ОПТИКА И СПЕКТРОСКОПИЯ. ЛАЗЕРНАЯ ФИЗИКА

УДК 539.184

СИГНАЛЫ МАГНИТНОГО РЕЗОНАНСА ОТ ОПТИЧЕСКИ ОРИЕНТИРОВАННОЙ ДВУХУРОВНЕВОЙ СПИНОВОЙ СИСТЕМЫ В ПРИСУТСТВИИ НЕРЕЗОНАНСНЫХ ПОЛЕЙ

С. Д. Петрова, Р. М. Умарходжаев

E-mail: saline@inbox.ru

Теоретически и экспериментально изучено движение вектора намагниченности в присутствии двух дополнительных нерезонансных радиочастотных полей круговой поляризации, вращающихся в той же плоскости, что и резонансное радиочастотное поле частоты ω . Амплитуды нерезонансных полей равны, их частоты отличаются от резонансной частоты ω на величину $\pm \Omega$, значительно превышающую ширину линии магнитного резонанса.

Введение

Исследованию динамики вектора намагниченности **M** в магнитном поле $\mathbf{H} = \mathbf{i}H_X + \mathbf{j}H_Y + \mathbf{k}H_Z$ посвящено большое число публикаций (см., напр., работу [1] и ссылки в ней). Изменение во времени компонент вектора намагниченности $M = \{M_X, M_Y, M_Z\}$ описывается уравнениями Блоха-Блума [1], являющимися следствием квантовомеханического расчета движения спина 1/2 в скрещенных полях: H_⊥ поле, действующее в плоскости ХОУ, H_z – вдоль оси Z [2, 3]. Точное решение этих уравнений может быть получено лишь в отдельных случаях, в частности, если H_Z не зависит от времени, а радиочастотное магнитное является вращающимся полем круговой поляризации $H_{\perp} = iH_X + jH_Y = H_1 e^{-j\omega t}$. При этих условиях решение уравнений показывает [3], что амплитуды поперечных компонент *M_X* и *M_Y* вектора *M* как функции расстройки $\Delta\omega_0$ суть сигналы поглощения $v(\Delta\omega_0)$ и дисперсии $u(\Delta\omega_0)$ лоренцевой формы ($\Delta\omega_0 = \omega_0 - \omega$, $\omega_0 = \gamma H_Z$, γ — гиромагнитное отношение). Продольная компонента намагниченности M_Z не зависит от времени. Смысл этого решения [3] в том, что вектор $\boldsymbol{M} = \{M_X, M_Y, M_Z\}$ совершает вынужденную прецессию вокруг поля $H_Z = H_0$ с частотой ω , являясь образующей круглого прямого конуса. Высота конуса равна M_Z, угол раствора конуса прецессии зависит от величин $\gamma H_1, \Delta \omega_0, T_1, T_2,$ где T_1, T_2 времена релаксации продольной и поперечных компонент намагниченности.

Одним из наиболее распространенных методов регистрации сигналов магнитного «резонанса в скрещенных полях является метод боковых сигналов» [2], при котором H_Z -компонента магнитного поля изменяется по гармоническому закону $H_Z(t) = H_0 + H_m \sin \Omega t$ с частотой Ω , удовлетворяющей условию $\omega \gg \Omega \gg 1/T_2$ [1]. Движение вектора намагниченности в модулированном поле при выполнении соотношений $\frac{\gamma H_1}{\Omega} \sim \frac{1}{\Omega T_2} \sim \frac{1}{\Omega T_1} \ll 1$ описывается приближенным решением уравнений Блоха [1]. При этом M_Z -компонента вектора намагниченности не зависит от времени (с точностью до величин $\left(\frac{\gamma H_1}{\Omega}\right)$). Вектор намагниченности в модулированном поле $H_Z(t) = H_0 + H_m \sin \Omega t$, как и в немодулированном поле, прецессирует вокруг поля H_0 . Так как изменение M_Z -компоненты во времени мало, то при фиксированных величинах $\gamma H_1, \Delta \omega_0$ угол раствора конуса прецессии постоянен и основным эффектом модуляции поля является изменение фазы прецессии вектора намагниченности.

Преимущество этого метода по сравнению с методом приема сигналов при отсутствии модуляции связано с возможностью усиления и детектирования сигналов магнитного резонанса на частоте модуляции Ω , что устраняет проблему дрейфа нулевой линии [2].

