УДК 533.92

О ЗАКОНЕ ОМА В ТОНКИХ ТОКОВЫХ СЛОЯХ МАГНИТОСФЕРЫ ЗЕМЛИ

А. Г. Коржов, Х. В. Малова, В. Ю. Попов

(кафедра математики)

E-mail: hmalova@yandex.ru

При помощи аналитической аппроксимации численных результатов самосогласованной модели магнитосферного тонкого токового слоя получены аналитические и численные оценки зависимости полного поперечного тока от величины электрического поля, нормальной компоненты магнитного поля, температуры ионов и электронов. Показано, что зависимость тока от параметров ε , T_i , b_n нелинейна. Оценен относительный вклад различных компонент плазмы в полный ток.

Введение

Целью настоящей работы является аналитическое и численное исследование закона Ома в токовом слое (ТС) хвоста магнитосферы Земли [1], в котором существует крупномасштабное электрическое поле и течет поперечный электрический ток. Во время суббурь ТС сжимается до предельно малой толщины порядка ионного ларморовского радиуса [2]. Поскольку такой предельно тонкий токовый слой (TTC) может являться ключевым фактором, влияющим на характер геомагнитных возмущений, задача изучения его свойств является весьма актуальной. Еще в 1980-е годы были предприняты попытки оценить масштаб электрического тока через хвост и оценить круг основных параметров, влияющих на структуру ТС [3]. Однако эти оценки, во-первых, были достаточно грубые, а во-вторых, не удавалось оценить вклад электронной компоненты плазмы в полный ток. В работах [4, 5] представлена самосогласованная модель ТТС, которая позволяет получить самосогласованные профили магнитного поля, плотности плазмы и тока в хвосте магнитосферы Земли для широкого диапазона параметров. Однако в этой модели выбрана специальная система координат, где электрическое поле не учитывается. Для учета крупномасштабного электрического поля и электронного тока самосогласованный профиль плотности плазмы, полученный в модели [5], был аппроксимирован аналитической формулой, а для аналитического представления электронных токов использовалось дрейфовое приближение [6, 7]. Это позволило перейти в систему координат с ненулевым электрическим полем и получить аналитические и численные оценки для зависимости полного поперечного тока от величины электрического поля, нормальной компоненты магнитного поля, температур ионов и электронов. Также оценен относительный вклад различных компонент плазмы в полный ток.

1. Аппроксимация численных результатов самосогласованной модели TTC

Рассмотрим следующую конфигурацию электрических и магнитных полей, характерную для TTC [5]:

$$\boldsymbol{B} = (B_0 \operatorname{th}(z/L), 0, B_n), \tag{1}$$

$$\boldsymbol{E} = (0, E_{y}, E_{z}(z)) \tag{2}$$

Причем $E_z(z) \to 0$ при $Z \to L$, где L — характерная ширина ТС и $b_n = \frac{B_n}{B_0} \ll 1$.

Обычно предполагают, что B_n поддерживается дипольным магнитным полем Земли, а B_x -компонента создается самосогласованно током хвоста. Амбиполярное электрическое поле $E_z(z)$ возникает из-за разной динамики замагниченных электронов и неадиабатических ионов в TTC [5] и определяется самосогласованным потенциалом, который имсет вид, схожий с гауссовской функцией, и затухает на расстояниях порядка ширины слоя L. Для его аппроксимации использовалась функция

$$\phi(z) = \phi_0 \exp\left(-\alpha_1 \frac{z^2}{L^2}\right), \quad \alpha_1 > 0, \tag{3}$$

При такой аппроксимации потенциала электрическое поле

$$\boldsymbol{E} = \left(0, E_y, E_{z0} \frac{z}{L} \exp\left(-\alpha_1 \frac{z^2}{L^2}\right)\right), \qquad (4)$$

где $E_{z0} = 2\phi_0 \frac{\alpha_1}{L}$.

