ГЕОФИЗИКА

УДК 550.34+530.145

О НЕЛИНЕЙНЫХ УПРУГИХ ВОЛНАХ ВТОРОГО РОДА В ПОРИСТЫХ СРЕДАХ

С. А. Арсеньев, Н.К. Шелковников

(кафедра физики моря и вод суши)

E-mail: arrsenyev@yandex.ru

Исследованы нелинейные матричные волны второго рода, в особенности процессы формирования пилообразных ударных волн. Конкретные расчеты упругих волн проведены в пористых осадочных геопородах, насыщенных газом.

Изучим волны второго рода (матричные волны) по терминологии Френкеля, Био и Николаевского [1]. Они имеют большое значение для нефтяной и газовой промышленности, так как они вызывают переупаковку твердой матрицы осадочных геопород, освобождая удерживаемую в них нефть и газ. Определенный интерес представляют они и для сейсмологии, и для подземной гидрологии. Исходные уравнения теории запишем в виде [2]

$$\rho_1(1-m_0)\frac{D_1u_i}{D_1t} - \rho_2(1-m_0)\frac{D_2w_i}{D_2t} - \frac{\mu}{a_0}m_0(1-m_0)(w_i-u_i) - \frac{\partial\sigma^e_{ij}}{\partial x_i} = 0, \quad (1)$$

$$\rho_2 \frac{D_2 w_i}{D_2 t} + \frac{\partial p}{\partial x_i} + \frac{\mu m_0 (1 - m_0)}{a_0} (w_i - u_i) = 0, \qquad (2)$$

$$(1 - m_0)\frac{\partial u_i}{\partial x_i} + m_0\frac{\partial w_i}{\partial x_i} = 0.$$
 (3)

Здесь u_i — возмущения скорости смещений твердой матрицы пористой среды, w_i — колебательная скорость флюида, ρ_1 и ρ_2 — равновесная плотность твердой фазы и флюида, μ — вязкость флюида, $a_0 = k_0(1 - m_0)$ и k_0 — проницаемость пласта, p — поровое давление, m_0 — равновесная плотность, σ^e_{ij} — действующие напряжения, $D_1/D_1t = \partial/\partial t + u_j \partial/\partial x_j$ и $D_2/D_2t = \partial/\partial t + w_j \partial/\partial x_j$ операторы Эйлера, описывающие ускорения твердой и флюидной фазы соответственно. Систему (1)-(3) замкнем обобщенным законом Гука, дополненным учетом первой сдвиговой η и второй объемной ζ вязкости матрицы породы [1-4]:

$$\sigma_{ij}^{e} = \left(K - \frac{2}{3}G\right)e\delta_{ij} + 2Ge_{ij} + \eta\left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} - \frac{2}{3}\frac{\partial u_k}{\partial x_k}\right) + \varsigma\frac{\partial u_k}{\partial x_k}\delta_{ij}.$$
 (4)

Здесь *К* — модуль всестороннего сжатия матрицы, *G* — ее модуль сдвига.

Для практических целей достаточно изучить волны, распространяющиеся вдоль определенного направления, например *x*. Уравнение (3) тогда имеет вид $u = -w[m_0/(1 - m_0)]$, где $u \equiv u_x$, $w \equiv w_x$. Реологическое уравнение (4) переходит в

$$\sigma_{xx}^{e} \equiv \sigma = \left(K - \frac{4}{3}G\right)e + \left(\frac{4}{3}\eta + \varsigma\right)\frac{\partial u}{\partial x},\qquad(5)$$

