьера $a=1-3\,$ нм и фермиевской скорости $v_F=10^8$ см/с составляет $t=a/v_F=10^{-15}$ – 10^{-16} с, следует, что в ближней инфракрасной области спектра ($\lambda = 1-10$ мкм), $\omega au \ll 1$. Кроме того, очевидно, что в ближней инфракрасной области спектра характерное время туннелирования много меньше периода электромагнитной волны. Так как $\omega au \ll 1$ и вероятность туннелирования электронов на частоте $E_F + \hbar \omega$ зависит от фактора $\left[e^{\omega au}-1\right]^2$ и мощности падающего излучения, то в ИК диапазоне спектра при плотности мощности излучения в пятне засветки заведомо меньшей 1 $B\tau/cm^2$, туннельное сопротивление ρ не зависит от частоты. Феноменологически рассматривая туннельный зазор как параллельно включенные электрическое сопротивление и конденсатор, можно найти, как это сделано в [5], сначала оптическую проводимость нанокомпозита, а затем определить магниторефрактивный эффект (в [5] это сделано для p-компонеты линейно поляризованного света) через МС и оптические параметры. При нормальном падении света получаем выражения:

в случае отражения излучения

$$\xi = \frac{\Delta R}{R} = -(1 - R) \frac{\Delta \rho}{\rho} k^2 \left[\frac{3n^2 - k^2 - 1}{(n^2 + k^2)[(1 - n)^2 + k^2]} \right];$$
(2)

и в случае прохождения излучения

$$\tau = \frac{\Delta T}{T} = \frac{1}{2} \frac{\Delta \rho}{\rho} T k^2 \frac{2n^2 + n}{n^2 + k^2}.$$
 (3)

Видно, что MPЭ в нанокомпозитах с туннельным MC сложным образом связан с показателями преломления $n(\nu)$ и поглощения $k(\nu)$ среды. Эта связь указывает на возможность существования MPЭ как отрицательного, так и положительного знака, что позволяет объяснить экспериментальные данные по MPЭ, представляемые ниже.

В настоящей работе предпринята попытка комплексного изучения оптических свойств и МРЭ в отраженном излучении в ряде нанокомпозитов ферромагнитный металл (Co, Fe, CoFe, аморфный сплав

СоFeZr) в диэлектрических матрицах окислов алюминия, кремния и титана. В отличие от ранних работ [5, 21] особое внимание мы уделили учету эффектов интерференции и затухания света как в немагнитных слоях, так и в самой ферромагнитной пленке. Именно при учете оптических параметров материала подложки достигаются наилучшие количественные соответствия эксперимента и теории.

Принципиально важным для выяснения природы магниторефрактивного эффекта в нанокомпозитах является экспериментальное подтверждение того, что МРЭ в этих системах связан с туннельным магнитосопротивлением, а не является следствием, как уже говорилось, каких-либо других причин, например четных и нечетных магнитооптических эффектов Керра или влияния магнитного поля на оптические свойства диэлектрической матрицы. Одним из прямых доказательств может служить установление корреляции между полевыми зависимостями МРЭ и МС, измеряемыми на одних и тех же образцах и в одном и том же диапазоне магнитных полей. Для этой цели были проведены исследования полевой зависимости МРЭ в ряде нанокомпозитов.

Причины, по которым обращаются к исследованиям поляризационных и угловых зависимостей новых эффектов, в частности MPЭ, заключаются в том, что по характеру частотных зависимостей спектров $\xi(\nu)$ для p- и s-волн, а также зависимости спектров $\xi_{p,s}(\nu)$ от угла падения излучения на ферромагнитное зеркало отсеиваются те или иные эффекты. Наконец, основная причина измерений $\xi_{p,s}(\nu,\varphi)$ состоит в получении информации, необходимой для построения моделей MPЭ и проверки их соответствия экспериментам. В данной работе мы проводили поляризационные и угловые исследования MPЭ и оптического отражения в ряде гранулированных нанокомпозитов.

Особое внимание в работе обращено на еще не выясненные или дискуссионные вопросы. В частности, на связь между изменениями оптических и магнитооптических свойств и туннельным МС металлодиэлектрических гранулированных пленок в широком диапазоне концентрации компонентов, включающем порог перколяции, а также на роль диэлектрической матрицы в формировании МРЭ.

1. Образцы

Исследуемые образцы нанокомпозитов можно распределить в соответствии со способами синтезирования. Пленки гранулированных нанокомпозитов $\mathrm{Co}_x(\mathrm{Al}_2\mathrm{O}_3)_{100-x}$, $\mathrm{Co}_x(\mathrm{SiO}_2)_{100-x}$, $\mathrm{Co}_{50.2}\mathrm{Ti}_{9.1}\mathrm{O}_{40.7}$ были изготовлены методом радиочастотного магнетронного распыления [13]. Все образцы содержат гранулы ферромагнитного металла или сплава, размер которых 2-5 нм, и которые хаотично распределены в матрицах оксидов алюминия, кремния и титана. Составы образцов, значения их толщин, величины МС в поле H=10 к3; максимальные значения

Составы	Толщина	MC, %	МРЭ		ЭЭК, $\delta \cdot 10^3$,
образцов	пленок, мкм	$\delta H = \pm 10$ кЭ	$\xi(\nu)$, %	ν , cm ⁻¹	0.97 эВ
Co ₄₃ Al ₂₂ O _{35*}	2	8.5	0.8	1100	
Co ₄₇ Al _{19.3} O _{33.7}	2.1	6			-1.26
Co _{50.3} Al _{20.4} O _{29.3}	2.62	9.2	-1.0	1200	-6.2
Co _{51.5} Al _{19.5} O ₂₉	1.91	9.2	-0.9	1100	-5.58
Co _{52.4} Al _{18.6} O ₂₉	2.02	7.8			-6.6
Co _{55.2} Al ₁₉ O _{25.8}	2.62	4.8	-0.6	1000	-7.1
Co _{52.3} Si _{12.2} O _{35.5}	1.67	4.1	+0.7	1300	-10.4
Co _{50.2} Ti _{9.1} O _{40.7}	2.02	5.8	-0.7	1030	-3.65

Таблица 1

величины МРЭ в поле 1.6 кЭ для $\varphi=45^\circ$, а также значения ЭЭК [22] тех же образцов при $\varphi=70^\circ$ в поле 2.25 кЭ и для энергии световых квантов 0.97 эВ приводятся в табл. 1 и 2. Детальное описание процедуры приготовления образцов, методы и результаты измерений их химического состава, структуры, электрических и магнитных параметров даны в [13, 23].

Таблица 2

Составы образцов	МС, % (10 кЭ)	ЭЭК, δ·10 ³ , 1.7 эВ
Co ₄₅ Fe ₄₅ Zr ₁₀		+6
$(\text{Co}_{45}\text{Fe}_{45}\text{Zr}_{10})_{34}(\text{SiO}_{1.7})_{66}$	2.8	-6
$(Co_{45}Fe_{45}Zr_{10})_{40}(SiO_{1.7})_{60}$	3.3	-10
$(Co_{45}Fe_{45}Zr_{10})_{47}(SiO_{1.7})_{53}$	2.3	-15.8
$(\text{Co}_{45}\text{Fe}_{45}\text{Zr}_{10})_{57}(\text{SiO}_{1.7})_{43}$	0.15	-12.5

Пленки аморфного ферромагнитного сплава Co_{45} Fe_{45} Zr_{10} в аморфной матрице двуокиси кремния α - SiO_2 были получены методом ионно-лучевого распыления составных мишеней [24]. При одновременном распылении металлического сплава и диэлектрика из составной мишени с переменным расстоянием между пластинами кварца в едином технологическом цикле формировалась гранулированная структура с широким непрерывным набором концентраций металлической фазы (размер гранул от 2 до 7 нм в зависимости от соотношения фаз).

Пленки системы $Fe-SiO_n$, были изготовлены методом двойного ионно-лучевого распыления на кремниевые подложки Fe и SiO_2 из составной мишени, позволяющей менять соотношение ферромагнетика и диэлектрика. Характерный размер гранул ~ 4 нм, толщина пленок 0.2-0.8 мкм [25].

