УДК 539.171

ЭЛЕКТРОННО-ФОТОННЫЕ КАСКАДЫ В РАЗНЫХ СРЕДАХ В ОБЛАСТИ СВЕРХВЫСОКИХ ЭНЕРГИЙ

Л. Г. Деденко, Т. М. Роганова, Г. Ф. Федорова, Д. А. Подгрудков, Г. П. Шозиёев

(кафедра общей физики; НИИЯФ)

E-mail: ddn@dec1.sinp.msu.ru

Предложена численная схема для решения одномерных уравнений переноса электронов и фотонов в области сверхвысоких энергий. Тестирование предложенной схемы по известным кодам EGS4 и GEANT4 показало, что погрешности расчетов не превышают нескольких процентов и существенно меньше, чем дает каскадная теория в приближении А. Схема может использоваться для решения различных проблем физики космических лучей и нейтринной астрономии в области сверхвысоких энергий.

Введение

Давно предсказанное резкое уменьшение потока протонов и ядер первичного космического излучения (ПКИ) в области энергий больших или равных 5·10¹⁰ ГэВ из-за их взаимодействий с реликтовыми фотонами — эффект Грейзена-Зацепина-Кузьмина (ГЗК) [1, 2] — характерная особенность энергетического спектра этих частиц в рамках стандартной модели (СМ) [3]. Возможные отклонения от этой особенности — это серьезный повод для ревизии СМ. В настоящее время некоторые наблюдения широких атмосферных ливней (ШАЛ) в области энергий, бо́льших или равных 10²⁰ эВ, при ограниченной статистике наблюденных событий не согласуются с этой предсказанной особенностью энергетического спектра [4, 5], а в эксперименте [6] сделан вывод о наблюдении эффекта ГЗК. Новая установка по регистрации ШАЛ сверхвысоких энергий Auger Observatory [7] площадью 3000 км² позволит получить хорошую статистику ливней с энергией больше 10¹⁰ ГэВ.

Корректная интерпретация результатов измерений (сигналов в сцинтилляционных детекторах [4, 5], в флуоресцентных телескопах [6, 7] и водяных баках [7]) — важный элемент в решении проблемы ГЗК. Она зависит от точности решения задачи транспорта сотен миллиардов частиц в атмосфере Земли (или других средах, если рассматриваются проблемы нейтринной астрономии). Для решения этих задач транспорта были предложены различные методы [8-10]. Нам представляется, что метод одномерных уравнений переноса в рамках схемы [9, 10] обеспечивает решение проблемы транспорта частиц с достаточной точностью. В настоящей работе рассматривается транспорт электронов и фотонов в разных средах (атмосфере Земли и воде) в области сверхвысоких энергий. Предлагаемый метод одномерных уравнений переноса позволяет на много порядков сократить время вычислений по сравнению с методом Монте-Карло и уменьшить ошибку вычислений по сравнению с методами каскадной теории [11–14].

1. Численная схема решения системы одномерных уравнений переноса для электронов и фотонов

Как хорошо известно (см., напр., [11–14]), система одномерных уравнений переноса для электронов и фотонов с учетом ионизационных потерь имеет следующий вид (в приближении Б каскадной теории):

$$\frac{\partial P(E,t)}{\partial t} = -\mu_e P(E,t) + \frac{\partial (\beta(E)P)}{\partial E} + S_e(E,t) + \int P(E',t) W_b^e(E',E) dE' + \int G(E',t) W_p^e(E',E) dE',$$
(1)

$$\frac{\partial G(E,t)}{\partial t} = -\mu_{\gamma}G(E,t) + S_{\gamma}(E,t) + \int P(E',t)W_b^{\gamma}(E',E) dE',$$