где $e \equiv e_{xx}$. Мы также должны учесть связь деформаций e_{ij} со смещениями L_i . Имеем $e = \partial L_x / \partial x$, $u = \partial L_x / \partial t$ и $\partial e / \partial t = \partial u / \partial x$ и вместо (1) получим

$$\rho_{1}(1-m_{0})\left(\frac{\partial u}{\partial t}+\frac{1}{2}\frac{\partial u^{2}}{\partial x}\right)-$$
$$-\rho_{2}(1-m_{0})\left(\frac{\partial w}{\partial t}+\frac{1}{2}\frac{\partial w^{2}}{\partial x}\right)-$$
$$-\frac{\mu}{a_{0}}m_{0}(1-m_{0})(w-u)-\left(K-\frac{4}{3}G\right)\frac{\partial e}{\partial x}-$$
$$-\left(\frac{4}{3}\eta+\zeta\right)\frac{\partial^{2}u}{\partial x^{2}}=0. \quad (6)$$

Из (6) исключим деформацию *е*, дифференцируя по времени:

$$\rho_1 \left(\frac{\partial^2 u}{\partial t^2} + \frac{1}{2} \frac{\partial^2 u^2}{\partial t \partial x} \right) - \rho_1 \left(\frac{\partial^2 w}{\partial t^2} + \frac{1}{2} \frac{\partial^2 w^2}{\partial t \partial x} \right) - M \frac{\partial^2 u}{\partial x^2} - V \frac{\partial^2 u}{\partial x^2} - \frac{\mu}{a_0} m_0 \left(\frac{\partial w}{\partial x} - \frac{\partial u}{\partial x} \right) = 0, \quad (7)$$

где $M = [K - (4/3)G]/(1 - m_0)$ — эффективный модуль матрицы и $V = [(4/3)\eta + \zeta]/(1 - m_0)$ — эффективная вязкость матрицы. Наконец, элиминируя из (7) w, получим нелинейное волновое уравнение с диссипацией

$$\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} + N \frac{\partial^2 u^2}{\partial t \partial x} + \frac{\mu}{\rho_a a_0} \frac{\partial u}{\partial t} - V_k \frac{\partial^3 u}{\partial t \partial x^2} = 0, \quad (8)$$

в котором $c = (M/\rho_a)^{1/2}$ — скорость волны второго рода, $\rho_a = (\rho_1 + \rho_2 - \rho_m)/m_0$ — сейсмическая плотность, $\rho_m = \rho_1(1-m_0) + \rho_2 m_0$ — плотность геосреды,

$$N = \frac{1}{2\rho_a} \left[\rho_1 - \frac{\rho_2 (1 - m_0)^2}{m_0^2} \right]$$
(9)

— параметр нелинейности, $V_k = V/\rho_a$ — кинематическая эффективная вязкость матрицы. Из (9) следует, что при значениях средней пористости m_0 , равных

$$m_0^c = \frac{\rho_2}{\rho_1 - \rho_2} \left[-1 + \sqrt{\frac{\rho_1}{\rho_2}} \right], \quad m_0 > 0, \tag{10}$$

параметр нелинейности N обращается в нуль и матричные волны становятся чисто линейными. При $m_0 < m_0^c \ N < 0$, в то время как при $m_0 > m_0^c \ N > 0$.

Введем $T = \omega t$, $S = u/u_0$, $X = \omega x/c$, где ω – частота волны и u_0 – скорость смещений твердой фазы в источнике. Тогда из (8) имеем

$$\frac{\partial^2 S}{\partial T^2} - \frac{\partial^2 S}{\partial X^2} + \operatorname{Ma} N \frac{\partial^2 S^2}{\partial T \partial X} + \operatorname{Da} \frac{\partial S}{\partial t} - \operatorname{Bu} \frac{\partial^3 S}{\partial T \partial X^2} = 0.$$
(11)

Здесь Ма = u_0/c — акустическое число Маха, Da = ω_D/ω — число Дарси, в котором частота трения $\omega_D = \mu/(\rho_a a_0)$, и Bu = $V_k \omega/c^2$ — число Бюргерса, которое можно выразить через сейсмическое число Рейнольдса Re. Именно Bu = Ma / Re, Re = $\rho_a \lambda u_0/2\pi V = \rho_a c u_0/\omega V$, где λ — длина волны частоты ω . Удобно также вводить число Римана Ri = Ma N.