2. Методы исследования и детали экспериментов

В интервале частот 500-7000 см⁻¹ дисперсия оптического отражения и магниторефрактивного эффекта в зависимости от частоты, поляризации, угла падения света и магнитного поля измерялась на

установке, описанной в [5], в которую мы внесли ряд конструктивных изменений, касающихся в основном МО приставки Фурье-спектрометра FTIR PU9800.

В МО приставку (рис. 1) введены съемные зеркала, что позволило проводить измерения МРЭ не только при падении излучения на образец под фиксированным углом $\varphi=50^\circ$, но и при меньших углах. В измерениях МРЭ при угле падении света, близком к нормальному ($\varphi \sim 8^{\circ}$), например, исключается вклад экваториального эффекта Керра (ЭЭК), который при нормальном падении света зануляется. Постоянный магнит был заменен электромагнитом $(H_{\rm max} \approx 1700 \ \Theta)$, что позволило создавать два устойчивых магнитных состояния образца: намагниченное до $\pm M(H)$ и полностью размагниченное $M_r=0$ при H=0, что необходимо для наблюдения четных эффектов. Введение сеточного поляризатора KRS-5 позволило проводить измерения либо на p-, либо на s-компонентах линейно поляризованного света. МО приставка помещалась в магнитный экранирующий кожух, чтобы исключить или уменьшить как влияние внешних магнитных полей и фоновых засветок, так и влияние магнитного поля на электронную схему и приемник излучения спектрометра. И, наконец, мы разработали методику измерения разности интенсивностей излучения, отраженного образцом

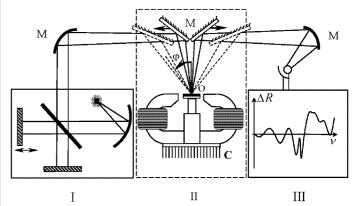


Рис. 1. Блок-схема измерительной установки для измерения магниторефрактивного эффекта: I — фурье—спектрометр, II — магнитооптический модуль: O — образец, M — зеркала, C — электромагнит на теплоотводящей пластине; III — регистрирующая часть

^{*} ar.%.

в размагниченном I(0) и намагниченном I(H) состояниях, а не отношение этих интенсивностей, как было раньше [5]. Эта операция позволила уменьшить «вклад» шумов, что оказывается особенно важным при малых значениях измеряемых эффектов. Деление полученной разности ΔI на интенсивность света, измеренную при H=0, определяет величину MPЭ в соответствии с формулой

$$\xi(\nu, H) = \frac{I(\nu, H = 0) - I(\nu, H)}{I(\nu, H = 0)} =$$

$$= \frac{R(\nu, H = 0) - R(\nu, H)}{R(\nu, H = 0)},$$
(4)

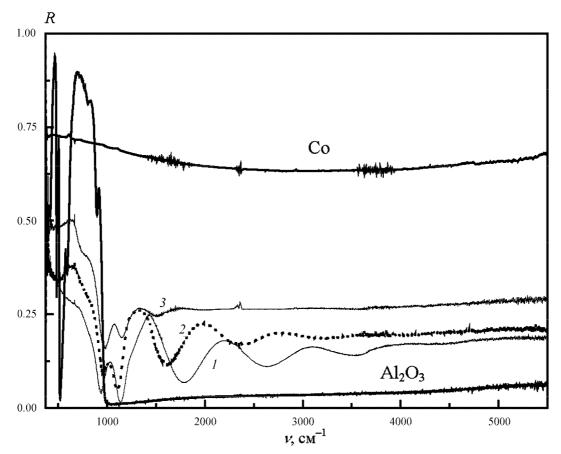
в которой интенсивности света заменены пропорциональными им энергетическими коэффициентами отражения $R(\nu, H=0)$ и $R(\nu, H)$.

В результате проведенных изменений и усовершенствований стало возможно проводить измерения оптического отражения и MPЭ не только при наклонном падении света, но и при нормальном падении в полностью размагниченных образцах, а не в состоянии остаточного намагничивания, как было раньше. В результате применения операций накопления (по 1000 сканам) взаимно обратимых циклов и сглаживания уровень шумов был понижен до 10^{-4} в области частот 500–1500 см⁻¹. Все измерения оптического отражения и MPЭ проведены со спектральным разрешением 4 см⁻¹ при комнатной температуре.

В используемой нами геометрии наблюдения МО эффектов на p-волне линейно-поляризованного света ($\mathbf{E} \perp \mathbf{M}$) одновременно могут проявляться три интенсивностных эффекта: линейный по намагниченности \mathbf{M} ЭЭК и два квадратичных по \mathbf{M} — ориентационный (ОМЭ) и МРЭ. Применяемые для исследования магнитооптических эффектов Керра чувствительные динамические МО установки на 2-3 порядка выше статических [2], но они принципиально не могут быть использованы в ряде случаев. В частотности при перемагничивании образца невозможно обнаружить четные МО эффекты. Такие эффекты можно выделить при однополярном намагничивании ферромагнетика [7, 10].

Нами разработана компьютерная программа для расчета комплексных показателей преломления исследуемого слоя, входящего в многослойную систему, в предположении, что оптические характеристики других слоев известны либо из литературных источников, либо могут быть введены в программу в качестве известных данных из предварительных расчетов более простых систем. Так, например, для расчета оптических констант пленки в четырехслойной системе воздух-пленка-подложка-воздух, оптические параметры подложки, вводимые в модель, предварительно рассчитываются из экспериментальных данных, полученных для трехслойной системы воздух-подложка-воздух. Созданная программа

позволяет варьировать как толщину слоев, так и угол падения света, и поляризацию.


Нахождение пар оптических констант неизвестного слоя представляется следующим образом. На каждой частоте в координатах показателей преломления и поглощения строятся изолинии (номограммы) экспериментально измеренных коэффициентов пропускания или отражения, их пересечение выявляет пару n и k, удовлетворяющих значениям $R(\nu)$ и $T(\nu)$ на рассматриваемой частоте излучения ν и соответственно являющихся решением. Такая операция осуществляется для каждого значения u в измеряемом интервале частот, шаг, с которым меняется частота, задается спектральным разрешением спектрометра при измерении $R(\nu)$ и $T(\nu)$. Проверка работоспособности компьютерной программы проводилась на трехслойной системе «плоская пластина кремния в воздушной среде», а также на жидкостях (вода, спирт).

3. Результаты эксперимента и их обсуждение

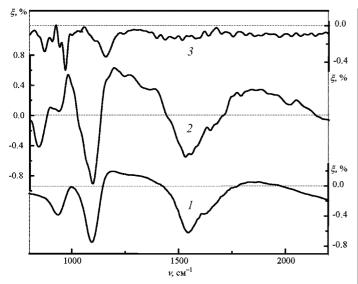
а) Дисперсия оптических и магнитооптических спектров

На рис. 2 приведены спектры частотной зависимости коэффициента отражения $R(\nu)$ нанокомпозитов $Co_{47}Al_{19.3}O_{33.7}$, $Co_{51.5}Al_{19.5}O_{29}$, $Co_{55.2}Al_{19}O_{25.8}$, а также сапфира $\mathrm{Al}_2\mathrm{O}_3$ и поликристаллического кобальта, измеренные при угле падения света 45° на p-компоненте линейно поляризованного света. В диапазоне волновых чисел 3500-5500 см $^{-1}$ для образца ${
m Co}_{47}{
m Al}_{19.3}{
m O}_{33.7},$ в диапазоне 3000- $5500\,$ см $^{-1}\,$ для образца ${
m Co}_{51.5}{
m Al}_{19.5}{
m O}_{29}\,$ и в диапазоне 2000– $5500\,\,\mathrm{cm^{-1}}\,$ для образца $\mathrm{Co_{55.2}\,Al_{19}O_{25.8}}$ отражательная способность практически не зависит от частоты. При меньших энергиях характер спектров $R(\nu)$ этих композитов усложняется. Известно [26], что вблизи порога перколяции нанокомпозиты становятся относительно прозрачными, поэтому даже для сравнительно толстых пленок нельзя полностью пренебрегать интерференцией света, отраженного на границах пленка-воздух и пленка-подложка. По этой причине для исследуемых нанокомпозитов в области больших длин волн в спектрах коэффициента отражения $R(\nu)$ наблюдаются осцилляции, при этом наибольшие изменения $R(\nu)$ приходятся на область $1000-3500~{
m cm}^{-1}$ для образца $\mathrm{Co}_{47}\,\mathrm{Al}_{19.3}\,\mathrm{O}_{33.7},\,1000{-}3000\,\,\mathrm{cm}^{-1}\,$ для образца $\mathrm{Co}_{51.5}\,\mathrm{Al}_{19.5}\,\mathrm{O}_{29}$ и $1000{-}1800\,\,\mathrm{cm}^{-1}\,$ для образца $\mathrm{Co}_{55.2}\,\mathrm{Al}_{19}\,\mathrm{O}_{25.8}$. Ниже $1000\,\,\mathrm{cm}^{-1}\,$ осцилляции исчезают, что связано с резким возрастанием поглощения в матрице Al₂O₃ [26]. В спектре частотной зависимости коэффициента отражения поликристаллического кобальта не обнаружено каких-либо особенностей и величина $R(
u)_{
m Co}$ плавно изменяется в пределах 65–75%.