С ростом величины γH_1 амплитуда M_Z -сигнала на частоте Ω растет и достигает экстремальных значений при $\gamma H_1 \sim \Omega$. Теория, развитая в [4–6] для случая $\gamma H_1 \sim \Omega$, корректно описывает лишь центральную часть резонансной линии интенсивных M_Z -сигналов, что не позволяет представить наглядную картину движения вектора намагниченности в пределах всей резонансной линии.

В то же время интерес к интенсивным M_Z -сигналам очевиден: они надежно регистрируются [1, 6, 7] и могут быть использованы для точной дискриминации атомных переходов в квантовой магнитометриии и системах стабилизации частоты и т.д. [4, 8–10].

В настоящей работе теоретически и экспериментально исследуется метод получения интенсивных

⁽НИИЯФ)

*М*_Z-сигналов магнитного резонанса, заключающийся в том, что на спиновую систему, находящуюся в скрещенных полях, воздействуют двумя дополнительными нерезонансными полями $\frac{1}{2}H_2e^{-j(\omega\pm\Omega)t+j\alpha}$, вращающимися, как и резонансное поле, в плоскости XOY. Амплитуды полей равны, частота Ω удовлетворяет условию $\omega \gg \Omega \gg 1/T_2$, α — вводимый контролируемый сдвиг фазы. Развитая в настоящей работе теория дает возможность наглядно представить динамику вектора намагниченности в зависимости от величины амплитуды нерезонансного поля в широкой области расстроек $\Delta \omega_0$.

Метод позволяет регистрировать интенсивные M_Z-сигналы либо в виде сигнала дисперсии при $\alpha = \pi/2$, либо в виде сигнала поглощения при $\alpha = 0$, традиционно наблюдаемые при регистрации поперечных M_X, M_Y -компонент намагниченности.

1. Теория. Сигнал поглощения

В лабораторной системе координат $\{x, y, z\}$ уравнения Блоха-Блума [1] имеют вид

$$\begin{cases} \dot{M} + \frac{M}{T_2} = -j\omega_0 M + jM_Z \gamma H_{\perp}, \\ \dot{M}_Z + \frac{M_Z}{T_1} = -\gamma \operatorname{Im}[MH_{\perp}^*] + \frac{1}{T_1}M_0, \end{cases}$$
(1)

где $M = M_X + iM_Y$, \dot{M}, \dot{M}_Z — производные по времени, $\omega_0 = \gamma H_0$ — частота Лармора, γ — гиромагнитное отношение, Т1 и Т2 — времена продольной и поперечной релаксации с учетом светового уширения [1], *M*₀ – стационарная намагниченность, *і* — мнимая единица, Im — мнимая часть, * комплексно-сопряженная величина.

Проведем анализ системы (1) при $\alpha = 0$. Для упрощения анализа уравнений (1) положим $T_1 = T_2 = T$. В этом случае

$$H_{\perp} = H_X + jH_Y = H_1 e^{-j\omega t} + \frac{1}{2} H_2 e^{-j(\omega \pm \Omega)t}.$$
 (2)

Используя замену [2]

$$\begin{cases} M = (u_1 - jv_1)e^{(-j\omega t)}, \\ M_Z = M_{Z_1}, \end{cases}$$
(3)

перейдем в систему координат $\{x_1, y_1, z_1 \equiv z\}$, вращающуюся с частотой ω вокруг оси z. Для поперечных компонент намагниченности u_1, v_1 и продольной компоненты M_{Z1} получим уравнения

$$\begin{cases} \dot{u}_{1} + \frac{1}{T}u_{1} + \Delta\omega_{0}v_{1} = 0, \\ \dot{v}_{1} + \frac{1}{T}v_{1} + \Delta\omega_{0}u_{1} = -M_{Z_{1}}\gamma(H_{1} + H_{2}\cos\Omega t), \\ \dot{M}_{Z_{1}} + \frac{1}{T}M_{Z_{1}} - v_{1}\gamma(H_{1} + H_{2}\cos\Omega t) = \frac{1}{T}M_{0}. \end{cases}$$
(4)

С помощью замены [11]

$$\begin{cases} v_1 = v_2 \cos \varphi - M_{Z_2} \sin \varphi, \\ M_{Z_1} = M_{Z_2} \cos \varphi + v_2 \sin \varphi, \\ u_1 \equiv u_2, \end{cases}$$
(5)

