УДК 576.3, 577.3

МОДУЛЯЦИЯ ДИНАМИКИ МИТОХОНДРИАЛЬНОГО КАЛЬЦИЯ ЦИТОЗОЛЬНЫМИ БУФЕРНЫМИ БЕЛКАМИ И ПОТОКАМИ ЧЕРЕЗ ПЛАЗМАТИЧЕСКУЮ МЕМБРАНУ КЛЕТКИ

И.В. Докукина, М.Е. Грачёва*), Е.А. Грачёв

(кафедра компьютерных методов физики)

E-mail: irina_g@mail.ru

Представлено исследование влияния количества цитозольных кальций-связывающих белков и потоков ионов кальция через плазматическую мембрану клетки на буферные свойства митохондрий при внутриклеточной кальциевой сигнализации.

Введение

В результате недавних исследований сложной внутренней организации клетки [1] было показано, что митохондрии могут играть одну из ключевых ролей в нелинейном процессе кальциевой (Ca²⁺) сигнализации. Наряду с цитозольными Ca²⁺-связывающими белками митохондрии являются мощнейшими буферами Ca²⁺, так как при повышении цитозольной концентрации Ca²⁺ они активно поглощают его через унипорты [2, 3].

В зависимости от типа клеток наблюдаются различные скорости поглощения Ca^{2+} митохондриями и высвобождения его обратно в цитозоль. Например, для гонадотропоцитов в работе [2] показано, что Ca^{2+} очень быстро поглощается митохондриями, после чего крайне медленно высвобождается обратно, его содержание остается повышенным спустя длительное время после окончания стимуляции клетки. В другом эксперименте [3] для клеток HeLa обнаружено, что Ca^{2+} поглощается митохондриями также быстро, однако уровень митохондриального Ca^{2+} возвращается к нормальному существенно быстрее по сравнению с предыдущим случаем.

В работе [4] показано, что при цитозольных осцилляциях Ca^{2+} в клетке уровень Ca^{2+} в митохондриях также осциллирует. Это означает, что митохондрии выполняют функцию кратковременных буферов Ca^{2+} , поскольку уровень Ca^{2+} в митохондриях быстро возвращается к нормальному значению после каждой осцилляции Ca^{2+} в цитозоле.

В работе [5] показано, что для гонадотропоцитов существенную роль в клеточной сигнализации Ca^{2+} играют потоки Ca^{2+} через плазматическую мембрану, хотя основным механизмом возникновения осцилляций Ca^{2+} в клетке является его высвобождение из эндоплазматического ретикулума (ЭР) через каналы рецепторов, управляемые инозитол-1,4,5-трифосфатом (IP₃). Можно предположить, что наличие потоков Ca²⁺ через плазматическую мембрану клетки окажет существенное влияние на динамику митохондриального Ca²⁺ благодаря изменению баланса потоков.

Другой важнейшей буферной системой Ca²⁺ в клетке являются цитозольные Ca²⁺-связывающие белки. Взаимодействие между буферными системами также может оказать определенное влияние на динамику каждой из систем.

В настоящей работе исследуется влияние потоков Ca^{2+} через плазматическую мембрану клетки на динамику митохондриального Ca^{2+} , а также влияние количества цитозольных Ca^{2+} -связывающих белков.

Описание модели

В настоящей работе использовалась модель сложных внутриклеточных осцилляций кальция [4] как основа для описания базовых процессов взаимодействия цитозольного Ca²⁺ с ЭР, митохондриями и цитозольными Ca²⁺-связывающими белками. В работе [4] клетка рассматривается как закрытая система, не взаимодействующая с другими клетками и межклеточным пространством. Ввиду этого динамика Ca²⁺ описывается тремя обыкновенными дифференциальными уравнениями (цитозольный Са $^{2+}$, митохондриальный Са $^{2+}$ и Са $^{2+}$ в ЭР) и двумя законами сохранения полного количества ионов кальция в клетке и полного количества Ca²⁺-связывающих белков в цитозоле. Поскольку при включении в модель потоков Ca²⁺ через плазматическую мембрану клетки сама клетка перестает быть закрытой системой, то закон сохранения полного количества ионов кальция в клетке не выполняется, поэтому систему уравнений необходимо дополнить еще одним уравнением. В данном случае наиболее разумным является дополнение системы уравнением, описывающим динамику связывания Ca²⁺ с бу-

^{*)} University of Illinois at Urbana-Champaign, IL 61801, USA.

