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INTRODUCTION

The problems of “black holes” and dark matter have
been attracting the attention of physicists (and not only
physicists) for many years. However, a final conclusion
on existence of black holes and the nature of dark mat-
ter has not been made yet. Cautious and responsible
researchers, interpreting those discovered phenomena
that are hastily explained by some physicists as a result
of the manifestation of black holes, prefer to speak of
“candidates” for black holes (using the term black hole
in the sense candidate for a black hole) and do not
exclude other possible explanations [1]. The discovery
of the effect of gravitational microlensing [2–4]
extended the capabilities of observers [5], but did not
result in the final conclusion that the undoubted cause
of this effect is black holes, since it can result from
other (yet unknown) supercompact objects which are
not observed by conventional tools.

Below, both problems are analyzed in detail, and
certain conclusions following from the conventional
gravitational equations (and their solutions) are made.

1. BASIC EQUATIONS

In the case of a static spherically symmetric problem
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the density of the energy-momentum tensor of the mat-
ter forming the body (see Section 3) has the form
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ments (in our case, 
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). In the equilibrium
state the pressure satisfies the equation
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(8)

(9)

Equation (7) with account of (4) yields

(10)

where

(11)

Substituting (10) into (8) and (9), we transform
these equations to the form

(12)

(13)

The equation for A, according to (9), (12) or (10),
(13) is written in the form

(14)

where asterisks denote derivatives with respect to r.
Equations (12), (14), (6), and (13) or (9) determined on
the whole interval 0 ≤ r ≤ ∞ can be considered indepen-
dent.

2. ANALYSIS OF EQUATIONS
AND THEIR SOLUTIONS

In nth order differential equations, functions and
their derivatives to (n – 1)th order inclusive always sat-
isfy the requirement of continuity in the domain of def-
inition. This implies that the functions p(r), B(r), A(r),
Z(r), and Z'(r) satisfying corresponding equations,
should be continuous everywhere. This results in the
fact that the first derivatives B' and A', due to the struc-
ture of Eqs. (12), (14), turn out to be continuous (p', B'',
A'', and Z'') have a discontinuity at the boundary).
Therefore, according to the Weierstrass theorem [6],
the functions B and A are bounded on any finite interval.
Since for r  ∞ they, according to conditions (4), are
also bounded, the condition of their boundedness is sat-
isfied everywhere for 0 ≤ r ≤ ∞.

Let us show that the functions B and A do not vanish
anywhere and are strictly positive. For this purpose, we
consider Eq. (9) and transform it to the integral form,

(15)
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This yields that upon moving away from the point
r = 0 the function A(r) cannot go into the negative
domain, since in this case the right-hand side of (15)
would become negative, and the left-hand side should
be positive, i.e., Eq. (15) would be violated. Therefore,
in some domain r > 0 the function A(r) satisfying (15),
and therefore, (9), is positive. Can A(r) vanish at some
point r = r0 > 0? The answer is obvious: no, it cannot,
since in this case, the left-hand side of (15) would van-
ish at r = r0, and the right-hand side, as the integral of
the positive function in the domain 0 ≤ r ≤ r0, should be
positive. Thus, the function A satisfying (9) is strictly
positive in the whole domain 0 < r ≤ ∞.

Similarly we can prove that there does not exist the
point r > 0, such that at this point the functions B(r) or Z(r)
vanish; due to this and boundary conditions (4) the func-
tions B(r) and Z(r) should be positive for all 0 < r ≤ ∞.

Thus, the solutions to Eqs. (6), (9), (12), (14) for the
coefficients B and A should satisfy the following strict
inequalities in the domain 0 < r ≤ ∞:

(16)

In this case, the functions B, A, p, Z, B', A', Z' should
be continuous everywhere.

Corollary (16) results in the important physical
results; let us consider these results.