Аналогично концентрацию ионов в соответствии с численной самосогласованной моделью будем аппроксимировать функцией Гаусса с максимумом в центре слоя:

$$n(z) = n_0 \left(1 + \beta \exp\left(-\alpha_2 \frac{z^2}{L^2}\right) \right), \quad \alpha_2 > 0, \quad (5)$$

где параметры ϕ_0 , β , α_1 , α_2 определялись по численным результатам самосогласованной модели [5] так, чтобы

$$\delta I = \left| \int (\psi_{\text{num}} - \psi_{\text{approx}}) f(z) \, dz \right| \leqslant \gamma,$$

где γ — точность дрейфового приближения. Зависимости параметров β и ϕ_0 от величины $\varepsilon = \frac{v_T}{v_D}$ (отношения тепловой скорости к средней потоковой скорости в движущейся системе координат) при $\frac{T_i}{T_{e\parallel}} = \frac{T_i}{T_{e\perp}} = 6, \ b_n = 0.25$ показаны на рис. 1. В специальной системе координат де Хоффман-

В специальной системе координат де Хоффманна-Теллера, движущейся в положительном направлении оси X со скоростью $V_{HT} = cE_y/B_n$, поля имеют вид

$$E'_{x} = 0,$$
 $E'_{y} = 0,$ $E'_{z}(z) = E_{z}(z),$
 $B'_{x}(z) = B_{x}(z),$ $B'_{y}(z) = \frac{E_{y}}{B_{n}}E_{z}(z),$ $B'_{z} = B_{n}.$

Это преобразование справедливо при условии $\frac{E_y}{B_n} \ll 1$, которое в действительности характерно для хвоста магнитосферы Земли. В такой системе координат на границе TC зададим ионную функцию распределения как суперпозицию функций распределений ионов, входящих в слой и выходящих из него [5, 8]:

$$f(\mathbf{v}') = f_0^+ \exp\left(-\frac{(v'_{\parallel} + v'_D)^2 + {v'_{\perp}^2}}{v_T^2}\right) + f_0^- \exp\left(-\frac{(v'_{\parallel} - v'_D)^2 + {v'_{\perp}^2}}{v_T^2}\right), \quad (6)$$

где $T_i = \frac{m_i v_T^2}{2}$ — температура ионов, v_T — тепловая скорость ионов в неподвижной системе координат, которая отличается от скорости в движущейся системе на малую величину, $v'_T^2 = v_T^2 + c^2 \frac{E_y^2}{B_L^2}$ (здесь и далее будем обозначать индексом L величины, взятые на границе токового слоя).

2. Вычисление концентрации и плотности тока ионов

Вычисление концентрации и плотности тока ионов основывается на законе сохранения потока

импульса для поля и частиц [6, 7], т.е. на согласовании параметров функции распределения с параметрами магнитного поля.

В случае стационарных полей закон сохранения записывается в виде [3]

$$\frac{\partial}{\partial x_j} \left(P_{ij} + T_{ij} \right) = 0, \tag{7}$$

где

$$T_{ij} = \frac{1}{4\pi} \left(\frac{E^2 + B^2}{2} \delta_{ij} - (E_i E_j + B_i B_j) \right)$$
(8)

- тензор натяжений электромагнитного поля,

$$P_{ij} = \int m_i v_i v_j f(\boldsymbol{r}, \boldsymbol{v}) \, d\boldsymbol{v}$$
(9)

— тензор плотности потока импульса. После интегрирования *x*-компоненты (7) по *z*-координате с учетом (1) и (6) получается выражение для концентрации ионов (равной концентрации электронов) на границе слоя:

$$n = \frac{B_L^2 {\varepsilon'}^2}{8T_i} \frac{\left(1 + \operatorname{erf}\left(\frac{1}{\varepsilon'}\right)\right)}{\left(\pi + \pi \operatorname{erf}\left(\frac{1}{\varepsilon'}\right) + \sqrt{\pi} \exp\left(-\frac{1}{{\varepsilon'}^2}\right) {\varepsilon'}\right)}, \quad (10)$$