перепишем уравнения (4) для системы координат $\{x_2 \equiv x_1, y_2, z_2\}$, совершающей колебания с частотой $\dot{\varphi} = \gamma H_2 \cos \Omega t$ вокруг оси x_1 :

$$\begin{cases} \dot{u}_{2} + \frac{1}{T}u_{2} = -\Delta\omega_{0}J_{0}(\beta)v_{2} - \\ -\Delta\omega_{0}\sum_{n=1}^{\infty}J_{n}(\beta)(v_{2}\cos n\Omega t - M_{Z_{2}}\sin n\Omega t), \\ \dot{v}_{2} + \frac{1}{T}v_{2} + M_{Z_{2}}\gamma H_{1} = u_{2}J_{0}(\beta)\Delta\omega_{0} + \\ +\sum_{n=1}^{\infty}J_{n}(\beta)\left(u_{2}\Delta\omega_{0}\cos n\Omega t + \frac{1}{T}M_{0}\sin n\Omega t\right), \\ \dot{M}_{Z_{2}} + \frac{1}{T}M_{Z_{2}} - v_{2}\gamma H_{1} = J_{0}(\beta)\frac{1}{T}M_{0} + \\ +\sum_{n=1}^{\infty}J_{n}(\beta)\left(\frac{1}{T}M_{0}\cos n\Omega t - u_{2}\Delta\omega_{0}\sin n\Omega t\right), \end{cases}$$
(6)

где v_2, u_2, M_{Z_2} — соответственно поперечные и продольная компоненты намагниченности в системе $\{x_2 \equiv x_1, y_2, z_2\}, J_n(\beta)$ — функция Бесселя первого рода *n*-го порядка от аргумента $\beta = \frac{\gamma H_2}{\Omega}$. Уравнения (6) записаны с учетом формулы [12]

$$e^{j\beta\sin\Omega t} = \sum_{n=0}^{\infty} J_n(\beta) e^{jn\Omega t}.$$
 (7)

Система уравнений (6) является точной. Все зависящие от времени параметры, имеющие размерность частоты, малы по сравнению с частотой Ω . Усредняя систему (6) по периоду $T_{\Omega} = (1/\Omega)$ [13], получим уравнения с постоянными коэффициентами

$$\begin{cases} \dot{u}_{2} + \frac{1}{T}u_{2} + J_{0}(\beta)\Delta\omega_{0}v_{2} = 0, \\ \dot{v}_{2} + \frac{1}{T}v_{2} + M_{Z_{2}}\gamma H_{1} = u_{2}J_{0}(\beta)\Delta\omega_{0}, \\ \dot{M}_{Z_{2}} + \frac{1}{T}M_{Z_{2}} - v_{1}\gamma H_{1} = \frac{1}{T}J_{0}(\beta)M_{0}. \end{cases}$$
(8)

Если (u_2, v_2, M_{Z2}) — решение уравнений (8), то компоненты вектора намагниченности M_X, M_Y, M_Z даются выражениями

$$M_X = u_2 \cos \omega t - v_2 J_0(\beta) \sin \omega t -$$

$$- v_2 \sum_{n=1}^{\infty} J_{2n}(\beta) [\sin(\omega - 2n\Omega)t + \sin(\omega + 2n\Omega)t] +$$

$$+ M_{Z2} \sum_{n=0}^{\infty} J_{2n+1}(\beta) [\cos(\omega - (2n+1)\Omega)t +$$

$$+ \cos(\omega + (2n+1)\Omega)t], \qquad (9)$$

$$M_Y = -u_2 \sin \omega t - v_2 J_0(\beta) \cos \omega t -$$

$$-v_2 \sum_{n=1}^{\infty} J_{2n}(\beta) [\cos(\omega - 2n\Omega)t + \cos(\omega + 2n\Omega)t] +$$

$$+ M_{Z2} \sum_{n=0}^{\infty} J_{2n+1}(\beta) [-\sin(\omega - (2n+1)\Omega)t +$$

$$+ \sin(\omega + (2n+1)\Omega)t], \quad (10)$$

$$M_Z = M_{Z2} J_0(\beta) + 2v_2 J_1(\beta) \sin\Omega t +$$

$$+2\sum_{n=1}^{\infty} (M_{Z2}J_{2n}(\beta)\cos 2n\Omega t + v_2J_{2n+1}(\beta)\sin(2n+1)\Omega t).$$
(11)

При установившемся движении решение системы (8) имеет вид

$$\begin{cases} u_{2_0} = J_0(\beta) M_0 \frac{(J_0(\beta)\Delta\omega_0)\gamma H_1}{(1/T)^2 + (\gamma H_1)^2 + (J_0(\beta)\Delta\omega_0)^2}, \\ v_{2_0} = -J_0(\beta) M_0 \frac{\gamma H_1(1/T)}{(1/T)^2 + (\gamma H_1)^2 + (J_0(\beta)\Delta\omega_0)^2}, \\ M_{Z2_0} = J_0(\beta) M_0 \frac{(1/T)^2 + (J_0(\beta)\Delta\omega_0)^2}{(1/T)^2 + (\gamma H_1)^2 + (J_0(\beta)\Delta\omega_0)^2}. \end{cases}$$
(12)

Согласно (9)–(11), сигналы поглощения v_2 можно регистрировать как с помощью поперечных, так и продольной компонент намагниченности.

