Модельно независимые значения брейт-вигнеровских параметров нуклонных резонансов $S_{11}(1535)$ и $S_{11}(1650)$ из экпериментальных данных по фоторождению η -мезонов на протонах

Е.В. Баландина^{*а*}, Е.М. Лейкин, Н.П. Юдин

Московский государственный университет имени М.В. Ломоносова, Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына (НИИЯФ МГУ), ОФВЭ. 119991, Москва, Ленинские горы, д. 1, стр. 2. E-mail: ^alena@kiraton.sinp.msu.ru

Приведены результаты феноменологического парциально-волнового анализа угловых распределений процесса $\gamma p \to \eta p$, измеренных в Университете Тохоку (Япония), и полученные на их основе модельно независимые оценки брейт-вигнеровских параметров нуклонных резонансов $S_{11}(1535)$ и $S_{11}(1650)$.

PACS: 13.60Le, 14.20Gk.

Ключевые слова: фоторождение, η -мезон, нуклонный резонанс. Статья поступила 02.04.2008, подписана в печать 22.09.2008.

Эта статья продолжает цикл работ, выполненных с целью получения из экспериментальных данных по фоторождению η -мезонов на протонах модельно независимых оценок брейт-вигнеровских характеристик ряда нуклонных резонансов [1, 3].

За последние примерно полтора десятилетия в ряде лабораторий Европы, США и Японии была существенно усовершенствована техника получения интенсивных пучков ү-излучения. Использование схем монохромотизации значительно расширило возможности экспериментальных исследований, улучшилось качество и повысилась точность экспериментальных данных. Основные результаты по фоторождению *п*-мезонов на протонах, полученные в Майнце [4], Гренобле [5, 6], Бонне [7, 8], Джефферсоновской лаборатории [9], были использованы в ряде теоретических работ с целью определения на основе разнообразных моделей¹ значений параметров большого числа нуклонных резонансов с массами вплоть до 2.5 ГэВ. К сожалению, результаты этих работ сильно различаются между собой и не могут рассматриваться как достоверные оценки даже таких величин, как энергии W_R и полные ширины Γ_R нуклонных резонансов.

Для получения модельно независимых оценок брейт-вигнеровских параметров нуклонных резонансов мы использовали феноменологический анализ, основанный целиком на стандартных статистических процедурах. Анализ состоит из двух этапов. Первый этап основан на парциально-волновом анализе угловых распределений экспериментальных наблюдаемых (дифференциальных сечений процесса $\gamma p \rightarrow \eta p$, асимметрии на пучке линейно-поляризованного γ -излучения и асимметрии на поляризованной протонной мишени), который представляет собой энергетически независимый анализ с использованием непараметрических моделей, что обеспечивает проверку статистических гипотез и получение достоверных величин вклада в изучаемый процесс различных парциальных волн. Второй этап основан на использовании для определения характеристик нуклонных резонансов брейт-вигнеровской параметризации. Существенным моментом является процедура проверки статистических гипотез при определении наиболее достоверных оценок параметров резонансов. В работе [14] эта программа была реализована на материале экспериментальных данных, полученных сотрудничеством GRAAL в интервале энергий γ -квантов $E_{\gamma}(W)$ 714(1490)–1100(1716) МэВ (W — энергия в системе центра масс). Успешному выделению брейт-вигнеровских параметров трех нуклонных резонансов способствовало удачное разбиение авторами работы исследованной области энергий γ -квантов на интервалы шириной по W в пределах нескольких десятков МэВ, что позволило достаточно детально восстановить форму брейт-вигнеровских кривых. К сожалению, чрезвычайно широкие интервалы энергий ΔW не позволили

Таблица l

Значения коэффициентов a_0 , a_1 , a_2 для угловых распределений работы [15] $(\chi^2 - величина \chi$ -квадрат на одну степень свободы)