Таблица 1

	-	-
Обозначение	Зависимость	Описание
J _{in}	$k_{\rm in} + k_{\rm inIP_3} {\rm IP}_3$	поток Ca ²⁺ через плазматическую мембрану в цитозоль
		(капалы)
J _{out}	k _{out} Ca _{cyt}	утечка Са ²⁺ из цитозоля через плазматическую мембрану (Са ²⁺ -АТФаза)
J _{rel}	$\left(k_{\text{leak}} + k_{\text{ch}} \text{IP}_3 \frac{\text{Ca}_{\text{cyt}}^2}{K_1^2 + \text{Ca}_{\text{cyt}}^2}\right) (\text{Ca}_{\text{ER}} - \text{Ca}_{\text{cyt}})$	высвобождение Ca ²⁺ из ЭР (каналы и пассивная утеч- ка)
J _{serca}	k _{serca} Ca _{cyt}	поток Ca ²⁺ в ЭР с помощью сарко/эндоплазматического ретикулума Ca ²⁺ -АТФазы
J _{mo}	$(k_{\rm mo} \frac{{\rm Ca}_{\rm cyt}^2}{K_4^2 + {\rm Ca}_{\rm cyt}^2} + k_m) {\rm Ca}_m$	высвобождение Ca ²⁺ из митохондрий
J _{mi}	$k_{ m mi}rac{{ m Ca}_{ m cyt}^8}{{ m K}_2^8+{ m Ca}_{ m cyt}^8}$	поглощение Ca ²⁺ митохондриями

Потоки в модели (см. [4] кроме J_{in}, J_{out})

ферными белками в цитозоле, которое позволяет более полно описать физическую динамику клетки.

Кроме того, в данную модель включено в явном виде влияние IP₃ на высвобождение Ca²⁺ из цистерн ЭР путем замены максимальной проницаемости $k_{\rm ch}$ кальциевых каналов ЭР в модели [4] на удельный по отношению к концентрации IP₃ коэффициент $k_{ch} \cdot IP_3$. Влияние IP_3 на систему описывается трапециевидными импульсами различных амплитуд, что соответствует внешнему воздействию на клетку агонистов различных концентраций. Помимо этого, от IP₃ также зависит и поток Ca²⁺ в клетку через плазматическую мембрану. Известно, что поток Ca²⁺ внутрь клетки из межклеточного пространства должен являться возрастающей функцией IP₃, поскольку в противном случае стационарное значение цитозольного Ca²⁺ не менялось бы при изменении концентрации агониста. Поскольку точные механизмы, лежащие в основе этой зависимости, до сих пор обсуждаются, в настоящей работе используется простая линейная зависимость (табл. 1).

Схема потоков, включенных в модель, показана на рис. 1. Динамика системы описывается следующими дифференциальными уравнениями:

$$\frac{d \operatorname{Ca}_{\operatorname{cyt}}}{dt} = J_{\operatorname{in}} - J_{\operatorname{out}} + J_{\operatorname{rel}} - J_{\operatorname{serca}} + J_{\operatorname{mo}} - J_{\operatorname{mi}} + k_{-} \operatorname{Ca} \operatorname{Pr} - k_{+} \operatorname{Ca}_{\operatorname{cyt}} \operatorname{Pr},$$