Существенно, что число Дарси Da возрастает при понижении частоты ω , так что четвертый член в уравнении (11) представляет собой низкочастотное трение, обусловленное процессами фильтрационных перетоков в пористой среде. Наоборот, число Бюргерса Ви растет пропорционально частоте ω , и пятый член в уравнении (11) представляет собой высокочастотное трение, обусловленное вязкими потерями упругой энергии в твердой матрице. Два типа трения можно трактовать как наличие в пористой среде диссипативных процессов с двумя разными временами релаксации τ_D и τ_B . Им соответствуют частоты $\omega_D = 1/ au_D$, $\omega_B = 1/ au_B = c^2/V_k$. Очевидно, $Bu = \omega/\omega_B$, $Re = \omega_B u_0/c\omega$. Экстремальную частоту трения ω_0 , на которой оба типа трения сравнимы, легко найти из условия Da = Bu. Имеем

$$\omega_0 = \sqrt{\omega_D \omega_B} = \sqrt{\frac{\mu[K - (4/3)G]}{a_0 \rho_a[(4/3)\eta + \zeta]}}.$$
 (12)

В таблице представлены результаты расчетов чисел Da и Bu в зависимости от циклической частоты ω для песчаников с плотностью $\rho_1 = 2.62$ г/см³, насыщенных воздухом с плотностью $\rho_2 = 0.0012$ г/см³, при вязкости матрицы $\eta = \zeta = 3 \cdot 10^3$ пуаз и проницаемости по газу $k_0 = 1.04 \cdot 10^{-5}$ см². Упругие модули матрицы выбирались равными $K = 6 \cdot 10^{10}$ дин/см² и $G = 3.6 \cdot 10^{10}$ дин/см² [3, 4], так что $\omega_B = 171428.6$ Гц. При пористости $m_0 = 0.16$ имеем также $\omega_D = 7.88$ Гц, N = 0.49, причем вязкость газа выбиралась равной вязкости воздуха $\mu = 1.808 \cdot 10^{-4}$ пуаз. Значение ω_0 (12) оказалось равным 3675.5 Гц. При $\omega = \omega_0$ имеем Bu = Da = 0.0027. Из таблицы видно, что в широком диапазоне частот ω от 16 Гц до 850 кГц Bu $\ll 1$, Da $\ll 1$. Следовательно, уравнение (11) можно записать следующим образом:

$$\frac{\partial^2 S}{\partial T^2} - \frac{\partial^2 S}{\partial X^2} + \varepsilon \left[R_1 \frac{\partial^2 S}{\partial T \partial X} + D_1 \frac{\partial S}{\partial T} - B_1 \frac{\partial^3 S}{\partial T \partial X^2} \right] = 0,$$
(13)

где $\operatorname{Ri} = \varepsilon R_1$, $\operatorname{Da} = \varepsilon D_1$, $\operatorname{Bu} = \varepsilon B_1$ и $\varepsilon < 0.05$ — малый параметр.

Если $\varepsilon = 0$, то уравнение (13) переходит в линейное волновое уравнение, имеющее известное решение $S = \Phi(T - X) = \Phi\{[t - (x/c)]\}$ в виде волны формы Φ . Поэтому при $\varepsilon \neq 0$ решение уравнения (13) ищем в виде

$$S = Z(\varepsilon X, T - X) = Z(\xi, \tau), \tag{14}$$

т.е. вводим медленную координату $\xi = \varepsilon X$ и быстрое время $\tau = T - X$. Из (13) и (14) находим нелинейное эволюционное уравнение

$$\frac{\partial S}{\partial \xi} + D_2 S - R_2 \frac{\partial S^2}{\partial \tau} - B_2 \frac{\partial^2 S}{\partial \tau^2} = 0;$$

$$D_2 = D_1/2, \quad R_2 = R_1/2, \quad B_2 = B_1/2.$$
(15)