Сопоставление спектров отражения линейно поляризованного излучения всех нанокомпозитов, со-

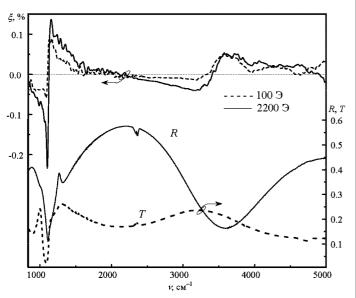
Puc.~2.~ Частотная зависимость коэффициента отражения $R(\nu)$ нанокомпозита Co_{47} Al $_{19.3}$ O $_{33.7}$ (1), $Co_{51.5}$ Al $_{19.5}$ O $_{29}$ (2), $Co_{55.2}$ Al $_{19}$ O $_{25.8}$ (3), Al $_2$ O $_3$ и поликристаллического кобальта для p-компоненты линейно поляризованного света; $\varphi=45^\circ$

держащих гранулированный ферромагнетик Со, диспергированный в матрице оксида алюминия с соответствующим спектром кристаллического Al_2O_3 , приводит к заключению, что наиболее ярко выраженный минимум в спектрах $R(\nu)$ нанокомпозитов в области частот 950-1100 см $^{-1}$ связан с возбуждением оптической продольной фононной моды в Al_2O_3 [15, 27, 28]. В нанокомпозитах, полученных методом тандемного радиочастотного магнетронного распыления [12, 13], диэлектрическая матрица оксида алюминия является аморфной с более тесным расположением атомов в ближайшем окружении, чем в кристаллическом аналоге. Поэтому можно считать, что экспериментально установленный факт уширения обсуждаемого минимума обусловлен аморфной природой матрицы нанокомпозита и нанокристалличностью (а возможно, и аморфностью) гранул металла.

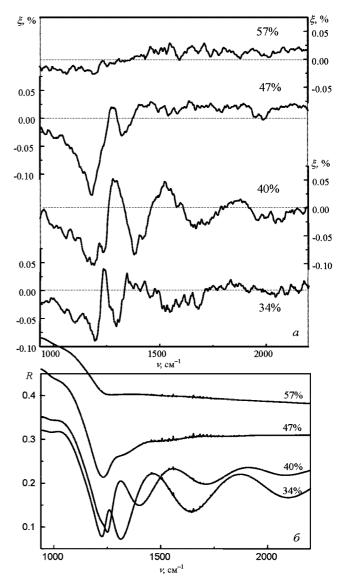

Утверждение об интерференционном происхождении осцилляций в спектрах $R(\nu)$ подтверждается следующими соображениями. Разность частот $\Delta \nu$ между двумя соседними экстремальными значениями коэффициента отражения $R(\nu)$ определяется формулой [29]

$$\Delta\nu = \frac{1}{2d\sqrt{n^2 - \sin^2\varphi}},\tag{5}$$

где φ — угол падения, n — показатель преломления пленки, d — толщина пленки.


Найденная из спектров частотной зависимости коэффициента отражения $R(\nu)$ (рис. 2), величина интервала $\Delta \nu$ составляет ~ 700 см $^{-1}$ для образца ${\rm Co}_{51.5}\,{\rm Al}_{19.5}\,{\rm O}_{29}$ в диапазоне частот 1300-3000 см $^{-1}$. Согласно [30] типичный показатель преломления для нанокомпозита из области перколяции $n\sim 3.5$. Полученная в соответствии с (5) оценка толщины образца, например, для нанокомпозита ${\rm Co}_{51.5}\,{\rm Al}_{19.5}\,{\rm O}_{29}$ составляет 2.1 мкм, что хорошо согласуется с измеренным значением толщины этого образца, которое равно 1.91 мкм (см. табл. 1).

Ha 3 представлены рис. спектры тотной зависимости МРЭ $\xi(\nu)$ нанокомпо-Co₄₃ Al₂₂ O₃₅ (1), $Co_{51.5}Al_{19.5}O_{29}$ $\mathsf{Co}_{55.2}\,\mathsf{Al}_{19}\,\mathsf{O}_{25.8}$ (3) для p-компоненты линейно поляризованного света, полученные в магнитном поле 1.6 кЭ при угле падения 45°. Наибольшие значения МРЭ достигаются в тех областях спектра, где отражение минимально, так, например, для образца ${
m Co}_{51.5}\,{
m Al}_{19.5}\,{
m O}_{29}$ при $u\sim 1100\,$ см $^{-1}\,$ МРЭ достигает максимальной величины 0.9%. В области частот больших 1000 см^{-1} , так же как и коэффициент отражения, МРЭ носит осцилляционный характер с «периодами», уменьшающимися с ростом частоты.


Puc.~3. Дисперсия магниторефрактивного эффекта нанокомпозитов Co $_{43}$ Al $_{22}$ O $_{35}$ (I), Co $_{51.5}$ Al $_{19.5}$ O $_{29}$ (2), Co $_{55.2}$ Al $_{19}$ O $_{25.8}$ (3) для p-компоненты линейно поляризованного света; $\varphi=45^\circ$

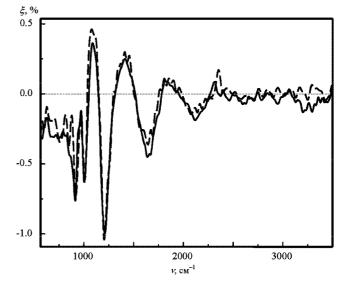
Более тонкому образцу $Co_{51.5}\,Al_{19.5}\,O_{29}$ соответствует больший период осцилляций $\Delta\nu\sim700\,$ см $^{-1}$ в диапазоне частот $1300-3000\,$ см $^{-1}$ как в $\xi(\nu)$, так и в $R(\nu)$. По характеру дисперсии спектров MP9 и коэффициента отражения, а также по величине периодов осцилляций, полученных в теоретических оценках с учетом реальных толщин и комплексных показателей преломления данных нанокомпозитов, можно утверждать, что осцилляции $\xi(\nu)$, так же как и $R(\nu)$, имеют интерференционное происхождение. Об этом свидетельствуют и данные исследований дисперсии спектров оптического отражения MP9 образцов с наночастицами ферромагнитного Co, внедренного в различные диэлектрические матрицы.