$$\frac{d \operatorname{Ca}_{\operatorname{ER}}}{dt} = \frac{\beta_{\operatorname{ER}}}{\rho_{\operatorname{ER}}} (J_{\operatorname{serca}} - J_{\operatorname{rel}}),$$

$$\frac{d \operatorname{Ca}_{m}}{dt} = \frac{\beta_{m}}{\rho_{m}} (J_{\operatorname{mi}} - J_{\operatorname{mo}}),$$

$$\frac{d \operatorname{Ca} \operatorname{Pr}}{dt} = k_{+} \operatorname{Ca}_{\operatorname{cyt}} \operatorname{Pr} - k_{-} \operatorname{Ca} \operatorname{Pr}$$

и законом сохранения полной концентрации Ca²⁺-связывающих белков в цитозоле

$$Pr_{tot} = Pr + Ca Pr$$
,

где $\mathrm{Ca}_{\mathrm{cyt}}$ — концентрация Ca^{2+} в цитозоле, $\mathrm{Ca}_{\mathrm{ER}}$ —

Рис. 1. Схематическое представление модели

концентрация Ca²⁺ в ЭР, Ca_m — концентрация Ca²⁺ в митохондриях, IP₃ — концентрация инозитол-1,4,5-трифосфата в цитозоле, Ca Pr — концентрация Ca²⁺, связанного с цитозольными белками, Pr — концентрация Ca²⁺-связывающих белков, не связанных с Ca²⁺. Параметры приведены в табл. 2, значение Pr_{tot} — в подписях к рисункам.

Результаты

Моделирование отклика клетки на внешнюю стимуляцию начинается с задания трапециевидного закона повышенной концентрации IP_3 в цитозоле от времени (рис. 2, график для IP_3). В работе рассматривается продолжительное действие повышенной концентрации IP_3 , при котором в клетке возникают осцилляции Ca^{2+} .

В работе [4] для клетки как закрытой системы наблюдаются периодические осцилляции Ca^{2+} с постоянной амплитудой в цитозоле, ЭР и митохондриях, что не соответствует экспериментам [2, 3],

Т	а	б	Л	И	Ц	а	2
_	-	~	• •		_	-	_

Обозначение	Значение	Обозначение	Значение	Обозначение	Значение
<i>k</i> _{in}	0.025 мкМ·с ⁻¹	<i>k</i> _{out}	$0.5 c^{-1}$	k_{inIP_3}	$0.0044 \ c^{-1}$
$ ho_{ m ER}$	0.01	$eta_{ ext{ER}}$	0.0025	$k_{ m ch}$	200 мкМ ⁻¹ ·с ⁻¹
$k_{ m serca}$	$20 c^{-1}$	$k_{ m leak}$	$0.05 \ c^{-1}$	K_1	5 мкМ
$ ho_m$	0.01	β_m	0.0025	$k_{ m mi}$	300 мкM·с ⁻¹
$k_{ m mo}$	$125 c^{-1}$	k_m	$0.00625 \ c^{-1}$	K_4	5 мкМ
K_2	0.8 мкМ	k_+	$0.1 { m mk} M^{-1} {\cdot} c^{-1}$	k_	$0.01 \ c^{-1}$

Параметры модели (см. [4], кроме $k_{in}, k_{out}, k_{inIP_3}$)

Рис. 2. IP₃-зависимое понижение концентрации Ca²⁺ в ЭР (Ca_{ER}), повышение митохондриальной (Ca_m) концентрации Ca²⁺ и осцилляции цитозольной (Ca_{cyt}) концентрации Ca²⁺ с убывающей амплитудой. Рг_{tot} = 120 мкМ. Значения концентраций Ca_{cyt}, Ca_{ER}, Ca_m и IP₃ приведены в микромолях

где амплитуда осцилляций Ca²⁺ в цитозоле убывает, а уровень Ca²⁺ в митохондриях резко повышается с началом стимуляции и достаточно медленно убывает после ее окончания.