В частном случае при $Da \rightarrow 0$ уравнение (15) превращается в

$$\frac{\partial S}{\partial \xi} - R_1 S \frac{\partial S}{\partial \tau} - B_2 \frac{\partial^2 S}{\partial \tau^2} = 0.$$
 (16)

Это уравнение Бюргерса, решения которого обладают характерной чертой: все нелинейные искажения в волне исчезают по мере ее распространения из-за того, что диссипация сглаживает профиль волн [3, 4]. Наоборот, в экспериментах [5, 6] наблюдается накопление нелинейных эффектов и возрастание

ω, Гц	1	10	16	100	500	1000	3675.5	10^{4}
Bu	$6 \cdot 10^{-7}$	$6 \cdot 10^{-6}$	$9 \cdot 10^{-6}$	$6 \cdot 10^{-6}$	$3 \cdot 10^{-4}$	$6\cdot 10^{-4}$	$2 \cdot 10^{-3}$	$6 \cdot 10^{-3}$
Da	7.88	0.78	0.49	0.08	0.016	0.008	$2 \cdot 10^{-3}$	$8 \cdot 10^{-4}$
ω, Гц	$5\cdot 10^4$	10 ⁵	$5 \cdot 10^5$	$8.5 \cdot 10^{4}$	$5\cdot 10^6$			
Bu	0.029	0.058	0.29	0.496	2.92			
Da	$1.6 \cdot 10^{-4}$	$7.88 \cdot 10^{-5}$	$1.58 \cdot 10^{-5}$	$9.27\cdot10^{-6}$	$1.58\cdot10^{-6}$			

искажений формы волны по мере ее распространения. Это означает, что на обычных для сейсморазведки частотах высокочастотное трение несущественно, и мы приходим к необходимости исследовать справедливое при низких частотах уравнение

$$\frac{\partial S}{\partial \xi} + D_2 S - R_1 S \frac{\partial S}{\partial \tau} = 0.$$
 (17)

Если источник в точке x = 0 излучает гармоническую волну $S = \sin T$ с амплитудой u_0 и частотой ω , то решение уравнения (17) есть

$$\tau = -\frac{R_1}{D_2} [1 - \exp(-D_2\xi)] S \exp(D_2\xi) + + \arcsin[S \exp(D_2\xi)]. \quad (18)$$

Формулу (18) удобно анализировать графически в координатах τ и $S \exp(D_2\xi)$, где она представляется в виде суммы синусоиды и прямой с углом наклона к оси ординат ψ , определяемой из tg $\psi = R_1 [1 - \exp(-D_2\xi)]/D_2$.

При $\xi = 0$ tg $\psi = 0$, т.е. волна является гармонической. С ростом расстояния ξ величина tg ψ увеличивается, а форма волны искажается: передний фронт становится круче, а задний — более пологим. При $\xi \to \infty$ tg ψ стремится к постоянному значению tg $\psi_{\infty} = R_1/D_2 = 2 \operatorname{Ri} / \operatorname{Da} = 2 \operatorname{Ma} N \omega / \omega_D$. Если величина tg ψ мала по сравнению с единицей, то влияние нелинейности мало и форма волны близка к синусоиде. Огибающая амплитуд упругих волн в матрице спадает по закону $\exp(-D_2\xi)$ с коэффициентом поглощения $\alpha = \omega_D/2c = \mu/(\rho_a a_0 c)$.