Puc. 4. Дисперсия коэффициента отражения $R(\nu)$ на p-компоненте линейно поляризованного света ($\varphi=45^\circ$), коэффициента пропускания $T(\nu)$ ($\varphi=0^\circ$) и магниторефрактивного эффекта $\xi(\nu)$ ($\varphi=8^\circ$) для двух значений магнитного поля H нанокомпозита (Fe) $_{0.55}$ (SiO $_2$) $_{0.45}$

Спектры частотной зависимости магниторефрактивного эффекта и коэффициента отражения некоторых нанокомпозитов гранулированный ферромагнитный металл в матрице окиси кремния приводятся на рис. 4, 5. В общих чертах характер этих спектров аналогичен соответствующим спектрам нанокомпозитов кобальта в матрице оксида алюминия. В спектрах отражения, пропускания и МРЭ на р-компоненте (рис. 4) для нанокомпозита (Fe) $_{0.55}$ (SiO $_2$) $_{0.45}$, напыленного на подложку кремния, в области частот 500-1300 см $^{-1}$ наблюдается ряд полос поглощения матрицы SiO_2 — это оптические фононные моды, которые связаны с поперечными $\nu \sim 800$ и $1070~{
m cm}^{-1}$ и продольными $u \sim 1200~{
m H}~1240~{
m cm}^{-1}$ фононными модами [31, 32]. В области волновых чисел $u > 1300 \, {
m cm}^{-1}$ видны характерные биения, обусловленные интерференцией излучения в пленке нанокомпозита. Оценка толщины пленки, полученная на основании формулы (5) дает $d \sim 0.58$ мкм,

Puc.~5.~ Частотная зависимость (a) магниторефрактивного эффекта и (δ) коэффициента отражения нанокомпозитов $(\mathrm{Co}_{45}\,\mathrm{Fe}_{45}\,\mathrm{Zr}_{10})_x(\mathrm{SiO}_{1.7})_{100-x};~x=57,~47,~40,~34;$ магнитное поле $1700~\Im;~\varphi=8^\circ$

что находится в согласии с экспериментальными данными для этой пленки: $d_{\rm exp}=0.5\,$ мкм [25]. Следует заметить, что в данном нанокомпозите величина MPЭ в максимуме составляет $0.2\,$ % в поле $H=2.2\,$ кЭ. Не велико и магнитосопротивление образца в этом же магнитном поле ($\Delta\rho/\rho$ не превышает $1.2\,$ %). Отметим еще одно обстоятельство, связанное с влиянием магнитного поля на MPЭ. Как видно из рис. 4, значение MPЭ нелинейно (быстрее, чем $\xi\sim H^2$) увеличивается с ростом H. Магниторефрактивный эффект в относительно небольшом поле $100\,$ Э достигает 0.1%, что соответствует половине максимального значения $\xi(\nu)_{\rm max}$, наблюдаемого в поле $2200\,$ Э.


На рис. 5 приведены результаты измерений дисперсии магниторефрактивного эффекта и оптического отражения для ряда нанокомпозитов $(\text{Co}_{45}\,\text{Fe}_{45}\,\text{Zr}_{10})_x\,(\text{SiO}_{1.7})_{100-x}\,$ (аморфный ферромагнетик — аморфная матрица). Спектры соответствуют p-компоненте линейно поляризованного света, в магнитном поле H=1700 Э, при угле падения излучения $\varphi=8^\circ$.

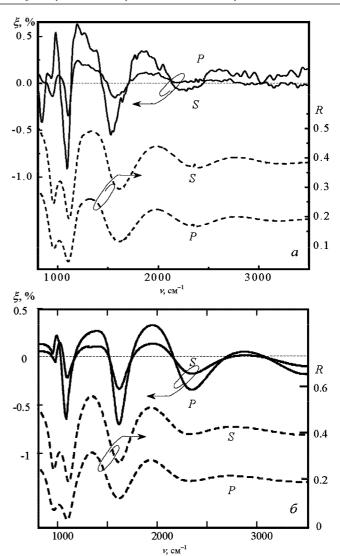
Измерения показали, что для образцов всех концентраций в интервале частот 500-7000 см $^{-1}$ коэффициент отражения $R(\nu)$ в 2-3 раза ниже, чем для чистых металлов, входящих в состав гранул, и практически не зависит от частоты в диапазоне 2500-7000 см $^{-1}$. В диапазоне 2500-1500 см $^{-1}$ отмечается незначительное уменьшение $R(\nu)$ для образцов с концентрациями менее 47 ат.%, и затем в интервале частот 1400-1100 см $^{-1}$ наблюдается резкое уменьшение R(
u) с последующим $(\nu < 1100~{\rm cm}^{-1})$ возрастанием коэффициента отражения, что связано с поглощением в матрице окиси кремния. Минимальные значения $R(\nu)$ приходятся на образцы из диапазона концентраций 34-47 ат.%, находящиеся вблизи порога перколяции, определяемого по данным концентрационных зависимостей удельного сопротивления и магнитосопротивления [24], а также по данным ЭЭК [33] и соответствующего $x_{\rm perc} \approx 43$ ат.%. Осцилляционное поведение $R(\nu)$ для образцов указанного диапазона концентраций в интервале частот 1100-1400 см $^{-1}$ связано с интерференцией света, отраженного на границах пленка-воздух и пленка-подложка. При этом наибольшие изменения $R(\nu)$ приходятся на узкий интервал частот $1250 \pm 200 \,$ см $^{-1}$, в котором коэффициент отражения изменяется более чем в три раза.

В образцах с большим содержанием металлической фазы (x=57 ат.%) МС мало ($\Delta \rho/\rho \approx 0.2\%$); МРЭ также мал и не превосходит 0.03%. Это согласуется с теорией [5], где показано, что малые значения МС коррелируют с незначительными величинами МРЭ, и, наоборот, большим значениям МС, как это имеет место в образцах с x<47 ат.%, соответствуют большие магниторефрактивные эффекты. Кроме того, в соответствии с выражениями (1) и (2)

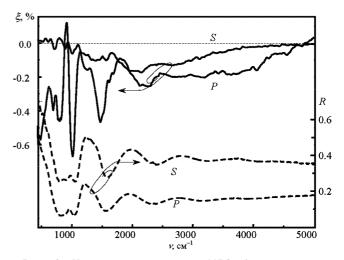
в образцах с меньшими значениями коэффициентов отражения также должны наблюдаться большие MPЭ. Об этом свидетельствует эксперимент (рис. 5), из которого следует, что максимальное значение MPЭ при $\nu \approx 1200$ см $^{-1}$ совпадает с минимальными коэффициентами отражения при этом же значении волнового числа.

Несмотря на наблюдаемую корреляцию между магнитосопротивлением и магниторефрактивным эффектом, небольшие значения МРЭ для системы, состоящей из аморфного ферромагнитного сплава (CoFeZr) в диэлектрической матрице SiO_2 , требуют дополнительных доказательств того, что наблюдаемый эффект действительно является новым и не связан с традиционными МО эффектами. В работе [5, рис. 4] мы показали, что дисперсия МРЭ и на p-волне линейно поляризованного света и естественного света не зависят от поляризации излучения, продемонстрировав тем самым, что этот эффект не связан с нечетными МО эффектами, т.е. МРЭ является самостоятельным эффектом. Дополнительным подтверждением этого факта является изучение дисперсии МРЭ в поляризованном излучении при различных ориентациях внешнего магнитного поля (и вектора намагниченности) по отношению к плоскости поляризованного света: первая ситуация вектор Н || М и электрический вектор световой волны $\mathbf{E} \perp \mathbf{M}$ (геометрия экваториального намагничивания — геометрия 99K) и вторая — $\mathbf{H} \parallel \mathbf{M}$ и $\mathbf{E} \parallel \mathbf{M}$ (геометрия наблюдения меридионального эффекта Керра). На рис. 6 приведены результаты измерений дисперсии МРЭ для нанокомпозита $Co_{50.3}Al_{20.4}O_{29.3}$ с большим магнитосопротивлением $\Delta
ho/
ho = 9.2\%$. Видно, что спектры MPЭ в экваториальной и меридиональной геометриях совпадают, в то время как в геометрии классического меридионального эффекта Керра не должно было бы

Puc.~6.~ Дисперсия MPЭ нанокомпозита Co $_{50.3}$ Al $_{20.4}$ O $_{29.3}$ на p-компоненте линейно поляризованного света при экваториальном (штрих-пунктир; $\mathbf{H} \parallel \mathbf{M},~\mathbf{E} \perp \mathbf{M}$) и меридиональном (сплошная линия; $\mathbf{H} \parallel \mathbf{M},~\mathbf{E} \parallel \mathbf{M}$) намагничивании образца; $\varphi = 45^\circ$


наблюдаться каких-либо изменений интенсивности отраженного излучения — анализатор в эксперименте отсутствует. Аналогичные результаты получены и на других образцах. Учет влияния четного ориентационного МО эффекта, как недавно показано в [21], также не приводит к ощутимым вкладам в МРЭ, особенно при углах падения света, далеких от угла Брюстера, как в нашем случае. Таким образом, заключаем, что наблюдаемый эффект — магниторефрактивный.