First, due to inequalities (16), it follows from (10)
and (11) that the following inequality is satisfied every-
where:

(17)

This inequality means that the original system of
gravitational equations and the boundary conditions
admit the existence of such bodies for which the surface
radius Z0 ≡ Z(r0) cannot be smaller than the double mass
of matter 2M0 ≡ 2M(Z0) within this sphere (hereinafter,
all quantities with the index “0” are related to the values
of quantities on the body surface). In other words, the
original equations do not contain solutions correspond-
ing to black holes (i.e., solutions with the domain in
which the inequality 2M > Z is satisfied). Upon formal
“compression” of the body into an infinitely small
domain its mass should also become infinitely small
(this possibility was first mentioned in [7]). This
implies that the matter collapsing under the action of
the self-gravitational field, which possessed the total
energy E before the beginning of the collapse, due to
the energy conservation law, cannot be concentrated in
an infinitely small domain. The value of Z0 on the sur-
face of the body formed as a result of the collapse,
according to (17), is not smaller than 2M0; the value of
2M0 is determined by the value of E, due to the energy
conservation law (with subtracted radiation and other
possible losses). Therefore, the collapse into the state of
the black hole turns out to be forbidden. This com-
pletely agrees with the statement made by Einstein that
the main result of the performed study was the clear
understanding that Schwarzschild singularities are

0 B ∞, 0 A ∞.< < < <

2M Z .≤
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absent in the real world; that the Schwarzschild singu-
larity does not exist, since matter cannot be concen-
trated in an arbitrary way; in the opposite case, particles
forming clusters would reach the velocity of light [8];
and the statement made by Weinberg that the seeming
Schwarzschild singularity can only be the property of
the coordinate system [9] (introduced with the violation
of the requirements of Jacobians, we should add).

At the same time, the equations and boundary con-
ditions admit solutions corresponding to bodies for
which the following relation is satisfied on the surface:
Z0 = 2M0. According to (10), (11), the following equal-
ities are satisfied on such surfaces:

(18)

where  is the value of the internal density ρ on the
body boundary1.

Second, if solutions with Z0 = 2M0 exist on the body
surface, the pressure p on such surface cannot vanish;
this will be demonstrated below.

Let us introduce the functions Q and F instead of p
and Z as

(19)

Then Q and F (13) and (6) yield the following equa-
tions:

(20)

(21)

It can be seen from (19) that the functions Q and F
are continuous everywhere; as a consequence, the
derivatives Q' and F' determined in (20), (21) are also
continuous. Therefore, according to the Weierstrass
theorem, the functions Q and F should be bounded on

1 We point out that dr/dZ is the Jacobian of transition from the vari-
able r to the variable Z, if this transition was considered. How-
ever, due to (18) and the requirements on Jacobians (on open
coordinate sets Jacobians should not be equal to zero or infinity),
this transition turns out to be forbidden if the states of the bodies
with Z = 2M are realized; it is possible only if Z > 2M every-
where. Therefore, the conclusions obtained by the transition from
r (without considering the Jacobian behavior) to concomitant
coordinates in the cases where the state Z = 2M is admissible can-
not be considered to be physically consistent.

  Some authors state that in (2) the coordinates xε can be arbitrary.
This is a deep delusion. The admissible class of coordinates should
be determined by the requirements for Jacobians connecting two
sets of coordinates, including Galilean coordinates (in which the
physical meaning of the determined quantities is clear). Ignoring
these requirements results in the appearance of different ambigu-
ities, singularities, and nonphysical results (which excite people’s
minds and assist in obtaining ample financing from credulous gov-
ernments and companies; the conclusions obtained in this paper
may turn out to be a more ponderable argument in favor of receiv-
ing funding, since they are mathematically grounded and more
interesting from the point of view of physics

dy
dZ
------

Z0 0–

0, Z0' Z ' Z0
≡ 0, 8πρ0

inZ0
2 1,= = =

ρ0
in

rZ '
Z
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y 4πpZ2+ F 1 2y– 1 2y–( )–( ).≡

rQ ' 2Q3 Q2F– Q–+ 0,=

rE ' F2 1 4F 1 2y–– 2 1 2y–( )+ +[ ]Q+ 0.=

any finite interval. Therefore, if it is assumed in (19)
that 2y0 = 1, the following relations are obtained:

(22)

i.e., p0 = – . The first equality (22) verifies result
(18), the second equality seems strange at first sight, but
just at first sight. In reality the negative pressure value
on the body surface and above it should correspond to
physical reality, since inside the body and beyond it
there exists a physical gravitational field whose origin
is matter (hereinafter, for convenience, matter is under-
stood as all forms of matter except for the related grav-
itational field). The matter formed by the gravitational
field possesses all characteristics inherent to any other
matter: a density ρf, a pressure pf, the four-velocities uε

of its elements, internal interactions, and interactions
with the body, and so on (according to Fock [10, p. 446],
“the gravitational field itself possesses energy”; Ein-
stein stated earlier [11] that the tensor of gravitational
field ϑµν is the field source similar to the tensor of mate-
rial systems θµν; and that the exclusive position of the
energy of a gravitational field, as compared to all other
types of energy, would result in inadmissible conse-
quences. The gravitational field is manifested in the
force action on bodies in this field. Since gravitational
forces are attractive forces, the following condition
should be satisfied: ρf < 0, and therefore, pf < 0. On the
body’s surface the pressure is created by the matter
above this surface, i.e., the matter formed by the related
gravitational field (if there is no atmosphere), and there-
fore, it should be negative. In [9] the pressure created
by the gravitational field on the body surface was
ignored (it was assumed that p0 = 0). Therefore, we dis-
agree with the proof of the constraint y < 4/9 given
there2.

If (19) is taken into account in (10) and (12), we
obtain the following equalities:

Since the functions Q and F are bounded, and taking
into account conditions (4), the above equalities and (9)
imply inequalities (16) which result in (17).

2 If it is assumed, regardless of the above said, that beyond the
body the values of ρ and p are equal to zero, the following strict
inequality follows from (19): 2y < 1; this inequality agrees with
[9]; in this case, the derivative Z' does not vanish anywhere. How-
ever, the pressure p0 on the body surface can be assumed to be
equal to zero only if there is no matter beyond the body. If the
material character of the field and the universal character of grav-
itational interactions are accepted to be a physical reality, it is
impossible to assume p0 to be equal to zero, since beyond the
body matter exists formed by the external gravitational field. In
this paper, the approach based on this idea is considered (see Sec-
tion 3).

Z0' 0, 8π p0Z0
2 1,–= =

ρ0
in

AQ2 r2/Z2,=

B 2 F 1 2y––( )Q
rd
r
-----

r

∞
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3. THE ROLE OF THE GRAVITATIONAL FIELD

Thus, the scalar ρ included in Tελ is formed, both due
to the self matter, and the gravitational field induced by
it, i.e., it can be represented (written) in the form

(23)

where ρs is the part formed by the “bare” (without the
gravitational “coat”) matter, and ρf is the part due to the
gravitational field alone. The problem consists in the
search for the scalar ρf . Here, Eqs. (2) are useful; using
identical transformations (with account for (3)) these
equations can be reduced to a form that should be called
the field form for reasons following from further con-
sideration,

(24)

Here, the structure τελ, which has the meaning of the
density of the energy-momentum tensor of the gravita-
tional field, is determined by the expression

(25)

where  ≡ gτσ/ .

Note that Eqs. (2), (3), (24) can be represented in the
covariant form, changing the partial derivatives dε with
respect to the Galilean coordinates xε to covariant deriv-
atives Dα in the metric γαβ(ξ) with arbitrary chosen
coordinates ξα and transforming all quantities included
in the equations to the new coordinates; all quantities
included in the equations possess the truly tensor prop-
erties (including the Christoffel symbols, see [12, 13]

for detail). If instead of , following [14], we intro-

duce  ≡  – , where  ≡ ,  ≡
, γ ≡ detγαβ, and γαβ(x) are the metric coeffi-

cients of the Minkowski space, the derivatives ∂α

can be replaced by the covariant derivatives Dα

everywhere, since Dα  ≡ 0. Then it becomes clear
that Φελ represents the gravitational potentials of the
(rank 2) tensor gravitational field, and τελ, which is,
according to (25), the quadratic form of first order
derivatives of gravitational potentials, is the density of