где P(E,t)dEdt и G(E,t)dEdt — числа электронов и фотонов соответственно в интервале энергий E, E + dE и интервале глубин в атмосфере t, t + dt; $S_e(E,t), S_{\gamma}(E,t)$ — функции источника электронов и фотонов; μ_e и μ_{γ} — коэффициенты поглощения соответственно электронов и фотонов; $W_b^e(E',E)dE$ и $W_b^{\gamma}(E',E)dE$ — вероятности образования соответственно электрона и фотона с энергией E в результате тормозного излучения электрона с энергией E'; $W_p^e(E',E)dE$ — вероятность образования электрона (позитрона) с энергией E в результате образования пары фотоном; величина β характеризует ионизационные потери; глубина t измеряется в радиационных единицах. В приближении полного экранирования вероятности процессов тормозного излучения и генерации пар аппроксимируются следующими известными функциями [11]:

$$W_b^e(E',E) = \psi_b(1-\upsilon)/E'$$

$$W_b^{\gamma}(E',E) = \psi_b(\upsilon)/E',$$

где $\psi_b(v) = (1 + (1 - v)^2 - (1 - v)(2/3 - 2b))/v;$ $v = E/E'; b = 1/(18\ln(191Z^{-1/3})); Z$ — заряд ядра и $W_p^e(E', E) = 2\psi_p(v)/E',$

где $\psi_p(v) = v^2 + (1-v)^2 + v(1-v)(2/3-2b).$

Будем решать систему уравнений (1) в приближении обрезания сечения тормозного излучения на величине $v_{\min} = \epsilon$ ($\epsilon \ll 1$; в расчете принималось значение $\epsilon = 5 \cdot 10^{-5}$). В этом случае коэффициент поглощения μ_e , как и μ_γ , будет конечен. Значения этих коэффициентов равны

$$\mu_{e} = -\left(\frac{4}{3} + 2b\right) (\ln \epsilon + 1 - \epsilon) + (1 - \epsilon^{2})/2,$$

$$\mu_{\gamma} = \frac{7}{9} - \frac{b}{3}.$$

Если предположить, что на глубине t_i имеется фотон с энергией E_0 , то соответствующие граничные условия будут иметь вид

$$P_i(E, t_i) = 0,$$

$$G_i(E, t_i) = \delta(E - E_0)\delta(t_i).$$
(2)

Решать систему интегродифференциальных уравнений (1) с граничными условиями (2), представленными δ -функциями, численными методами нельзя. Поэтому было предложено [15] заменить условия (2) нулевыми:

$$P_i(E, t_i) = 0, \quad G_i(E, t_i) = 0$$
 (3)

и считать, что имеется функция источника электронов $S_e(E,t)$, которая определяется как аналитическое решение уравнения (1) с условиями (2) для электронов первого поколения от фотона с энергией E_0 . Эту функцию можно записать в следующем виде:

$$S_e(E,t) = 2\psi_p(v)\exp(-\mu_\gamma t)/E_0.$$
 (4)

Для решения системы уравнений (1) с граничными условиями (3) и заданной функцией источника (4) в пренебрежении ионизационными потерями ($\beta = 0$) можно использовать схему вычислений, основанную на следующем интегральном представлении системы (1):

$$P(E, t) = P_i(E, t_i) \exp(-\mu_e(t - t_i)) + + \int_{t_i}^t d\xi \exp(-\mu_e(t - \xi))(S_e(E, \xi) + A_e + B_e), G(E, t) = G_i(E, t_i) \exp(-\mu_\gamma(t - t_i)) + + \int_{t_i}^t d\xi \exp(-\mu_\gamma(t - \xi))(S_\gamma(E, \xi) + C_\gamma),$$
(5)

где использованы обозначения:

$$A_{e} = \int_{E/(1-\epsilon)}^{E_{0}} dE' P(E',\xi) W_{b}^{e}(E',E),$$

$$B_{e} = \int_{E}^{E_{0}} dE' G(E',\xi) W_{p}^{e}(E',E),$$

$$C_{\gamma} = \int_{E}^{E_{\epsilon}} dE' P(E',\xi) W_{b}^{\gamma}(E',E), \quad E_{\epsilon} = \min(E_{0},E/\epsilon).$$

При выводе (5) предполагалось, что решение P и G на глубине t_i известно, т.е. функции $P_i(E, t_i)$ и $G_i(E, t_i)$ определены. Это не является ограничением, так как на глубине $t_i = 0$ эти функции действительно известны (задаются нулевыми граничными условиями (3)) и процесс вычислений построен таким образом, что значения функций на глубине t интерпретируются как граничные значения для глубины $t + 2h_t$, где h_t — шаг по глубине. Рассмотрим процесс итераций на примере уравнения для электронов. Сначала вычислялось первое слагаемое формулы (5), которое, очевидно, интерпретируется как нулевое поколение:

$$P_0(E,t) = P_i(E,t_i) \exp(-\mu_e(t-t_i)).$$
(6)