 $B_L = \sqrt{B_0^2 + B_n^2}$ — поле на границе слоя. Видно, что $n \approx \frac{B_L^2 {\varepsilon'}^2}{8\pi T_i}$ при ${\varepsilon'} \lesssim 1$ и $n \approx \frac{B_L^2}{8\pi T_i} (2 - \pi + \sqrt{\pi}{\varepsilon'})$ при ${\varepsilon'} \gg 1$. Величина ${\varepsilon}$ определяется следующим образом: ${\varepsilon} = \frac{v_T}{v_D}$. Для характерных параметров задачи ${\varepsilon}$ и ${\varepsilon'}$ можно считать совпадающими.

Для характерного значения $B_L = 20$ нТ и $T_i = 2 \div 3$ кэВ значения концентрации согласуются с экспериментальными данными, представленными в работе [9].

Далее, интегрируя уравнение гот $\boldsymbol{B} = \frac{4\pi}{c}\boldsymbol{j}$, пренебрегая величиной B_n^2 по сравнению с B_0^2 и выражая v'_D через известные в неподвижной системе величины: $v'_D = v_{DHT} = v_D + c \frac{E_y}{B_n}$, где v_D — средняя потоковая скорость, измеренная в неподвижной системе

Рис. 1. Зависимости параметров β и ϕ_0 от величины ε при $\frac{T_i}{T_{e\parallel}} = \frac{T_i}{T_{e\perp}} = 6$, $b_n = 0.25$

координат, получим формулу для ионного тока через слой в неподвижной системе координат:

$$I_{i} = \frac{c}{2\pi} \sqrt{4\pi m_{i} n} v_{DHT} \sqrt{1 + \frac{v_{T} \exp\left(-\frac{v_{DHT}^{2}}{v_{T}^{2}}\right)}{\sqrt{\pi} v_{DHT} \left(1 + \operatorname{erf}\left(\frac{v_{DHT}}{v_{T}}\right)\right)}}.$$
(11)

Видно, что для характерных параметров TC зависимость ионного тока от величины электрического поля мало отличается от линейной, в то время как зависимость от температуры и величины ε нелинейна.

Приведем асимптотики в зависимости от параметра ε : $I_i = \frac{cB_L}{2\pi} \left(1 + \varepsilon \frac{c}{v_T} \frac{E_y}{B_n}\right)$ при $\varepsilon \lesssim 1$ $I_i = \frac{cB_L}{2\pi} \sqrt{2 - \pi + \sqrt{\pi}\varepsilon} \left(\frac{1}{4\sqrt{\pi}} + \frac{cE_y}{v_TB_n} + \frac{1}{\varepsilon}\right)$ при $\varepsilon \gg 1$. Зависимость ионного тока от температуры и электрического поля для различных значений ε представлена на рис. 2.

3. Учет электронного тока

Для описания замагниченных электронов, источники которых считаются расположенными вне TC симметрично относительно нейтральной плоскости, будем использовать дрейфовое приближение [5, 6] и характеризовать их усредненными температурами $T_{e||} = m_e v_{e||}^2$ и $T_{e\perp} = \frac{m_e v_{e\perp}^2}{2}$, заданными на границе слоя.

Условие применимости приближения ведущего центра выглядит так [2]: $\rho \frac{\nabla B_x}{B} \ll 1$, что для данной модели эквивалентно условию $\frac{\rho(0)}{R(0)} \ll 1$, где $\rho(z=0) = v_{\perp}(0) \frac{m_e c}{eB(0)}$ — ларморовский радиус электрона в центре слоя, $R(0) = Lb_n$ — радиус кривизны силовых линий магнитного поля в центре слоя.