ρ ρ G 0= ρ ρ G 0=–( )+ ρs ρ f ,+≡ ≡

gαβ∂α∂βg̃ελ 16π Tελ τελ+( ).=

16π g– τελ 1
2
--- g̃εαg̃λβ 1

2
--- g̃ελg̃αβ–⎝ ⎠

⎛ ⎞≡

× g̃νσg̃τµ
1
2
--- g̃τσg̃νµ–⎝ ⎠

⎛ ⎞ ∂αg̃τσ∂βg̃νµ

+ g̃αβg̃τσ∂αg̃ετ∂βg̃λσ g̃εβg̃τσ∂αg̃λσ∂βg̃ατ–

– g̃λαg̃τσ∂αg̃βσ∂βg̃ετ 1
2
--- g̃ελg̃τσ∂αg̃σβ∂βg̃ατ+

+ ∂αg̃εβ∂βg̃λα,

g̃τσ g–

g̃ελ

Φ̃ελ
g̃ελ γ̃ ελ Φ̃ελ γ– Φελ γ̃ ελ

γ– γ ελ

g̃ελ

Φ̃ελ

γ̃ ελ

the energy-momentum tensor of the gravitational field.
In this case, Eq. (3) is written in the form3

(3a)

If, using [15, 16], the tensor Φελ is decomposed in
terms of irreducible representations with the spins S =
2, 1, 0, 0', it turns out, as was shown in [14], that (3) or
(3a) do not admit nonphysical states of the field with
the spins S = 1, 0' and admit real states with S = 2, 0. It
can be seen that Eqs. (3) or (3a) are fundamentally
important and they cannot be ignored if we want to
avoid nonphysical admixtures.

The satisfaction of conditions (3) or (3a), eliminating
the nonphysical admixtures with S = 1, 0' from the field
states results, as was shown in Section 2, to the positive
definiteness of the function A(r) and correspondingly, the
satisfaction of inequalities (17). If (3a), and therefore,
(9), are ignored, i.e., the contribution of nonphysical
admixtures into the field is taken into account, negative
values of A(r) in solution (10) to Eq. (7) are not elimi-
nated, i.e., y can be both smaller and larger than 1/2.
Therefore, the contribution to the gravitational field of
nonphysical admixtures with S = 1, 0' results in negative
values of A(r) and solutions with 2M > Z corresponding
to black holes. This cannot be admitted!

Equations (24) are valid for any gravitational field
Φελ, both static, and nonstatic. Since they are second-
order equations, it is required that the potentials Φελ and
their first order derivatives ∂αΦελ satisfying these equa-
tions are continuous on the whole interval 0 ≤ r ≤ ∞;
infinitely far from the source, Φελ should satisfy the fol-

lowing conditions:   0. This yields that,
due to the Weierstrass theorem, all components of the

potential Φελ, and therefore, , are always every-
where bounded, and the density τελ, is continuous.

In our case,

The boundedness of these quantities implies the fol-
lowing inequalities obtained earlier: 0 < A < ∞, 0 < B < ∞.
Let us consider the search of ρf .

3 The gravitational potentials Φελ(x) represented in terms of
Galilean coordinates xε correspond to the realistic physical gravi-
tational field. Upon transition from xε to arbitrary coordinates ξα,
the physical components Φελ(x) mix into Φαβ)(ξ) with noniner-
tial admixtures, which appear due to the transformations

  Therefore, if we want to consider the gravitational field alone, we
should use Galilean coordinates, which is done in this paper.

Φαβ ξ( ) Φελ
x( )∂ξα

∂x
ε---------∂ξβ

∂x
λ---------.=

DεΦ̃
ελ

0.=

Φελ
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g̃ελ

g̃00 Z2

r2 BA
----------------,=

g̃kn B
A
--- γ kn 1 Z2A

r2
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⎛ ⎞ xkxn

r2
----------+ .=
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The unique tensor scalar connected with the gravita-
tional field, and just with the gravitational field, is the
everywhere continuous spur

(26)

There are no other scalars determined by the gravi-
tational field. Therefore, it is natural to put forward the
hypothesis that the part ρf included in (23) is the scalar
ρf which is determined by expression (26), i.e., assume
that