В настоящей работе при наличии потоков Ca²⁺ через плазматическую мембрану клетки наблюдаются осцилляции Ca²⁺ в цитозоле с убывающей амплитудой, а также резкое повышение уровня Ca²⁺ в митохондриях с последующим медленным возвращением к нормальному значению (рис. 2) в согласии с экспериментом [2] для гонадотропоцитов. При этом в ЭР наблюдается резкое понижение уровня Ca²⁺, который быстро восстанавливается после окончания стимуляции клетки. Это легко объяснимо, поскольку Ca²⁺ высвобождается из ЭР в цитозоль и митохондрии в процессе стимуляции и возвращается обратно в ЭР после ее окончания.

Время возврата уровня Ca²⁺ в митохондриях после окончания стимуляции клетки к нормальному значению составляет в модели около 4 мин (4–20 мин в эксперименте [2]) при значении полной концентрации цитозольных Ca²⁺-связывающих белков $\Pr_{tot} = 120 \text{ мкM}$ (рис. 2; 3, *a*). Уменьшение этой концентрации до $\Pr_{tot} = 65 \text{ мкM}$ (рис. 3, *б*) приводит к существенному повышению скорости возвращения уровня митохондриального Ca²⁺ к нормальному значению в согласии с экспериментом [3] для клеток HeLa.

Рис. 3. Концентрация митохондриального Ca²⁺ при $Pr_{tot} = 120$ мкМ, $IP_3 = 45$ мкМ (*a*) и $Pr_{tot} = 65$ мкМ, $IP_3 = 35$ мкМ (*б*). Значения концентраций Ca_m приведены в микромолях, t — время в секундах

Длительность стимуляции клетки t = 37 с при $\Pr_{tot} = 65 \text{ мкM}$ (рис. 3, б) уменьшена в два раза по сравнению с длительностью стимуляции t = 75 с при $\Pr_{tot} = 120 \text{ мкM}$ (рис. 3, *a*), поскольку в экспериментах [2, 3] представлены результаты именно для этих времен. Изменение длительности стимуляции клетки в обоих случаях не приводит к качественному изменению динамики системы. Кроме того, результаты моделирования при $\Pr_{tot} = 65 \text{ мкM}$ получены для амплитуды $IP_3 = 35 \text{ мкM}$, тогда как при $\Pr_{tot} = 120 \text{ мкM}$ уровень стимуляции $IP_3 = 45 \text{ мкM}$, поскольку в экспериментах [2, 3] типы и концентрации агонистов также различны. Это легко объяснимо, поскольку известно, что клетки различных типов обладают различной чувствительностью к агонистам и IP_3 .

Выводы

В работе средствами математического моделирования показано, что функция митохондрий как активного буфера цитозольного Ca^{2+} существенным образом определяется потоками Ca^{2+} через плазматическую мембрану клетки. Также показано, что в динамике митохондриального Ca^{2+} существенную роль играет взаимодействие системы с цитозольными Ca^{2+} -связывающими белками, количество которых может меняться от одного типа клетки к другому. Поэтому в разных клетках при одинаковом механизме сигнализации Ca^{2+} в зависимости от концентрации Ca^{2+} -связывающих белков наблюдается различная динамика митохондриального Ca^{2+} .

Литература

- 1. *Rizzuto R., Pinton P., Carrington W.* et al. // Science. 1998. **280**. P. 1763.
- Kaftan E.J., Xu T., Abercrombie R.F., Hille B. // J. Biol. Chem. 2000. 275, N 33. P. 25465.
- Arnaudeau S., Kelley W.L., Walsh J.V. et al. // J. Biol. Chem. 2001. 276, N 31. P. 29430.
- Marhl M., Haberichter T., Brumen M., Heinrich R. // BioSystems. 2000. 57. P. 75.
- Shangold G.A., Murphy S.N., Miller R.J. // Proc. Natl. Acad. Sci. USA. 1988. 85. P. 6566.

Поступила в редакцию 04.05.06