Для практического использования наибольший интерес представляет первая гармоника M_Z -сигнала — $M_Z^{(1)}$:

$$M_Z^{(1)} = A_Z^{(\Omega)} \sin \Omega t =$$

= $2J_0(\beta)J_1(\beta) \frac{M_0(\gamma H_1 T)}{1 + (\gamma H_1 T)^2 + \Delta \omega^2 J_0^2(\beta) T^2} \sin \Omega t.$ (13)

Амплитуда $A_Z^{(\Omega)}$ сигнала (14) достигает максимального значения при $\Delta \omega_0 = 0$, $\gamma H_1 T = 1$ и $\beta \approx 1.1$ и равна $A_Z \sim 0.68 v_B^{\text{max}}$, где $v_B^{\text{max}} = -\frac{M_0}{2}$ — максимальная величина сигнала поглощения v_B Блоха [3]. При $\gamma H_1 T = 1$ и $\beta \approx 1.1$ полуширина сигнала $A_Z^{(\Omega)}$ имеет величину $\Delta \omega_J \sim 1.4 \Delta \omega_B$, где $\Delta \omega_B = \frac{\sqrt{2}}{T}$ — полуширина сигнала v_B Блоха [3].

Геометрическая и физическая интерпретация решений (5), (9)-(11) и (12)

1. Сигналы $u_{2_0}, v_{2_0}, M_{Z2_0}$ связаны уравнением сферы [14]

$$u_{2_0}^2 + v_{2_0}^2 + \left(M_{Z2_0} - \frac{1}{2}J_0(\beta)M_0\right)^2 = \frac{1}{4}J_0^2(\beta)M_0^2 \quad (14)$$

с радиусом $R = \frac{1}{2} |J_0(\beta)| M_0$ и центром в точке $\{0, 0, \frac{1}{2} J_0(\beta) M_0\}$. При положительном значении функции Бесселя $J_0(\beta)$ сфера (14) расположена над плоскостью ($z_2 = 0$), а при отрицательном значении — под плоскостью ($z_2 = 0$). При $J_0(\beta) = 0$ сфера обращается в точку с координатами $\{0, 0, 0\}$.

2. В подвижной системе координат $\{x_1, y_1, z_1\}$ вектор намагниченности **M** совершает вынужденную прецессию с частотой $\dot{\varphi} = \gamma H_2 \cos \Omega t$ вокруг оси x_1 . Вершина конуса прецессии находится в точке $\{0, 0, 0\}$. Основанием конуса является окружность, расположенная в плоскости, параллельной плоскости (y_1Oz_1), конец вектора движется по дуге окружности с центральным углом $\varphi = \beta \sin \Omega t$, $\beta = \frac{\gamma H_2}{\Omega}$. При $\Delta \omega = 0$ колебание вектора **M** происходит в плоскости (y_1Oz_1).

3. В лабораторной системе координат $\{x, y, z\}$ вектор намагниченности **M** участвует в двух движениях: прецессирует вокруг направления поля H_0 с частотой ω и вокруг направления поля H_1 с частотой $\dot{\varphi} = \gamma H_2 \cos \Omega t \ll \omega$.

3. Эксперимент

Эксперимент выполнялся по двулучевой схеме [15, 16]. Ориентация системы магнитных моментов рабочего вещества происходила под действием оптического излучения, распространявшегося вдоль оси Z (Z-луча). Этим же излучением производился опрос M_Z-компоненты намагниченности. Для опроса М_X-компоненты намагниченности использовался второй луч — Х-луч, интенсивность которого значительно слабее интенсивности Z-луча. Рабочее вещество — пары атомов ¹³³Cs. Напряженность постоянного магнитного поля $H_0 \sim 0.270 \cdot 10^{-4}$ Тл, частота резонансного радиочастотного поля (ω)/2 π = 95 кГц, частоты нерезонансных полей ($\omega \pm \Omega$)/ $2\pi = (95 \pm 5)$ кГц. В эксперименте использовались линейно-осциллирующие радиочастотные поля. Анализ показал, что при $\frac{\Omega}{\omega} = \frac{5}{95} \approx 0.05$ и $\beta = \frac{\gamma H_2}{\Omega} \leqslant 2.4$ решения уравнений (1) с радиочастотными полями круговой и линейной поляризации совпадают с погрешностью до 2.5%.