б) Поляризационная и угловая зависимости магниторефрактивного эффекта и оптического отражения


На рис. 7, a представлены спектры частотной зависимости MPЭ и оптического отражения нанокомпозита $\mathrm{Co}_{51.5}\,\mathrm{Al}_{19.5}\,\mathrm{O}_{29}\,$ для p- и s-компонент линейно поляризованного света, в магнитном поле H=1600 Э, для угла падения света $\varphi=45^\circ$. Наибольшие значения эффектов наблюдаются на частоте $\nu\sim1100\,$ см $^{-1}$ и составляют $\xi_p=-0.9\%$, $\xi_s=-0.35\%$, а разница MPЭ $|\xi_p-\xi_s|\sim0.55\%$, тогда как значения коэффициентов отражения равны $R_p\sim0.05,\ R_s\sim0.2$, т.е. меньшему коэффициенту отражения соответствует больший магниторефрактивный эффект.

Резкие различия эффектов (особенно спектров MPЭ) на p- и s-компонентах линейно поляризованного света наблюдались для образцов, содержащих гранулы кобальта в матрице оксида титана. В нанокомпозите $Co_{50.2}$ $Ti_{9.1}$ $O_{40.7}$ (рис. 8) величина $|\xi_p - \xi_s|$ составляет 0.6% на частоте $1000~{\rm cm}^{-1}$. Такие же большие различия эффектов на p- и s-компонентах наблюдаются в нанокомпозитах кобальта, содержащих гранулы в матрице окиси кремния; например в образце $\mathrm{Co}_{52.3}\,\mathrm{Si}_{12.2}\,\mathrm{O}_{35.5}\,\,\,|\xi_p-\xi_s|\,\sim\,0.6\,\%$ для $\varphi = 45^{\circ}$ в области частот 1300-1600 см $^{-1}$. Характер спектров MPЭ этого образца на p- (рис. 9) и s-компонентах существенно отличается от спектров всех других исследованных нами образцов. А именно знак ξ_p -эффекта во всем спектральном диапазоне положительный, тогда как магнитосопротивление этого образца отрицательное ($\Delta \rho/\rho = -4.1\%$), как и в других нанокомпозитах. Кроме того, в этом образце, в отличие от других нанокомпозитов, обнаружены большие положительные величины МРЭ в области близкого ИК излучения $\xi_p \sim 0.3\%$ при $\nu\sim 4000~{\rm cm}^{-1}$ и $\xi_p\sim 0.35\%$ при $\nu\sim 5300~{\rm cm}^{-1}$, тогда как $\xi_s\sim -0.1\%$ практически во всем спектральном диапазоне.

Изучение зависимостей MPЭ от угла падения показало, что абсолютные значения ξ -эффекта на p-компоненте во всем ИК диапазоне несколько выше, чем на s-компоненте, и при переходе к большим углам падения света ξ_p практически не меняется, тогда как ξ_s уменьшается (на рис. 10 приведены спектры частотной зависимости MPЭ для p- и s-волн образца $Co_{50.3}$ $Al_{20.4}$ $O_{29.3}$ для $\varphi = 8$ и 45°).

Рис. 7. Дисперсия МРЭ (сплошная линия) и коэффициента отражения R (пунктир) нанокомпозита ${\rm Co}_{51.5}\,{\rm Al}_{19.5}\,{\rm O}_{29}$ для s- и p-поляризованного света; $H=1600\,$ Э; $\varphi=45^\circ$; (a) — эксперимент, (δ) — теоретический расчет

Puc.~8.~ Частотная зависимость MPЭ (сплошные линии) и коэффициента отражения (пунктир) нанокомпозита ${\rm Co}_{\,50.2}\,{
m Ti}_{\,9.1}\,{
m O}_{\,40.7}~$ для s- и p-поляризованного света; $\varphi=45^\circ$

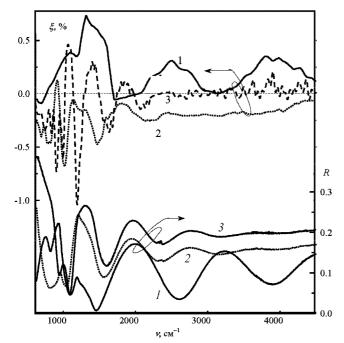
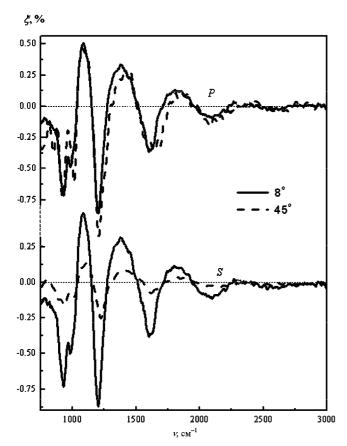
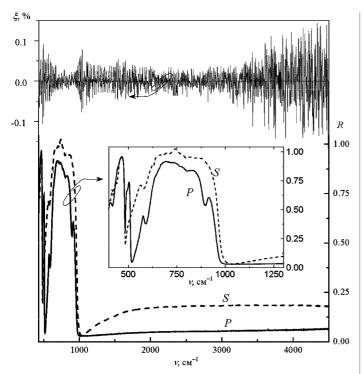



Рис.9.ДисперсияMPЭиRдляp-поляризованногосветананокомпозитовCo $_{52.3}$ Si $_{12.2}$ O $_{35.5}$ (I),Co $_{50.2}$ Ti $_{9.1}$ O $_{40.7}$ (2),Co $_{50.3}$ Al $_{20.4}$ O $_{29.3}$ (3); $\varphi = 45^{\circ}$

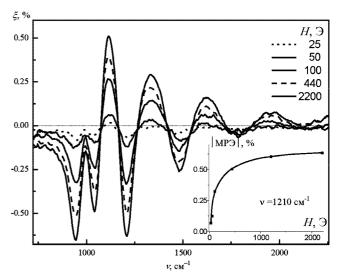

Pис. 10. Частотная зависимость MPЭ нанокомпозита Co $_{50.3}$ Al $_{20.4}$ O $_{29.3}$ для p- и s-компонент линейно поляризованного света при двух углах падения света $\varphi=8$ и 45° ; H=1600 Э

Расчеты, проведенные в рамках модели высокочастотного спин-зависимого туннелирования [21] спектров поляризационной и угловой зависимостей МРЭ этого ферромагнетика и ряда других нанокомпозитов металл-диэлектрик, подтверждают такое поведение $\xi_{s,p}(\varphi,\nu)$ и показывают, что в области малых углов падения света (как в нашем случае до 45°) МРЭ и на s-, и на p-волнах слабо зависит от φ . При увеличении угла падения ξ_p -эффект должен нарастать и достигать больших (порядка десяти процентов) значений в районе угла Брюстера.

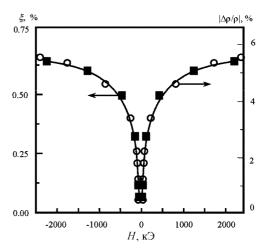
Представленные в этом разделе экспериментальные данные показывают, что, во-первых, спектры оптического отражения и МРЭ нанокомпозитов существенно различаются для p- и s-компоненты линейно поляризованного света. Во-вторых, характер дисперсии МРЭ в нанокомпозитах, содержащих ферромагнетик одинаковой концентрации в различных диэлектрических матрицах, существенно различен. Наиболее сильно это проявляется в области локализации оптических фононных мод диэлектрика.

Обнаружение в узком диапазоне длин волн в окрестности $\lambda=9$ мкм при угле падения $arphi=65^\circ$ p-поляризованного света значительного магнитоиндуцированного изменения оптических свойств Al_2O_3 [15], которое авторы называют также MPЭ, требует отдельного анализа. Следует заметить, что указанные условия наблюдения ($\lambda=9$ мкм, $\varphi=65^\circ$) соответствуют весьма малому отражению. Поэтому из-за больших флуктуаций более правомерным было бы измерять разность ΔR , а не параметр MPЭ. Мы выполнили измерения и ξ , и ΔR для монокристаллического Al₂O₃ во всем исследуемом спектральном диапазоне в полях до 1.6 кЭ и для углов падения света $8 \div 45^{\circ}$ и не нашли в пределах погрешности измерений изменений в спектральных зависимостях коэффициента отражения света $R(\nu)$ при намагничивании образца (рис. 11). Сигнал МРЭ из шумов практически не выделяется. Отсюда можно с уверенностью заключить, что в наших условиях эксперимента ($\varphi=45^{\circ}$, на p- и s-компонентах, $H=1.6~\mathrm{k}$ Э) диэлектрическая матрица $\mathrm{Al_2O_3}$ не дает вклада в измеряемый сигнал МРЭ. Весь комплекс данных показывает, что материал кристаллической диэлектрической матрицы (Al_2O_3 , SiO_2 , TlO_2) влияет на оптические параметры нанокомпозита и туннельное МС, косвенно изменяя и МРЭ. Также можно ожидать, что растворенные в матрице примеси или наличие локализованных состояний могут привести к усилению МС и соответственно к возрастанию МРЭ, однако таких эффектов нами выявлено не было.