С ростом нелинейности Ri величина tg ψ_{∞} растет, фронт волны укручивается, и при tg $\psi_{\infty} \ge 1$ в геосреде образуются пилообразные ударные волны. Условие tg $\psi_{\infty} = 1$ или Da = 2 Ri определяет пороговую амплитуду образования ударных волн

$$u_0^s = \frac{\omega_D \lambda}{4\pi N} = \frac{\omega_D c}{2N\omega}.$$
 (19)

Таким образом, для того чтобы в пористой геосреде смогли возникнуть ударные пилообразные волны, необходимо, чтобы число $a = u_0/u_0^s$ было не меньше единицы, $a \ge 1$. Если же a < 1, то ударные пилообразные волны не образуются. На рис. 1 приведены формы волны при a < 1 (a) и $a \ge 1$ (b), иллюстрирующие процесс формирования пилообразным трением. Например, для значений $\omega_D = 7.88$ Гц, c = 737.53 м/с, N = 0.49, $\omega = 30$ кГц получим $u_0^s = 0.197$ м/с. При амплитуде волны в источнике $u_0 = 0.1$ м/с имеем a = 0.57 < 1 и ударные волны не образуются. Однако уже на частоте $\omega = 60$ кГц, $u_0^s = 0.0983$ м/с, a = 1.02 > 1, т.е. условие образования ударных волн выполняется.

Расстояние *x_c*, на котором происходит формирование ударных волн, находим из уравнения

Рис. 1. Затухание матричных волн в пористой среде. При a < 1 (*a*) пилообразные волны не образуются. При a > 1 (*б*) на расстоянии $x = x_c$ про-исходит образование пилообразных ударных волн

$$R_{1}[1 - \exp(-D_{2}\xi)]/D_{2} = 1. Оно дает$$
$$x_{c} = \frac{2c}{\omega_{D}} \ln\left(\frac{a}{a-1}\right) = \frac{2\rho_{a}ck_{0}}{\mu}(1-m_{0}) \ln\left(\frac{a}{a-1}\right).$$
(20)

При $\omega_D = 7.88$ Гц, c = 737.53 м/с и a = 1.02по формуле (20) находим $x_c = 767.1$ м. На этом расстоянии укладывается 9932 волны с длиной $\lambda = 7.7$ см и частотой $\omega = 60$ кГц. Кроме того, при $\omega_D = 7.88$ Гц, c = 737.53 м/с из формулы (20) получим $\alpha = 0.0053$ м⁻¹. Экспериментальные данные [7] дают для волн первого рода в насыщенных водой песках значение, равное приблизительно 0.02 м⁻¹. Следовательно, поглощение матричных волн второго рода в пористых средах, насыщенных газом, приблизительно в два раза меньше, чем волн первого рода в пористых средах, насыщенных жидкостью, что совпадает с расчетами по линейной теории [1]. Подчеркнем, что, в отличие от огибающей волны, поглощение самих нелинейных волн не является экспоненциальным и не может быть описано с помощью концепции коэффициента поглощения а. Это связано с тем, что с ростом амплитуды сигнала источника возникают высшие гармоники, забирающие часть энергии у основной волны. Гармоники поглощаются средой сильнее, чем исходный сигнал, поскольку имеют более высокую частоту. В этой связи необходимо детально изучить процесс возникновения нелинейных гармоник.

Для этого предположим, что источник (например, сейсмический вибратор) излучает гармоническую волну $S = \cos T$, и запишем решение (17) в виде

$$S = \exp(-D_2\xi) \cos\left\{\tau + \frac{R_1}{D_2}S[1 - \exp(D_2\xi)]\right\}.$$
 (21)

Рис. 2. Расчет спектра матричных волн по формуле (22) при условии *a* < 1, Da = 0, 1 на различных расстояниях *x* от источника. Порог *a* = 1 не превышен и ударные волны не образуются

Спектральное разложение этого решения есть

$$S \approx \exp(-D_{2}\xi) \times \\ \times \left\{ \sum_{n=0}^{\infty} [J_{2n}(\gamma) - J_{2n+2}(\gamma)] \cos[(2n+1)\tau + \pi n] + \right. \\ \left. + \sum_{n=1}^{\infty} [J_{2n-1}(\gamma) + J_{2n+1}(\gamma)] \cos\left[2n\tau + \left(\frac{2n-1}{2}\right)\pi\right] \right\} \equiv \\ \equiv A_{1}(\xi) \cos\tau + A_{2}(\xi) \cos\left(2\tau + \frac{\pi}{2}\right) + A_{3}\cos(3\tau + \pi) + \dots,$$
(22)