Эксперимент проводился по следующей схеме.

Сначала в отсутствие нерезонансных полей с помощью X-луча детектировался сигнал магнитного резонанса, индуцируемый радиочастотным полем $H_1 \cos \omega t$. Изменением величины H_1 удовлетворялось условие $\gamma H_1 T = 1$, при котором амплитуда сигнала магнитного резонанса максимальна. После чего при выбранной величине H_1 на систему спинов воздействовали дополнительными нерезонансными радиочастотными полями.

Реакцию спиновой системы на воздействия нерезонансных полей наблюдали с помощью Zи X-лучей посредством детектирования одновременно продольной $M_{Z_{\Omega}} = A_Z^{(\Omega)}(\Delta \omega_0, H_1, H_2) \sin \Omega t =$ $= 2v_{2_0}(\Delta \omega_0)J_1(\beta) \sin \Omega t$ и поперечной $M_{X_{\omega}} =$ $= A_X^{(\omega)}(\Delta \omega_0, H_1, H_2) \sin \omega t = -v_{2_0}(\Delta \omega_0)J_0(\beta) \sin \omega t$ компонент намагниченности. В магнитном поле $H_0 \sim 0.270 \cdot 10^{-4} T_\Delta$ из-за наличия сверхтонкого взаимодействия [17] спектр магнитного резонанса состоит из двух сигналов $A^{F_4}(\Delta\omega_0)$ и $A^{F_3}(\Delta\omega_0)$ (рис. 1), соответствующих сверхтонким подуровням F_4 и F_3 основного состояния ¹³³Cs. Каждый из сигналов $A^{F_4}(\Delta\omega_0)$ и $A^{F_3}(\Delta\omega_0)$ в магнитном поле, меньшем 10^{-4} Тл, описывается уравнениями Блоха [3]. Ширины линий сигналов магнитного резонанса с учетом светового уширения — порядка 190 Гц. Расстояние между центрами расщепленных сигналов составляет $\Delta_1 \approx 300$ Гц.

Рис. 1. Экспериментальные сигналы: $A_X^{(\omega)}(\Delta\omega_0)$ — сплошная кривая, $A_Z^{(\Omega)}(\Delta\omega_0)$ — кружки, полученные при значениях $\gamma U_1 T = 1$ и $\beta = \frac{\gamma H_2}{\Omega} = 0.3$

Цели эксперимента:

1) показать, что в соответствии с выводами теории при регистрации в одних и тех же условиях зависимости амплитуд $A_Z^{(\Omega)}(\Delta\omega_0)$ и $A_X^{(\omega)}(\Delta\omega_0)$ от расстройки $\Delta\omega_0$ совпадают;

2) сопоставить теоретические и экспериментальные зависимости амплитуд $A_X^{(\omega)}(\Delta\omega_0, H_1, H_2)$ и $A_Z^{(\Omega)}(\Delta\omega_0, H_1, H_2)$ от величины H_2 (а именно индекса модуляции $\beta = \frac{\gamma H_2}{\Omega}$) при фиксированной H_1 и расстройке $\Delta\omega_0 = 0$.

4. Результаты эксперимента

На рис. 1 представлены экспериментальные сигналы: $A_X^{(\omega)}(\Delta\omega_0)$ — сплошная кривая, $A_Z^{(\Omega)}(\Delta\omega_0)$ — кружки, полученные при значениях $\gamma H_1 T = 1$ и $\beta = \frac{\gamma H_2}{\Omega} = 0.3$. Оси координат на рис. 1 выбраны таким образом, чтобы начало оси расстроек $\Delta\omega_0$ соответствовало максимумам линий поглощения $A_X^{F_4}(\Delta\omega_0)$ и $A_Z^{F_4}(\Delta\omega_0)$. Амплитуды $A_X^{F_4}(\Delta\omega_0)$ и $A_Z^{F_4}(\Delta\omega_0)$ и $A_Z^{F_4}(\Delta\omega_0)$ совпадают и в масштабе рисунка неразличимы. Этим совпадением экспери-

ментально подтверждена возможность регистрации сигнала поглощения с помощью M_Z -компоненты намагниченности.