Можно добавить, что в соответствии с нашими экспериментальными данными по оптическому отражению, и особенно по МРЭ, в нанокомпозитах семейства CoAlO положение и спектральная ширина особенностей существенно зависят от многих

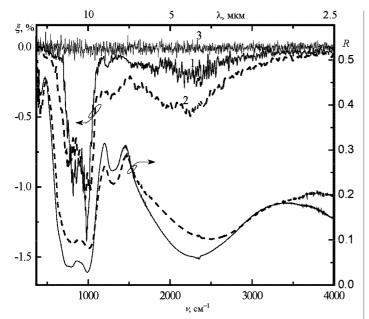


Puc. 11. Дисперсия коэффициента отражения $R(\nu)$ и MPЭ (шумы установки) ${\rm Al}_2\,{\rm O}_3$ для s- и p-компонент (сплошная линия) линейно поляризованного света; $\varphi=45^{\circ}$. На вставке — детальная спектрограмма коэффициентов отражения в области локализации продольных фононных мод


причин, например структуры диэлектрика, толщины пленки, технологических условий, от небольших изменений компонентного состава и т. д.

в) Влияние магнитного поля на магниторефрактивные эффекты в нанокомпозитах

Влияние магнитного поля на отражательную способность гранулированных диэлектрических пленок для одного из образцов семейства CoAlO показано на рис. 12. Изополевые спектры $\xi(\nu)$ для p-компоненты линейно поляризованного света получены в диапазоне частот 750-2200 см $^{-1}$ при угле падения, близком к нормальному. Максимальные значения эффекта, т. е. значения $\xi(\nu) \geqslant 0.6\%$ для образца, достигшего состояния технического магнитного насыщения, наблюдаются при H > 1300 Э. Зависимость $\xi(H)$, как видно из вставки к рисунку, носит нелинейный характер. Аналогичное поведение спектров $\xi(\nu, H)$ наблюдается на s-компоненте линейно поляризованного света и не только в нанокомпозитах на основе матрицы оксида алюминия, но и в других системах [14]. Рис. 13 демонстрирует хорошее совпадение кривых полевой зависимости МРЭ и ТМС для образца $Co_{46}Al_{22}O_{32}$. Видно, что оба эффекта являются четными функциями магнитного поля. Подобная корреляция в нанокомпозите $Co_{43}\,Al_{22}\,O_{35}$, но для угла падения света $\varphi = 50^\circ$ отмечалась в [11] и еще раньше для гранулированной пленки металл-металл Со-Ад, но в случае МРЭ на проходящем излучении [34].



Puc.~12.~ Частотная зависимость магниторефрактивного эффекта нанокомпозита ${
m Co}_{46}\,{
m Al}_{\,22}\,{
m O}_{32}\,$ для ряда значений магнитного поля H , ${
m Э};~\varphi=8^{\circ}$

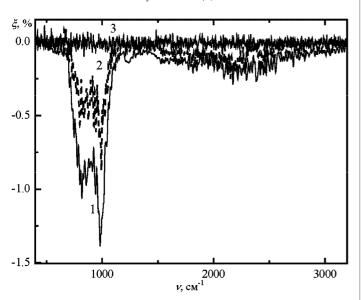
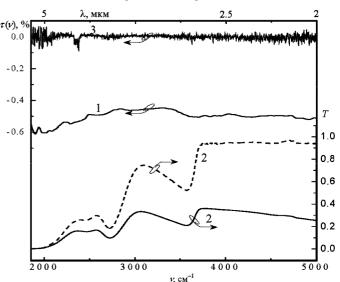


Рис. 13. Полевые зависимости магниторефрактивного эффекта ■ ($\varphi=10^\circ$; $\nu=1210$ см $^{-1}$) и магнитосопротивления \bigcirc [13] нанокомпозита Со $_{46}$ Al $_{22}$ O $_{32}$

Наиболее ярким и показательным примером влияния магнитного поля на оптические свойства низкоразмерного ферромагнетика являются магнитооптические исследования нанокомпозита с туннельным характером проводимости $(Co_{0.4}Fe_{0.6})_{48}(MgF)_{52}$, имеющим магнитосопротивление $\sim 13\,\%$ при комнатной температуре, в поле 10 кЭ [12]. В этом соединении в интервале частот $500-1200 \text{ см}^{-1}$, где коэффициент отражения имеет минимальные значения (< 5%), MPЭ оказывается аномально большим, достигая при нормальном падении $\sim 1.5\%$ (рис. 14), что на два порядка больше традиционных МО эффектов в инфракрасной области спектра. Такое значение эффекта, превышающее МРЭ во всех ранее исследовавшихся металлических и неметаллических системах, можно считать рекордным, и мы назвали его гигантским магнитооптическим эффектом [14]. Говоря о достоверности приведенных на этом рисунке данных по зависимости $\xi(\nu)$ для двух углов падения света и данных по зависимости $\xi(
u)$ для двух значений магнитного поля (рис. 15), демонст-

Puc. 14. Дисперсия MPЭ (1, 2) (H=1700 Э) и коэффициента отражения $R_{H=0}$ нанокомпозита ($Co_{0.4}$ Fe $_{0.6}$) $_{48}$ (Mg $_{52}$ F) для углов падения $\varphi=45^\circ$ (пунктирная линия), $\varphi=8^\circ$ (сплошная линия) и «шума» установки (3)



Puc. 15. Дисперсия MPЭ нанокомпозита (Co $_{0.4}$ Fe $_{0.6}$) $_{48}$ (Mg-F) $_{52}$ в поле H=1700 Э (1) (сплошная линия) и H=1500 Э (2) (пунктирная линия) и «шума» установки (3); $\varphi=8^\circ$

рирующих нелинейную зависимость MPЭ от поля, особо подчеркнем, что уровень шумов (кривая 3 на рис. 14, 15) не превышает 10^{-3} , а представляемые на рисунках значения эффекта получены усреднением данных из 1000 отдельных сканов. По нашим представлениям, наблюдаемое резонансное усиление эффекта связано с уменьшением коэффициента отражения, что на качественном уровне описывается соотношением (1) [22]. Однако природа резонансного характера спектра MPЭ в окрестности 10 мкм остается неясной.

Большие МРЭ мы наблюдали в проходящем свете ИК диапазона длин волн в тонкопленочных

образцах нанокомпозитов $(Co_{0.4} Fe_{0.6})_{48} (MgF)_{52}$, $Co_{52.3}Si_{12.2}O_{35.5}$ и $(Co_{45}Fe_{45}Zr_{10})_x(SiO_{1.7})_{100-x}$, синтезированных на прозрачных в области длин волн 2-5 мкм подложках. На рис. 16 приведены спектры частотной зависимости МРЭ в проходящем излучении (МПЭ) $\tau(\nu)$ и коэффициентов пропускания $T(\nu)$ нанокомпозита $({\rm Co}_{0.4}{\rm Fe}_{0.6})_{48}({\rm MgF})_{52}$ и подложки Corning Glass. На спектре частотной зависимости пропускания $T(\nu)$ этого нанокомпозита наблюдается ряд особенностей, связанных, по-видимому, с оптическими свойствами подложки, но в целом во всем спектральном диапазоне частот 2000-5000 см $^{-1}$ МПЭ достигает 0.6%. Наблюдаемые увеличения МПЭ на краях спектрального интервала связаны с возрастанием поглощения в нанокомпозите на краях спектра.