Затем последовательно вычислялись первые поколения от функции источника и от нулевого:

$$P_{1u}(E,t) = \int_{t_i}^{t} d\xi \exp(-\mu_e(t-\xi)) S_e(E,\xi),$$
(7)
$$P_{10}(E,t) = \int_{t_i}^{t} d\xi \exp(-\mu_e(t-\xi)) \times \left(\int P_0 W_b^e dE' + \int G_0 W_p^e dE' \right).$$
(8)

После вычисления суммы

$$P_1(E,t) = P_{1u}(E,t) + P_{10}(E,t)$$
(9)

рассчитывалось второе поколение

$$P_2(E,t) = \int_{t_i}^{t} d\xi \exp(-\mu_e(t-\xi)) \times \left(\int P_1 W_b^e dE' + \int G_1 W_p^e dE' \right).$$
(10)

Наконец, определялась последняя, третья, итерация для P_3 и G_3 и находился результат:

$$P(E,t) = P_0 + P_1 + P_2 + \int_{t_i}^{t} d\xi \exp(-\mu_e(t-\xi)) \times$$

$$\times \left(\int P_2 W_b^e \, dE' + \int G_2 W_p^e \, dE' \right). \tag{11}$$

Квадратуры по глубине вычислялись методом Симпсона, а по энергии для переменной $y = \ln(E/1 \ \Gamma \Rightarrow B)$ интегрирование выполнялось с весовой функцией, отражающей особенности сечения тормозного излучения. Максимальная величина *у* определялась энергией фотона E_0 , а минимальная пороговой энергией $E_{\rm thr}$. Процесс итераций быстро сходящийся.

В описанной выше схеме вычислений нигде не использовался конкретный вид функций W_b и W_p , кроме как для иллюстрации того факта, что коэффициенты поглощения μ_e и μ_γ постоянны. В общем случае вероятности процессов тормозного излучения и генерации пар не описываются известными асимптотическими формулами для случая полного экранирования, а задаются более сложными выражениями, например, учитывающими эффект Ландау-Померанчука [16], и определяются сечениями Мигдала [17]. Поэтому коэффициенты поглощения будут функциями энергии, а в атмосфере — и глубины. В общем случае произвольных сечений для физических процессов и с учетом ионизационных потерь энергии ($\beta \neq 0$) интегральное представление (5) изменится следующим образом:

$$P(E, t) = P_{i}(E + \beta(t - t_{i}), t_{i}) \exp\left(-\int_{t_{i}}^{t} d\xi \mu_{e}(E_{\xi})\right) + \int_{t_{i}}^{t} d\xi \exp\left(-\int_{\xi}^{t} dt' \mu_{e}(E + \beta(t - t'))\right) \times (S_{e}(E_{\xi}, \xi) + A_{e} + B_{e}), \quad (12)$$

$$G(E, t) = G_i(E, t_i) \exp(-\mu_{\gamma}(E)(t - t_i)) + \int_{t_i}^t d\xi \exp(-\mu_{\gamma}(E)(t - \xi))(S_{\gamma}(E, \xi) + C_{\gamma}),$$

где использованы те же обозначения для A_e , B_e , C_{γ} , что и в (5); $E_{\xi} = E + \beta(t - \xi)$, но функции W_b , W_p определяются в соответствии с новыми сечениями.

Далее схема вычислений строится в соответствии с этапами (6)–(11) и учетом особенностей интегрального представления (12). Нулевое поколение будет определяться как

$$P_0(E,t) = P_i(E + \beta(t - t_i), t_i) \exp\left(-\int_{t_i}^t d\xi \mu_e(E_\xi)\right).$$
(13)

Первые поколения от функции источника и от

нулевого поколения будут равны

$$P_{1u}(E,t) = \int_{t_i}^t d\xi \exp\left(-\int_{\xi}^t dt' \mu_e(E+\beta(t-t'))\right) S_e(E_{\xi},\xi),$$
(14)

$$P_{10}(E,t) = \int_{t_i}^t d\xi \exp\left(-\int_{\xi}^t dt' \mu_e(E+\beta(t-t'))\right) \times \left(\int P_0 W_n^e dE' + \int G_0 W_p^e dE'\right).$$
(15)

Сумма

$$P_1(E,t) = P_{1u}(E,t) + P_{10}(E,t)$$
(16)