Используя закон сохранения магнитного момента и оценки для ширины токового слоя $L \approx \varepsilon^{\frac{4}{3}} \frac{v_D}{\omega_0}$ при $b_n < \varepsilon < 1$ и $L \approx \frac{v_T}{\omega_0}$ для $\varepsilon > 1$ [4], запишем для заданного значения параметра $\gamma = \frac{\rho(0)}{R(0)}$ соотношение между параметрами модели, определяющее в пространстве основных параметров задачи разрешенную область применимости дрейфового приближения:

$$b_n \varepsilon^{2/9} \left(\frac{T_{e\perp}}{T_i}\right)^{-1/3} = \frac{1}{\gamma^{2/3}} \left(\frac{m_e}{m_i}\right)^{1/3}.$$
 (12)

Рис. 2. Зависимость ионного тока от температуры и электрического поля для различных значений є

Puc. 3. Значения b_n в заштрихованных областях удовлетворяют условиям дрейфового приближения $(\gamma = 0.1)$

Диапазоны значений b_n , при которых справедливо дрейфовое приближение показаны на рис. 3. Видно, что существует область малых значений параметров ε и b_n (для реальных температур), в которой электроны нельзя рассматривать в дрейфовом приближении.

Плотность перпендикулярной составляющей электронного тока состоит из трех слагаемых и имеет вид [3]

$$\boldsymbol{j}_{e\perp} = \boldsymbol{j}_{\boldsymbol{R}} + \boldsymbol{j}_{\boldsymbol{E}} + \boldsymbol{j}_{\boldsymbol{m}} = c \left(m_e n_e v_{e\parallel}^2 - \frac{m_e n_e v_{e\perp}^2}{2} \right) \times \\ \times \frac{[\boldsymbol{B}, (\boldsymbol{B}\nabla)\boldsymbol{B}]}{B} + \frac{\left[\boldsymbol{B}, \nabla \frac{m_e n_e v_{\perp}^2}{2}\right]}{B} + e n_e c \frac{[\boldsymbol{E}\boldsymbol{B}]}{B^2}.$$
(13)

Первое слагаемое этого выражения связано с токами кривизны и намагничивания и вносит основной вклад в полный электронный ток, электронный ток и третье — с током в скрещенных полях. Два последних слагаемых вносят существенно меньший вклад. Поскольку в центре слоя слагаемое $\frac{[B,(B\nabla)B]}{B} \sim \frac{1}{b_n^2}, \frac{[EB]}{B^2} \sim \frac{E_y}{B_n} \ll 1$, то второе слагаемое $\sim \nabla B \sim \frac{1}{bn}$.

Проинтегрируем (13) с учетом (1), законов сохранения энергии и магнитного момента электрона, а также аналитических выражений для потенциала и концентрации (3), (5), полученных аппроксимацией результатов самосогласованной численной модели [5]. Получим следующие приближенные аналитические выражения для электронных токов (индексом *L* помечены величины, взятые на границе токового слоя):

$$(I_R)_y = \frac{cn_L(1+\beta)m_e v_L'^2}{B_L} \times \left\{ \left\{ \frac{\pi}{2b_n} \right\} \left\{ 1 + \frac{2|e|\phi_0}{m_e v_L'^2} \right\} - 3\frac{v_{L\perp}'^2}{v_L'^2} \right\}, \quad (14)$$

$$(I_E)_y = -|e|n_L(1+\beta)c\frac{2\phi_0\alpha_1}{B_0}\left(\sqrt{\frac{\pi}{\alpha_1}} - \pi b_n\right), \quad (15)$$
$$(I_m)_y = -\frac{cn_L m_e v'_{L\perp}^2}{B_L}\left((1+\beta)(\ln(2/b_n) - 1) + \frac{cn_L m_e v'_{L\perp}^2}{B_L}\right)$$

$$+ \alpha_2 \beta \left(\frac{1}{4} + \frac{\exp(-\frac{\alpha_2}{4})}{\alpha_2} \right) \right). \quad (16)$$