$E_{\gamma}, M \mathfrak{B}$	χ^2	a_0	a_1	a_2
718	0.5	3.55 ± 0.12	0.17 ± 0.21	-0.08 ± 0.27
744	4.78	4.22 ± 0.33	$0.04 {\pm} 0.5$	-1.41 ± 0.71
755	0.3	$3.86 {\pm} 0.04$	-0.14 ± 0.06	-0.06 ± 0.08
768	0.57	$3.62 {\pm} 0.05$	$-0.02{\pm}0.08$	-0.42 ± 0.11
785	0.43	$3.30{\pm}0.04$	$-0.14{\pm}0.06$	-0.19 ± 0.09
799	0.9	$3.07 {\pm} 0.05$	-0.08 ± 0.07	-0.29 ± 0.01
814	0.98	$2.69 {\pm} 0.06$	$-0.02{\pm}0.08$	-0.23 ± 0.12
835	0.44	$2.35 {\pm} 0.04$	-0.01 ± 0.05	-0.16 ± 0.08
848	0.87	$2.17 {\pm} 0.06$	0.3 ± 0.08	-0.05 ± 0.12
867	0.37	$1.80 {\pm} 0.03$	-0.15 ± 0.04	$0.01 {\pm} 0.05$
890	0.65	1.53 ± 0.04	-0.11 ± 0.04	-0.12 ± 0.07
919	0.37	$1.10{\pm}0.02$	-0.21 ± 0.03	-0.04 ± 0.04
957	0.7	$0.68 {\pm} 0.02$	-0.17 ± 0.03	-0.04 ± 0.04
1002	0.5	$0.46 {\pm} 0.02$	-0.15 ± 0.02	-0.11 ± 0.03
1049	0.45	$0.37 {\pm} 0.02$	-0.07 ± 0.02	-0.13 ± 0.04
1080	0.24	$0.38{\pm}0.02$	-0.02 ± 0.02	-0.17 ± 0.03
1109	0.13	$0.37 {\pm} 0.01$	$0.07 {\pm} 0.01$	-0.17 ± 0.02
1142	0.17	$0.36{\pm}0.01$	0.09 ± 0.01	-0.17 ± 0.02

¹ В том числе модели с эффективным лагранжианом [10], кварковые модели [11], изобарные модели [12], дисперсионные соотношения [13] и др.

использовать для этой цели результаты работ [8] и [9]. В настоящей работе использованы данные о фоторождении η -мезонов на протонах в интервале энергий $E_{\gamma} = 0.7 - 1.15$ ГэВ, полученные в Университете Тохоку (Сендай) [15], на основе которых удалось реализовать программу определения модельно независимых оценок двух резонансов $S_{11}(1535)$ и $S_{11}(1650)$.

В табл. 1 приведены результаты первого этапа феноменологического анализа результатов работы [15], полученные способом, подробно описанным в работе [1, формула (1)]. Как и в предыдущих анализах, в разложении по парциальным волнам (по полиномам Лежандра) удовлетворительное описание угловых распределений согласно статистическим критериям χ^2/ν и \mathcal{F} достигалось при использовании линейной модели с сохранением в разложении в ряд трех первых членов a_0 , a_1 и a_2 , которые содержатся в табл. 1. На рисунке приведено сравнение энергетического поведения коэффициентов a_i , полученных в результате анализа данных [15] (треугольники) и [5] (квадраты).

Зависимость коэффициентов регрессии a_0 , $a_1 a_2$ от энергии γ -квантов E_{γ} : треугольники — результаты анализа работы [15], квадраты — работы [5]

Таблица 2

Модельно независимые брейт-вигнеровские параметры нуклонного резонанса $S_{11}(1535)$ ($\beta_{\eta N} = 0.55$, $\beta_{\pi N} = 0.35$)

Источник данных	[5]	[15]
ΔW , M $ m B$	1490-1603	1492-1597
$A_{1/2}, \ 10^{-3}/\sqrt{\Gamma \Im B}$	99.23 ± 1.01	97.55 ± 2.15
W_R , M \ni B	1538.62 ± 0.69	1539.01 ± 1.23
$\Gamma_R, M \mathfrak{I}B$	163.0 ± 4.09	154.46 ± 8.16
χ^2/ u	1.29	3.8

Таблица З

Модельно независимые брейт-вигнеровские параметры нуклонного резонанса $S_{11}(1535)$ ($\beta_{\eta N} = 0.55$, $\beta_{\pi N} = 0.35$) и $S_{11}(1650)$ ($\beta_{\eta N} = 0.08$, $\beta_{\pi N} = 0.77$)

Исто	чник данных	[5]	[15]
ΔW , M $ m B$		1490-1676	1492-1688
S ₁₁ (1535)	$A_{1/2}, 10^{-3}/\sqrt{\Gamma \Im B}$	101.44 ± 2.37	98.94 ± 4.76
	W_R , M \ni B	1538.06 ± 1.12	1538.29 ± 1.78
	$\Gamma_R, M \ni B$	163.27 ± 6.45	153.74 ± 11.6
S ₁₁ (1650)	$A_{1/2}, 10^{-3}/\sqrt{\Gamma \Im B}$	36.2 ± 5.8	30.18 ± 11.88
	W_R , M \ni B	1636.58 ± 1.4	1635.55 ± 4.83
	$\Gamma_R, M \ni B$	78.24 ± 11.2	71.41 ± 28.34
χ^2/ u		1.30	3.59