(27)

where

(28)

Taking into account (10)–(13), we find

(29)

where

Since according to hypothesis (27), the value of ρ
turns out to be nonzero everywhere, the mass M(Z) of
the body is not constant at Z > Z0, the mass of the matter
formed by the gravitational field makes the contribution
to this mass (the total mass E = M(∞) is always smaller
than M0, and in the case of the strong field, several times
smaller, see [13]). Similarly, in all equations related to
the external region of the body, terms with ρ and p do
not vanish. For example, Eq. (6) in the domain Z > Z0 is
the equation of equilibrium of the matter formed by the
field.

The contribution of ρf into ρ plays the basic role in
the gravitational mass defect, it is this contribution that
makes it impossible that the double mass 2M0 goes
beyond the value Z0, however small this value becomes
(see [13] for detail). In the Newtonian limit hypothesis
(27) results in correct (and well-known) results, both
for the total mass of an isolated static body and for the
energy of a system of bodies [13]. The total mass E of
the isolated body is determined, according to (11), (27),
by the expression

(30)

For a homogeneous (ρs = const) sphere with the
radius r0 in the Newtonian limit (29) and (13) yield

τ τελg̃ελ≡ ρf 3 pf .–=

ρ ρs τ 3 p f ,+ +≡

16πτ 1
2
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1
2
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+
1
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q
rZ '
Z

-------, f y 4πpZ2 1 2y–( ).+ +≡ ≡

E 4π ρs ρ f+( )Z2Z ' r.d

0

∞

∫=

Taking this into account in (30), we obtain, as
expected, the value

where  is the total mass of the sphere matter (in this
case, the mass M0 turns out to be equal to M0 = E +

3( )2/r0 > E).

In the case of an arbitrary field, expression (11) rep-
resents, due to (27), (29), an integral equation for the
mass M(r). It is better to pass over from this equation to
the differential equation for y ≡ M/Z,

(31)

where Θ(1 – x) = 1 for x < 1 and Θ(1 – x) = 0 for x > 1.
The term with ρf < 0 in the right-hand side of (31), due
to its structure, does not allow the quantity y to exceed
the value y0 = 1/2.

4. PHYSICAL CONSEQUENCES

Thus, the system of gravitational equations admits
solutions with y0 = 1/2, i.e., admits the possibility of the

existence of objects with  = 1/8π  and p0 = –
on their surfaces. In the case of large matter concentra-
tion in the body when 8πρsZ2(r) turns out to be much
higher than unity in the region r1 ≤ r ≤ r0, the value of
y ≡ M(r)/Z(r) can become very close to 1/2 already for
r ~ r1. The increment of y in the layer r1 ≤ r ≤ r0, due to
(17), (29), (31) is insignificant (see Figure), i.e., the
approximate equality y ~ 1/2 is satisfied in the whole
layer. This, according to (11), (19), provides other
approximate equalities 8πρZ2(r) ~ 1, 4πpZ2(r) ~ –y ~
1/2, i.e., p ~ –ρ. On the body boundary the pressure p =
ps + pf reaches the lowest possible value, which is com-

pletely determined by the field pressure  = – ; the

pressure of the matter here is equal to zero,  = 0. In

this layer the value of the quantity Z(r) ≡ r(1 + (r))

4πρ f Z
2
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connected with the gravitational field remains close to
Z(r1) ~ Z(r0) ≡ Z0, due to (10) or (19), which transforms
the above approximate equalities to the form p ~ –ρ ~

– . This implies that the pressure ps of the matter is
close to zero in the whole layer (it can be very wide).
This can mean that the object temperature T in the near-
surface region practically does not differ from absolute
zero (T ~ 0). Therefore, no noticeable radiation can
arise from the near-surface region. Radiation from the
central region, if it is capable of going outside, is
strongly energy-suppressed by a large gravitational red
shift (due to the smallness of g00 in the central region
where the temperature can turn out to be high). There-
fore, these objects are invisible and can make the main
contribution to the dark mass of the Universe. But these
objects should be manifested in dynamic effects, those
in which, as was assumed earlier, black holes are man-
ifested [17, 18]. As well, they should be manifested in
gravitational microlensing effects [19–22], replacing
black holes.