Puc. 16. Дисперсия МПЭ (1) (Co $_{0.4}$ Fe $_{0.6}$) $_{48}$ (MgF) $_{52}$, коэффициентов пропускания T (2) подложки (пунктирная линия) и образца (Co $_{0.4}$ Fe $_{0.6}$) $_{48}$ (MgF) $_{52}$ (сплошная); $\varphi=0^\circ$ и «шума» установки (3)

Представленные выше экспериментальные результаты, касающиеся влияния магнитного поля на оптические свойства нанокомпозитов, показали, что: 1) МРЭ связан с туннельным магнитосопротивлением; 2) МРЭ в нанокомпозитах не является следствием каких-либо других причин, как-то: четных и нечетных МО эффектов или влияния магнитного поля на оптические свойства диэлектрической матрицы; 3) полное соответствие экспериментальных данных по полевой зависимости $\xi(H)$ и $\Delta \rho/\rho \sim f(H)$ подтверждает правильность соотношений, описывающих изменения коэффициента отражения, пропускания и поглощения излучения нанокомпозитами при приложении магнитного поля.

Обнаруженный гигантский магниторефрактивный эффект открывает новые возможности как для изучения спин-зависящего высокочастотного туннелирования, так и для поиска новых композиций в системе сплавов с гранулами ферромагнетика СоFе (или другого ферромагнитного металла) в матрице MgF для практического использования таких нано-

композитов в магнитооптике инфракрасного диапазона длин волн.

д) Теоретическое описание частотной, угловой и поляризационной зависимостей магниторефрактивного эффекта

Весь комплекс экспериментальных данных, полученных в результате изучения частотной, поляризационной, угловой и полевой зависимостей магниторефрактивного эффекта и оптического отражения в нанокомпозитах, может быть объяснен в рамках развиваемой в [5, 19, 21] теории МРЭ для многослойных структур, состоящих из ферромагнитной пленки и граничащих с ней немагнитных слоев (в частности, подложки).

Рассмотрим четырехслойную систему, состоящую из пленки нанокомпозита (толщина ферромагнитной пленки d_2 и комплексный показатель преломления $\eta_2=n_2^0-ik_2^0$, индекс 0 указывает на размагниченное состояние ферромагнитной пленки), напыленной на подложку $(d_3,\ \eta_3=n_3-ik_3)$ и находящуюся в вакууме $(n_{1,4}=1,\ k_{1,4}=0)$. Известно, что коэффициенты отражения r и пропускания t для p-и s-поляризованных волн на границе раздела j-й и k-й сред многослойной системы с комплексными показателями преломления η_j и η_k записываются в виде [35]

$$r_{jk}^{p} = \frac{g_{j}\eta_{k}^{2} - g_{k}\eta_{j}^{2}}{g_{j}\eta_{k}^{2} + g_{k}\eta_{j}^{2}}, \quad r_{jk}^{s} = \frac{g_{j} - g_{k}}{g_{j} + g_{k}},$$

$$t_{jk}^{p} = \frac{2g_{j}\eta_{k}\eta_{j}}{g_{j}\eta_{k}^{2} + g_{k}\eta_{i}^{2}}, \quad t_{jk}^{s} = \frac{2g_{j}}{g_{j} + g_{k}},$$
(6)

где параметр g_i в формулах (6) определен выражением

$$g_{j(k)} = \sqrt{\eta_{j(k)}^2 - \eta_1^2 \sin^2 \varphi_0}.$$

Для коэффициентов отражения $R^{p(s)}$ и пропускания $T^{p(s)}$ четырехслойной системы имеют место следующие рекуррентные формулы:

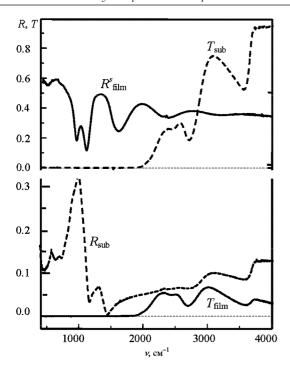
$$\begin{split} R^{p(s)} &= \left| r_{jklm}^{p(s)} \right|^2, \qquad T^{p(s)} &= \left| t_{jklm}^{p(s)} \right|^2, \\ r_{jklm}^{p(s)} &= \frac{r_{jk}^{p(s)} + F_k^2 r_{klm}^{p(s)}}{1 + F_k^2 r_{jk}^{p(s)} r_{klm}^{p(s)}}, \quad t_{jklm}^{p(s)} &= \frac{t_{jk}^{p(s)} t_{klm}^{p(s)} F_k}{1 + F_k^2 r_{jk}^{p(s)} r_{klm}^{p(s)}}, \\ r_{jkl}^{p(s)} &= \frac{r_{jk}^{p(s)} + F_k^2 r_{jk}^{p(s)} r_{kl}^{p(s)}}{1 + F_k^2 r_{jk}^{p(s)} r_{kl}^{p(s)}}, \quad t_{jkl}^{p(s)} &= \frac{t_{jk}^{p(s)} t_{kl}^{p(s)} F_k}{1 + F_k^2 r_{jk}^{p(s)} r_{kl}^{p(s)}}, \end{split}$$

$$F_k = \exp(-2\pi i \nu g_k d_k), \tag{7}$$

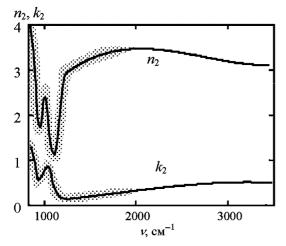
где j,k,l,m — номера сред; F_k — фазовый множитель, определяющий набег фазы волны в k-м слое, т.е. F_k — это параметр, ответственный за интерференцию и затухание излучения в k-м слое.

Как следует из теории МРЭ, величины показателя преломления n_2 и коэффициента экстинкции k_2

пленки нанокомпозита при намагничивании образца записываются в виде [5]


$$n_{2} = n_{2}^{0} \left(1 + \frac{\Delta \rho}{\rho} \frac{\left(k_{2}^{0}\right)^{2}}{\left(k_{2}^{0}\right)^{2} + \left(n_{2}^{0}\right)^{2}} \right),$$

$$k_{2} = k_{2}^{0} \left(1 + \frac{\Delta \rho}{\rho} \frac{\left(n_{2}^{0}\right)^{2}}{\left(k_{2}^{0}\right)^{2} + \left(n_{2}^{0}\right)^{2}} \right),$$
(8)


где $\Delta \rho/\rho$ — абсолютное значение MC, соответствующее магнитному полю H. Выражения (6) и (7) совместно с формулами для показателей преломления пленки (8) полностью определяют MPЭ и оптическое отражение нанокомпозита в зависимости от различных параметров среды и внешних параметров: оптических постоянных сред, толщины слоев, направления векторов намагниченности и величины магнитного поля, поляризации падающего излучения и его угла падения, от частоты излучения. Они полностью учитывают эффекты затухания и интерференции света в составляющих слоях многослойной гранулированной наноструктуры.

Для определения оптических параметров нанокомпозита $Co_{51.5}Al_{19.5}O_{29}$ мы провели измерения спектров пропускания $T(\nu)$ ($\varphi=0^{\circ}$), отражения на s-компоненте поляризованного света $R^s(
u)$ ($arphi=20^\circ$) ферромагнитного образца, а также спектров $T(\nu)$ и $R(\nu)$ стеклянной подложки (Corning glass) (рис. 17), на которой был синтезирован данный нанокомпозит. Путем решения обратной задачи определялись показатели преломления n_i , k_i образца и подложки. Подложка в области 3000-6000 см $^{-1}$ имеет небольшой коэффициент экстинкции $k_3\sim 10^{-4}-10^{-5}$ при показателе преломления n_3 , изменяющемся в пределах от 1.5 до 1.3. В области частот ниже $2000~{
m cm}^{-1}$ показатель поглощения подложки существенно возрастает, что не позволило точно определить оптические постоянные в этой области спектра. Центр полосы поглощения матрицы ${\rm Al}_2{\rm O}_3$ в нанокомпозите ${\rm Co}_{51.5}{\rm Al}_{19.5}{\rm O}_{29}$ приходится на $\nu\sim 1025$ см $^{-1}$. В чистом образце $\hat{\rm Al}_2{
m O}_3$, по данным [26, 27], эта полоса смещена в низкочастотную область до 950 см^{-1} . На рис. 18приведена дисперсия показателя преломления n_2 и коэффициента экстинкции k_2 рассматриваемого нанокомпозита. Штриховкой изображен разброс возможных значений показателей преломления, получаемых в расчетах при учете погрешностей экспериментально определяемых коэффициентов отражения и прохождения.