Анализ данных [15] был проведен при 18 значениях энергий γ -квантов E_{γ} в инервале 718 ÷ 1142 МэВ. Для получения модельно независимых оценок брейт-вигнеровских параметров нуклонных резонансов без обращения к каким-либо теоретическим моделям на основе исключительно статистических методов использована процедура работы [14]. Благодаря разбиению исследованной области энергии на интервалы по W шириной в несколько десятков МэВ удалось выделить брейт-вигнеровские параметры резонансов $S_{11}(1535)$ и $S_{11}(1650)$, которые, как видно из табл. 2 и 3 (где β — вероятности распада резонансов по различным каналам, W — энергия в СЦМ), в пределах точности эксперимента совпадают с результатами, полученными в работе [14].

Список литературы

- 1. Баландина Е.В., Лейкин Е.М., Юдин Н.П. // Ядерная физика. 2002. 65. С. 1755.
- Баландина Е.В., Лейкин Е.М., Юдин Н.П. // Ядерная физика. 2004. 67. С. 1403.
- Баландина Е.В., Лейкин Е.М., Юдин Н.П. // Ядерная физика. 2006. 69. С. 1338.
- Krusche B., Ahrens J., Anton G. et al. // Phys. Rev. Lett. 1995. 74. P. 3736; Phys. Rev. Lett. 1995. 75. P. 3023.
- Renard F., Anghinolfi M., Bartalini O. et al. // Phys. Lett. B. 2002. 528. P. 215.
- 6. Rebreyend D. et al. // http://gwdac.phys.gwu.edu.
- 7. Soezueer L. et al. // http://gwdac.phys.gwu.edu.
- Crede V., Bartholomy O., Anisovich A.V. et al. // Phys. Rev. Lett. 2005. 94. P. 012004.
- Dugger M., Ritchie B.G., Ball J. et al. // Phys. Rev. Lett. 2002. 89. P. 222002.
- Benmerrouche M., Mukhopadhyay N.C., Zhang J.F. // Phys. Rev. D. 1995. 51. P. 3237; Mukhopadhyay N.C., Mathur N. // Phys. Lett. 1998. 444. P. 7; Davidson R.M., Mathur N., Mukhopadhyay N.C. // Phys. Rev. C. 2000. 62. P. 058201.
- 11. Saghai B., Li Zh. // Eur. Phys. J. A. 2001. 11. P. 217.
- Chiang W-T., Yang S.N., Tiator L., Drechsel D. // Nucl. Phys. A. 2002. 700. P. 429; Chiang W-T., Yang S.N., Tiator L. et al. // Phys. Rev. C. 2003. 68. P. 045202.
- 13. Aznauryan I.G. // Phys. Rev. C. 2003. 68. P. 065204.
- 14. Balandina E.V., Leikin E.M., Yudin N.P. // nucl-th 0705.1501.
- Nakabayashi T., Fukasawa H., Hashimoto R. et al. // Phys. Rev. C. 2006. 74. P. 035202.

Model independent Breit-Wigner parameters of nucleon resonances $S_{11}(1535)$ and $S_{11}(1650)$ from experimental data on η -photoproduction on proton

E. V. Balandina^a, E. M. Leikin, N. P. Yudin

Department of High Energy Experimental Physics, Skobeltsyn Research Institute of Nuclear Physics, Moscow State University, Moscow 119991, Russia.

E-mail: ^a lena@kiraton.sinp.msu.ru.

The results of the phenomenological partial-wave analysis of the angular distribution for the process $\gamma p \rightarrow \eta p$ measured at Laboratory of Nuclear Science (Tohoku University, Japan) are given. Model independent Breit-Wigner parameters of nucleon resonances $S_{11}(1535)$ and $S_{11}(1650)$ are obtained.

PACS: 13.60Le, 14.20Gk. *Keywords*: photoproduction, η -meson, nucleon resonance.

Received 2 April 2008.

English version: Moscow University Physics Bulletin 1(2009)

Сведения об авторах

1. Баландина Елена Викторовна — ученая степень, ученое звание, должность; контактная информация (тел.: 939-35-68, e-mail: lena@kiraton.sinp.msu.ru).

2. <u>Лейкин Евгений Моисеевич</u> – д. ф.-м. н., вед. научн. сотр.; тел.: 939 23 95, e-mail: leikin@sinp.msu.ru.

3. Yudin Николай Прокофьевич — к. ф.-м. н., доцент, доцент.