На рис. 2 сплошными кривыми представлены теоретические зависимости величин амплитуд сигналов поглощения $A_X^{(\omega)}(\beta, \Delta\omega_0=0)$ и $A_Z^{(\Omega)}(\beta, \Delta\omega_0=0)$ от индекса модуляции $\beta = \frac{\gamma H_2}{\Omega}$, точками — экспериментальные значения амплитуд сигналов $A_X^{F_4}(\beta, \Delta\omega_0=0)$ и $A_Z^{F_4}(\beta, \Delta\omega_0=0)$ от $\beta = \frac{\gamma H_2}{\Omega}$.

Рис. 2. Теоретическая зависимость амплитуд сигналов поглощения $A_X^{(\omega)}(\beta, \Delta\omega_0=0)$ и $A_Z^{(\Omega)}(\beta, \Delta\omega_0=0)$ от индекса модуляции (сплошные кривые). Экспериментальные значения амплитуд сигналов $A_X^{F_4}(\beta, \Delta\omega_0=0)$ и $A_Z^{F_4}(\beta, \Delta\omega_0=0)$ от $\beta = \frac{\gamma H_2}{\Omega}$ (точки)

Экспериментальные данные совпадают с теоретическими зависимостями с погрешностью, не превышающей 5%.

Заключение

В ходе выполненных исследований получены следующие результаты.

1. Изучена динамика вектора намагниченности M, взаимодействующего с постоянным магнитным полем H_0 , резонансным радиочастотным полем частоты ω и двумя нерезонансными радиочастотными полями одинаковой амплитуды, частоты которых отличаются от резонансной частоты на величину $\pm \Omega$, значительно превышающую ширину линии магнитного резонанса.

2. Установлено, что характер прецессионного движения вектора намагниченности, обусловленного резонансным радиочастотным полем, существенно изменяется в присутствии нерезонансных полей: продольная компонента намагниченности становится сложной функцией времени, содержащей гармоники с частотами $n\Omega$ (n = 1, 2, 3, ...), одновременно обогащается спектр несущих частот ($\omega \pm n\Omega$) поперечных компонент намагниченности. 3. Показано, что амплитуды нечетных гармонических составляющих продольной M_Z компоненты намагниченности как функции расстройки суть сигналы поглощения лоренцевой формы, традиционно наблюдаемые при детектировании поперечных компонент вектора намагниченности.

Литература

- 1. Померанцев Р.М., Рыжков В.М., Скроцкий Г.В. Основы квантовой магнитометрии. М., 1972.
- 2. ЯМР И ЭПР спектроскопия. М., 1964.
- 3. Эндрю Э. Ядерный магнитный резонанс. М., 1957.
- 4. Александров Е.Б., Аносов М.Д., Савинов В.П. // Оптика и спектроскопия. 1981. **51**, № 1. С. 55.
- 5. Аносов М.Д. // Оптика и спектроскопия. 1981. **51**, № 2. С. 348.
- 6. Король В.С., Козлов А.Н. // ЖЭТФ. 1969. **56**, № 4. С. 1107.
- 7. Корниенко Л.С., Петрова С.Д., Умарходжаев Р.М. Авторское свидетельство № 1691805. Зарегистрировано 15 июля 1991.

- Budker D., Romalis M. // Nature Physics. 2007. 3. P. 227.
- Budker D., Gawlik W., Kimball D.E. et al. // Rev. Mod. Phys. 2002. 74. P. 1153.
- Alexandrov E.B., Auzinsh M., Budker D. et al. // arXin:physics/0405049v1 [physics.atom-ph]. 11 May 2004.
- 11. Эрнст Р., Боденхаузен Дж., Вокаун А. ЯМР в одном и двух измерениях. М., 1990.
- 12. Градштейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений. М., 1962.
- 13. Ланда П.С. Автоколебания в системах с конечным числом степеней свободы. М., 1980.
- 14. Абрагам А. Ядерный магнетизм. М., 1963.
- 15. Demelt H.G. // Phys. Rev. 1957. 105, N 5. P. 1487.
- 16. Demelt H.G. // Phys. Rev. 1957. 105, N 6. P. 1924.
- 17. Померанцев Р.М., Рыжков В.М., Скроцкий Г.В. // Геофизическая аппаратура. 1967. № 34. С. 8.

Поступила в редакцию 23.11.2007