Определенные экспериментально оптические параметры и значения MC использовались для расчета $MP\mathfrak{I}$ по формулам (6)–(8). Результаты расчетов представлены на рис. 7, 6. Данные, получаемые в расчетах, хорошо коррелируют с экспериментальными (рис. 7, a) и по структуре, и по величине значений $\xi(\nu)$ и $R(\nu)$. Как в спектрах $R(\nu)$, так и $\xi(\nu)$ наблюдаются осцилляции этих эффектов с периодично-

Puc.~17.~ Частотная зависимость коэффициентов пропускания и отражения подложки — $T_{
m sub},~R_{
m sub}^s$ (пунктир) и образца ${
m Co}_{51.5}\,{
m Al}_{19.5}\,{
m O}_{29}-T_{
m film},~R_{
m film}^s$ (сплошная линия)

Puc. 18. Дисперсия показателя преломления n_2 и коэффициента экстинкции k_2 пленки нанокомпозита $\operatorname{Co}_{51.5}\operatorname{Al}_{19.5}\operatorname{O}_{29}$

стью $\sim 700\,$ см $^{-1}$, обусловленные интерференцией; в районе полосы поглощения наблюдается резкая смена знака эффекта. В целом экспериментальные особенности хорошо описываются теорией.

Заключение

Приведенные данные экспериментальных исследований нанокомпозитов гранулированный ферромагнитный метал-диэлектрик показывают, что в области перколяционного перехода для нанокомпозитов наблюдается не только большое магнитосопротивление, но и большие магнитоиндуцированные изменения коэффициентов отражения, прохождения и поглощения излучения ИК диапазона длин волн, которые можно отнести к новому магнитооптиче-

скому эффекту, получившего название магниторефрактивного эффекта. Магниторефрактивный эффект нанокомпозитов наиболее ярко выражен в тех областях спектра, где отражение минимально. В ряде нанокомпозитов МРЭ в таких областях частот выявляет резонансный характер, и тогда величина магниторефрактивного эффекта в области резонансов превосходит традиционные эффекты Керра в отраженном свете в десятки раз. Это указывает на иную, чем эффектов Керра (негиротропную) природу происхождения МРЭ.

Четкая корреляция между полевыми зависимостями магниторефрактивного эффекта и магнитосопротивления свидетельствует о том, что этот эффект связан с высокочастотным спин-зависимым туннелированием электронов проводимости. Модель МРЭ, базирующаяся на описании туннельного контакта между гранулами перколяционного кластера в виде параллельно соединенных емкости и туннельного сопротивления, при учете дисперсии оптических параметров ферромагнитной пленки нанокомпозита и подложки, а также процессов интерференции света позволяет на количественном уровне объяснить наблюдаемые закономерности и особенности экспериментов по частотной, угловой, поляризационной и полевой зависимостям МРЭ в гранулированных системах металл — диэлектрик Co-Al-O, Co-Ti-O, Co-Si-O, CoFeZr-SiO₂, CoFe-MgF, Fe-SiO₂.

Работа выполнена при поддержке РФФИ (грант 03-02-16127).

Авторы выражают глубокую благодарность профессорам S. Ohnuma, Ю. Е. Калинину, Б. А. Аронзону, любезно предоставившим образцы для исследования нового магнитооптического эффекта. Мы благодарим профессора А. Б. Грановского за активное сотрудничество и плодотворные дискуссии.

Литература

- Krebs J.J., Lubitz P., Chaiken A., Prinz G.A. // J. Appl. Phys. 1991. 69, N 8. P. 4795.
- 2. Ринкевич А.Б., Ромашев Л.Н., Устинов В.В. // ЖЭТФ. 2000. **117**, №5. С. 960.
- 3. *Jacquet J.C., Valet T. //* Proc. «Magnetic Ultrathin Films, Multilayers and Surfaces». 1995. **384**. P. 477.
- 4. *Uran S., Grimsditch M., Fullerton E.E., Bader S.D.* // Phys. Rev. 1998. **57**. P. 2705.
- 5. Грановский А.Б., Быков И.В., Ганьшина Е.А. и др. // ЖЭТФ. 2003. **123**. С. 1256.
- 6. Кринчик Г.С. Физика магнитных явлений. М., 1985.
- 7. Кринчик Г.С., Гущин В.С. // ЖЭТФ. 1969. **56**. С. 183.
- 8. Кринчик Г.С., Нурмухамедов Г.М. // ЖЭТФ. 1965. **47**. С. 76.
- 9. Кринчик Г.С., Артемьев В.А. // ЖЭТФ. 1967. 53. С. 1901.
- 10. *Кринчик Г.С., Гущин В.С.* // Письма в ЖЭТФ. 1969. **10**. С. 35.
- 11. Быков И.В., Ганьшина Е.А., Грановский А.Б., Гущин В.С. // ФТТ. 2000. **42**. С. 487.

- Ohnuma S., Hono K., Abe E. et al. // J. Appl. Phys. 1997.
 N 11. P. 5646.
- 13. Kobayashi N., Ohnuma S., Masumoto T., Fujimori H. // J. Appl. Phys. 2001. **90**. C. 4159.
- 14. Грановский А., Гущин В., Быков И. и др. // ФТТ. 2003. **45**. С. 867.
- 15. *Кравец В.Г., Погорелый А.Н., Кравец А.Ф.* и др. // ФТТ. 2004. **45**. С. 1456.
- 16. *Кубраков Н.Ф., Звездин А.К., Звездин К.А.* и др. // ЖЭТФ. 1998. **114**. С. 1101.
- 17. Genkin G.M. // Phys. Lett. A. 1998. 241. P. 293.
- Uran S., Grimsditch M., Fullerton E., Bader S.D. // Phys. Rev. B. 1998. 57. P. 2705.
- 19. Грановский А., Кузмичев М., Клерк Ж.П. // ЖЭТФ. 1999. 116. С. 1762.
- 20. Kravets V.G., Bosec D., Matthew J.A.D. et al. // Phys. Rev. B. 2002. **65**. P. 054415.
- 21. Грановский А.Б., Инуе М., Клерк Ж.П., Юрасов А.Н. // ФТТ. 2004. **46**. С. 484.
- 22. Bykov I.V., Gan'shina E.A., Granovsky A.B. et al. // Proc. Euro-Asian Symposium «Trends in Magnetism», Krasnoyarsk, 24–27 August 2004. P. 335
- 23. Kobayashi N., Ohnuma S., Masumoto T., Fujimori H. // J. Magn. Soc. Japan. 1999. 23. P. 76.

- 24. *Стогней О.В., Калинин Ю.Е., Ситников А.В.* и др. // Физика металлов и металловедение. 2001. **91**. P. 24.
- 25. Аронзон Б.А., Варфоломеев А.Е., Ликальтер А.А. и др. // ФТТ. 1999. **41**. С. 944.
- Niklasson G.A., Granqvist C.G. // J. Appl. Phys. 1984. 55.
 P. 3382.
- 27. Bruesch P., Kotz R., Neff H., Pietronero L. // Phys. Rev. B. 1984. **29**. P. 4691.
- Schubert M., Tiwald T.E., Herzinger C.M. // Phys. Rev. B. 2000. 61. P. 8187.
- 29. Борн М., Вольф Э. Основы оптики. М., 1973.
- 30. Gan'shina E., Kumaritova R., Bogoroditsky A. et al. // Magn. Soc. Japan. 1999. 23. P. 379.
- Bensch W., Bergholz W. // Semicond. Sci. Technol. 1990. 5.
 P. 421.
- Maruyama T., Ohtani S. // Appl. Phys. Lett. 1994. 65.
 P. 1346.
- 33. *Буравцова В.Е., Ганьшина Е.А., Гущин В.С.* и др. // Изв. РАН. Сер. физ. 2003. **67**. С. 918.
- Gester M., Schlapka A., Pickford R.A. et al. // J. Appl. Phys. 1999. 85. P. 5045.
- 35. Маевский В.М. // ФММ. 1985. 59. С. 215.

Поступила в редакцию 16.11.04