где буквой *J* обозначена функция Бесселя и $\gamma = R_1 [1 - \exp(-D_2\xi)]/D_2$. Конкретные расчеты по формуле (22) проведены нами для случая Da = 0.1, так что $\omega = 10\omega_D$. Расчеты проведены для двух уровней входного сигнала (рис. 2 и 3). В первом случае (рис. 2) a < 1 и ударные волны не образуются. Максимум амплитуды первой гармоники достигается при $x = 1.5\lambda$, а третьей гармоники — при $x = 3.5\lambda$. Во втором случае (рис. 3) амплитуда входного сигнала u^0 выше порогового значения, a > 1 и на расстоянии $x = 1.276\lambda$ образуются ударные пилообразные волны.

В заключение рассмотрим общее эволюционное уравнение (15). Введем новую переменную $z = 2R_2\xi = R_1\xi$ и запишем (15) в виде

$$\frac{\partial S}{\partial z} + \Theta S - S \frac{\partial S}{\partial \tau} - \Gamma \frac{\partial^2 S}{\partial \tau^2} = 0, \qquad (23)$$

где $\Theta = D_2/2R_2 = \text{Da}/2\text{Ri}, \Gamma = B_2/2R_2 = \text{Bu}/2\text{Ri} -$ безразмерные критерии. Применим к уравнению (23) известную в теории нелинейных волн замену Коула–Хопфа [8], которую проведем в два приема. Сначала введем функцию ψ , связанную

Рис. 3. Расчет спектра матричных волн по формуле (22) при условии a > 1, Da = 0.1 на различных расстояниях x от источника. Порог a = 1 превышен, и ударные пилообразные волны сформировались на расстоянии $x_c = 1.276\lambda$

с безразмерной скоростью деформаций формулой $S = \partial \psi / \partial \tau$. Затем введем функцию φ , связанную с ψ равенством $\psi = 2\Gamma \ln \varphi$. Тогда вместо (23) получим $\partial \varphi / \partial z = \Gamma \partial^2 \varphi / \partial \tau^2 - \Theta \varphi \ln \varphi$. Это уравнение теплопроводности с коэффициентом диффузии Γ и источником энергии $\varphi \ln \varphi$, зависящим от температуры φ . Оно описывает автоволны [9], имеющие скорость порядка $(\Gamma / \Theta)^{1/2} = (\text{Bu} / \text{Da})^{1/2}$. Время существования автоволн имеет порядок $1/\Theta = 2 \text{ Ri} / \text{Da}$.

Литература

- 1. Николаевский В.Н. Геодинамика и флюидодинамика. М., 1996.
- Арсеньев С.А., Николаевский В.Н., Шелковников Н.К. // Вестн. Моск. ун-та. Физ. Астрон. 2006. № 1. С. 69 (Moscow University Phys. Bull. 2006. N 1. P. 91).
- Быков В.Г., Николаевский В.Н. // Докл. РАН. 1992.
 323, № 3. С. 446.
- Быков В.Г., Николаевский В.Н. // Докл. РАН. 1993. 325, № 1. С. 35.
- 5. Алешин А.С., Гущин В.В., Креков М.М. и др. // ДАН СССР. 1981. **200**, № 3. С. 574.
- Nagava K., Soga K., Mitchell J.K. // Geotechnique. 2001. 51, N 1. P. 85.
- Kibbelwhite A.C. // J. Acoust. Soc. Am. 1989. 86, N 2. P. 716.
- 8. Виноградова М.Б., Руденко О.В., Сухоруков А.П. Теория волн. М., 1990.
- 9. *Гуревич А.В., Минц Р.Г.* // Успехи физических наук. 1984. **142**, № 1. С. 61.

Поступила в редакцию 27.09.06