определяет второе поколение

$$P_2(E,t) = \int_{t_i}^t d\xi \exp\left(-\int_{\xi}^t dt' \mu_e(E+\beta(t-t'))\right) \times \left(\int P_1 W_b^e dE' + \int G_1 W_p^e dE'\right).$$
(17)

Последняя итерация, как и выше, определяет третье поколение, а сумма всех поколений — результат:

$$P(E, t) = P_0 + P_1 + P_2 + \int_{t_i}^{t} d\xi \exp\left(-\int_{\xi}^{t} dt' \,\mu_e(E + \beta(t - t'))\right) \times \left(\int P_2 W_b^e \, dE' + \int G_2 W_p^e \, dE'\right).$$
(18)

При оценке (18) используется сумма определенных ранее поколений. Квадратуры по переменной $\hat{\xi}$ вычисляются методом Симпсона, а по $y = \ln(E/1 \ \Gamma \Im B)$ — с использованием весовой функции. Полученными формулами можно пользоваться для расчетов электронно-фотонных каскадов и в случае, когда необходимо учитывать точные выражения для сечений физических процессов. Предложенный метод расчета позволяет учесть и другие физические процессы, например эффект Комптона, а также эффект Ландау-Померанчука с сечениями Мигдала в воздухе и в воде. В случае среды постоянной плотности применение формул (13)-(18) не вызывает трудностей. В случае атмосферы сечения процессов [17], а следовательно, и коэффициенты поглощения μ_e и μ_γ зависят от глубины t. Поэтому все сечения и коэффициенты поглощения в этом случае необходимо рассчитывать после каждого шага h_t по глубине, что очень сильно замедляет процесс вычислений. Результаты расчетов контролировались дополнительными вычислениями, которые проводились методом Монте-Карло. Приведенная выше схема вычислений была использована также для расчета угловых и пространственных моментов [18].

2. Результаты расчета и выводы

Метод одномерных уравнений переноса применим в области энергий, где кулоновское рассеяние мало́. Так как энергия рассеяния $E_s = 21$ МэВ, то мы выбрали пороговую энергию $E_{thr} = 10$ ГэВ. На рис. 1 приведены рассчитанные нами в зависимости от глубины потоки фотонов (сплошные линии) и электронов (пунктирные линии) с энергиями выше пороговой в каскадах от первичного фотона с энергиями 10^4 , 10^5 , 10^6 и 10^7 ГэВ (кривые 1-4 соответственно). На этом же рисунке

 $N_e(t), N_{\gamma}(t)$

Рис. 1. Каскадные кривые для фотонов (сплошные линии) и электронов (пунктирные линии) с пороговой энергией 10 ГэВ. Сплошные квадраты [11], кружки [19], треугольники [20] для фотонов, полые фигуры — для электронов. Энергии первичного фотона: кривая $1 - 10^4$ ГэВ, кривая $2 - 10^5$ ГэВ, кривая $3 - 10^6$ ГэВ и кривая $4 - 10^7$ ГэВ

для сравнения приведены результаты, полученные нами в рамках приближения А каскадной теории (квадратики) и рассчитанные по кодам EGS4 [19] (кружки) и GEANT4 [20] (треугольники). Сплошные фигуры — результаты для фотонов, а полые для электронов. Видно, что в пределах нескольких процентов все результаты согласуются. Однако наша схема (18) позволяет учесть зависимость сечений от энергии. На рис. 2 приведены энергетические спектры электронов на глубинах в атмосфере 5, 15, 22 и 28 каскадных единиц (кривые 1-4 соответственно), рассчитанные в ливне от первичного фотона с энергией 107 ГэВ как без учета ионизационных потерь (сплошные линии), так и с их учетом и с точными сечениями [21]. Видно, что в районе максимума различие в спектрах не более нескольких процентов. Отметим, что недавно появилась очень интересная работа [22], в которой также используются точные сечения процессов и расчеты

Рис. 2. Энергетические спектры электронов на различных глубинах в атмосфере в ливне от первичного фотона с энергией 10⁷ ГэВ. Сплошные линии — без учета ионизационных потерь; пунктирные линии — с их учетом и точными сечениями [21]. Кривая 1 — 5 каскадных единиц, кривая 2 — 15 каскадных единиц, кривая 3 — 22 каскадные единицы и кривая 4 — 28 каскадных единиц