В этих формулах стоят значения скоростей, вычисленные в движущейся системе отсчета, а заданными считаются скорости, измеренные в неподвижной системе. Связь между этими скоростями имеет вид

$$v'_{L\parallel}^{2} = (v_{L\parallel} + \frac{cE_{y}}{b_{n}B_{L}})^{2}, \qquad (17)$$

$$v'_{L\perp}^2 = v_{\perp}^2 + c^2 \frac{E_y^2}{B_I^2}.$$
 (18)

В соответствии с формулами (10), (14)–(16) электронный ток $I_e \sim \varepsilon^2$ для малых ε и $I_e \sim \varepsilon$ для больших ε и обратно пропорционален T_i и b_n .

На рис. 4 представлены графики зависимостей полного электронного тока для электронов различных температур. Сравнивая их с ионным током для $T_i = 2$ кэВ, $b_n = 0.25$, $\varepsilon = 1$, получим, что для выбранных значений параметров задачи доля электронных токов в полном токе составляет около одной трети.

Выводы

Анизотропные токовые структуры могут образовываться в начальной фазе суббури в результате утоньшения токового слоя магнитосферного хвоста и, по-видимому, играют ключевую роль в динамике магнитосферы в целом. Исследование факторов, влияющих на ток через хвост магнитосферы является задачей, которая до сих пор была практически не исследована. В настоящей работе проведены оценки тока в хвосте магнитосферы Земли на основании аналитической модели TTC, с учетом электронной и ионной компонент плазмы.

Puc. 4. Зависимости электронных и ионных токов от *E_y* и доля электронной составляющей в полном токе через слой

Получены аналитические формулы для электронных токов в дрейфовом приближении. Выражения для ионного тока получены в результате согласования параметров ионной функции распределения с параметрами магнитного поля.

В рамках приближения ведущего центра получены ограничения на характерные значения малых параметров b_n и ε .

Показано, что токи в TTC хвоста магнитосферы Земли обладают следующими свойствами:

1. Зависимость электронного тока от поля E_y для характерных значений поля $\sim 1 \frac{mV}{m}$ слабо отличается от линейной.

2. Зависимость ионного тока от электрического поля *E_u* слабо нелинейна.

3. Зависимость ионного тока от T_i и ε нелинейна.

4. Полный ток через слой является нелинейным по параметрам ε , b_n , T_i .

Результаты, полученные в настоящей работе, согласуются с экспериментальными оценками, приведенными, например, в работе [9].

Работа выполнена при финансовой поддержке РФФИ (гранты 08-02-00407, 08-06-00283) и Программой поддержки научных школ (грант НШ-5359.2006.2). Работа Х.В. Маловой выполнена при частичной финансовой поддержке РФФИ (гранты 05-05-64993, 06-05-90631).

Литература

- 1. Ness N.F. // J. Geophys. Res. 1965. 70. P. 2989.
- Sergeev V.A., Mitchell D.G., Russell C.T. et al. // J. Geophys. Res. 1993. 98. P. 17345.
- Lyons L.R., Speiser T. W. // J. Geophys. Res. 1985. 90. P. 8543.
- 4. Zelenyi L.M., Sitnov M.I., Malova H.V. et al. // Nonlinear processes in Geophysics. 2000. 7. P. 127.
- 5. Zelenyi L.M., Malova H.V., Popov V.Yu. et al. // Nonlinear Processes in Geophysics. 2004. **11**. P. 1.
- 6. Галеев А.А. Основы физики плазмы. Т. 1. М., 1983.
- 7. Франк-Каменецкий Д.А. Лекции по физике плазмы. М., 1968.
- Burkhart G.R., Drake J.F., Dusenbery P.B. et al. // J. Geophys. Res. 1992. 97. P. 13799.
- Runov A.V., Sergeev V.A., Nakamura R. et al. // Annales Geophysicae. 2006. 24. P. 247.

Поступила в редакцию 20.06.2007