проводятся в одномерном приближении. В случае сечений Мигдала [17] флуктуации в развитии каскадов велики, и поэтому сначала надо использовать метод Монте-Карло, а затем — уравнения переноса [9, 10] или некоторые аппроксимации. На рис. 3 приведены индивидуальные каскадные кривые для электронов с энергией больше нуля (сплошные линии) в атмосфере от первичного фотона с энергией 10¹¹ ГэВ. Для расчета использовались разработанный нами метод Монте-Карло и аппроксимация Нишимуры-Каматы-Грейзена [23] для энергий ниже пороговой ($E_{\rm thr} = 10^8$ ГэВ). Темные кружки — это результат усреднения индивидуальных каскадных кривых, а звездочки — аппроксимация [23]. Видно, что флуктуации очень велики и поэтому средняя каскадная кривая плохо отражает особенности процессов. Для проверки нашего метода Монте-Карло было проведено моделирование по коду GEANT4 для воды с сечениями Мигдала [17]. На рис. 4 приведены каскадные кривые для фотонов (сплошные линии) и электронов (пунктирные линии) с энергиями выше пороговой $E_{\rm thr}=10~\Gamma$ эВ для воды в ливнях от первичных фотонов с энергиями 10⁵, 10⁶ и 107 ГэВ (кривые 1-3 соответственно). Результаты расчета по коду GEANT4 показаны сплошными (для фотонов) и полыми (для электронов) треугольниками. В пределах статистики видно хорошее согласие. На рис. 5 приведена динамика баланса энергий в электронно-фотонном ливне в атмосфере от первичного фотона с энергией $E_0 = 10^{10}$ ГэВ

Рис. 3. Индивидуальные каскадные кривые (сплошные линии) для полного числа частиц в атмосфере в ливне от первичного фотона с энергией 10¹¹ ГэВ с учетом эффекта ЛПМ. Кружки — усредненная по 100 индивидуальным ливням каскадная кривая, звездочки — аппроксимация [23]

Рис. 4. Каскадные кривые для фотонов (сплошные линии) и электронов (пунктирные линии) с пороговой энергией 10 ГэВ в воде с учетом эффекта ЛПМ. Сплошные и полые треугольники — данные для фотонов и электронов соответственно [20]. Энергия первичного фотона: кривая 1 — 10⁵ ГэВ, кривая 2 — 10⁶ ГэВ и кривая 3 — 10⁷ ГэВ

и пороговой энергией $E_{\rm thr} = 10$ ГэВ. Кривая 1 показывает динамику уменьшения энергии первичного фотона (в долях E_0). Кривые 2 и 3 — это энергии электронов и фотонов. Кривая 5 — это сумма кривых 2 и 3. Кривая 4 показывает потери энергии, т.е. переход энергии к частицам с энергией ниже пороговой. Кривая 6 — это сумма всех кривых, т.е.

Рис. 5. Динамика баланса энергий с глубиной в долях энергии E_0 первичного фотона в атмосфере. Кривая 1 — энергия первичного фотона, кривая 2 — энергия вторичных электронов, кривая 3 — энергия вторичных фотонов, кривая 4 энергия вторичных электронов и фотонов за порогом 10 ГэВ, кривая 5 — сумма кривых 2 и 3, кривая 6 — общая сумма. Кривые 2', 3' и 5' результаты каскадной теории в приближении А

полный баланс энергий. Видно, что в огромном диапазоне энергий (8 порядков) и глубин (35 каскадных единиц) погрешность решения составляет несколько процентов. Для сравнения приведены результаты каскадной теории (кривые 2', 3' и 5'). В области применимости согласие составляет несколько процентов. При меньших глубинах погрешность возрастает. Следует обратить внимание на плато в потоках энергии электронов и фотонов в интервале глубин между 200 и 400 г/см². Это плато должно появляться, поскольку на основании закона сохранения энергии существенных поступлений или потерь энергии в электронно-фотонном каскаде в этом интервале глубин нет (см. кривые 1 и 4). Интересно отметить, что отношение энергий фотонов и электронов совпадает с отношением коэффициентов $H^{\gamma}_{\gamma}(s)$ и $H^{e}_{\gamma}(s)$ каскадной теории при значении параметра s = 1, которые равны 0.567 и 0.433 [11]. Наконец, для оценки влияния параметра є на рис. 6 приведены результаты расчетов каскадных кривых для ливня от первичного фотона с энергией $E_0 = 10^{10}$ ГэВ для значений параметра $\epsilon = 0.5 \cdot 10^{-4}$, $\epsilon = 0.5 \cdot 10^{-3}$ и $\epsilon = 0.5 \cdot 10^{-2}$. Видно, что выбранное значение $\epsilon = 0.5 \cdot 10^{-4}$ является хорошим приближением.

Рис. 6. Каскадные кривые для ливней от фотона с энергией 10^{10} ГэВ для значений параметра ϵ , равных $0.5 \cdot 10^{-4}$ (кривая 1), $0.5 \cdot 10^{-3}$ (кривая 2) и $0.5 \cdot 10^{-2}$ (кривая 3)

Таким образом, разработаны алгоритм и программы моделирования электронно-фотонных каскадов в разных средах в области сверхвысоких энергий. Разработанные методы применимы для огромной области значений переменных и точных выражений для сечений физических процессов. Эти методы позволят успешно решать проблемы интерпретации сигналов разных детекторов в различных средах и могут быть полезными при решении проблемы ГЗК, для тестирования СМ, исследования энергетического спектра ПКИ и нейтринной астрономии. Авторы выражают глубокую признательность Г. Т. Зацепину за ценные замечания. Работа выполнена при финансовой поддержке программы «Ведущие научные школы» (грант НШ-959.2008.2) и РФФИ (грант 07-02-01212).

Литература

- 1. Greizen K. // Phys. Rev. Lett. 1966. 16. P. 748.
- 2. Зацепин Г.Т., Кузьмин В.А. // Письма в ЖЭТФ. 1966. **4**. С. 78.
- 3. *Любимов А., Киш Д.* Введение в экспериментальную физику частиц. М., 2001.
- 4. Pravdin M.I., Glushkov A.V., Ivanov A.A. et al. // Proc. of the 29th ICRC. 2005. Pune, India. 7. P. 243.
- Shinozaki K., Chikawa M., Fukushima M. et al. // Astrophys. J. 2002. L117. P. 571.
- 6. Bergman D.R. for the HiRes Collab. // Proc. of the 29th ICRC. 2005. Pune, India. **7**. P. 315.
- 7. Watson A. // CERN Courier. 2006. 46, N 6. P. 12.
- Hillas A.M. // Proc. of the 17th ICRC. 1981. Paris. 6. P. 244.
- Dedenko L.G., Fedorova G.F., Fedunin E.Yu. et al. // Nucl. Phys. B. (Proc. Suppl.). 2004. 136. P. 12.
- Dedenko L.G., Fedorova G.F., Fedunin E.Yu. et al. // Nucl. Phys. B. (Proc. Suppl.). 2006. 151. P. 19.
- 11. Росси Б. Частицы больших энергий. М., 1955.
- 12. Беленький С.З. Лавинные процессы в космических лучах. М., 1948.
- 13. Иваненко И.П. Электромагнитные каскадные процессы. М., 1972.
- 14. *Nishimura J.* Theory of cascade showers. Handbuch der Physik B. Springer, 1967.
- 15. *Dedenko L.G.* // Proc. of the 15th ICRC. 1977. Plovdiv. **8**. P. 470.
- 16. Ландау Л.Д., Померанчук И.Я. // Докл. АН СССР. 1953. **92**, № 3. С. 535.
- 17. Migdal A.B. // Phys. Rev. 1956. 103, N 6. P. 1811.
- 18. Деденко Л.Г., Коломацкий С.Г., Миронович А.А. // Мат-лы Всесюз. конф. по косм. лучам. Алма-Ата, 1989. Ч. 2. С. 3.
- 19. *The GEANT4 Collab.* http://wwwinfo.cern.ch/asd/geant4.html.
- 20. Nelsen W.R., Hirayama H., Rogers D.W.O. et al. // The EGS4 code system. SLAC. 1985. P. 256.
- 21. Деденко Л.Г., Железных И.М., Коломацкий С.Г. // Изв. АН СССР. Сер. физ. 1989. **53**, № 2. С. 350.
- 22. Bergman T., Engel R., Heck D. et al. // Astropart. Phys. 2007. 26. C. 420.
- 23. Грейзен К. // Физика косм. лучей. М., 1958. **3**. С. 3.

Поступила в редакцию 28.06.2007