If the substance falls on objects with a large matter
concentration, in these objects (as was considered above)
the accretion substance does not undergo noticeable
deceleration due to collisions in the layer r1 ≤ r ≤ r0, since
in this layer the body mass turns out to be almost com-
pletely “eaten up” by the gravitational field. Indeed, the
approximate equalities M(r)/Z(r) ~ 1/2, Z(r) ~ Z0 satis-
fied on the interval r1 ≤ r ≤ r0 yield the following
approximate equality M(r) ~ M(r1) ~ M(r0) ≡ M0, which
means that in this layer the increment of M due to the
body matter is practically completely compensated by
the gravitational mass defect. In the region r < r1 the
metric coefficient g00 becomes extremely small, which
results in a large gravitational radiation frequency shift.
All this in aggregate should result in a considerable

ρ0
in

softening of the radiation spectrum of the accretion
substance. With increasing body mass, radiation of the
accretion substance should shift more and more toward
the soft region (the radiation of the accretion disk alone
can remain noticeable). With decreasing body mass, the
gravitational mass defect decreases to an insignificant
Newtonian correction. In the case of the substance
accretion to such bodies the radiation spectrum has a
sharp boundary vanishing (or considerably softened) in
the case of accretion to bodies with large mass.

Another situation takes place if such an object, for
example, with a mass equal to several solar masses,
captures plasma at the external near-surface region.
Then plasma particles captured by the strong gravita-
tional field can reach the velocities v2 ~ 0.1 in the quasi-
equilibrium state. Therefore, such objects are the
sources of powerful X-radiation.

The equations admit solutions corresponding to
equilibrium giant bodies with a mass equal to several
hundred solar mass and higher (a giant with M ~ 104M�

has dimensions close to those of the Earth). It is natural
to expect that they are concentrated in the central region
of the galaxy.

The possibility of the existence of structures with

 � 1/8π  in the cores of common stars, in particu-
lar, the core of the Sun, is not forbidden.

Some such objects could form as the result of sub-
stance collapse to the state Z0 = 2M0 (let us call such
objects “collapsars”). But it is also possible to assume
that they were born at the early stage of the Universe’s
evolution due to fluctuations of its substance at super-
high densities (let us call such objects “relics”). If they
were formed4, for example at densities 1050 g/cm–3 <
ρ < 1060 g/cm–3 (higher densities are also assumed to be
admissible), such relics possess, according to (18), the
linear dimension 3 × 10–17 cm < Z0 < 3 × 10–12 cm and the
mass 2 × 1011 g < M < 2 × 1016 g. At the distance r cm from
the center they cause the acceleration (104/r2) cm s–2 <

| | < (109/r2) cm s–2. Flowing through a gaseous or liq-
uid medium, relics intensely absorb its closely situated
elements, creating a glowing plasma cloud in their
neighborhood. They can pierce solid bodies practically
without hindrance, tearing out and absorbing the clos-
est atoms and molecules and imparting to the body as a
whole some acceleration (moving it).

These are the consequences following from the
analysis of the complete system of gravitational equa-
tions.

4 It is not clear, however, what such relics consist of; but if the ini-
tial equations, including equilibrium equation (6), do not forbid
corresponding solutions (which is indeed so), theoretically, their
existence can be considered admissible; whether they exist in
nature should be found out by observations.
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CONCLUSIONS

The performed analysis of the complete system of
classical gravitational equations and their solutions
resulted in the following important conclusions. (1) All
metric coefficients turn out to be bounded and do not
vanish anywhere; they and their first derivatives are
continuous everywhere for 0 ≤ r ≤ ∞. (2) Black holes
turn out to be physically unfeasible, the equations do
not contain solutions corresponding to them. (3) Bodies
whose surface radius (in terms of standard coordinates)
is equal or larger than the double mass of the matter
within this sphere turn out to be physically admissible.
(4) Bodies with 2M0 = Z0 have negative pressure and a
temperature close to zero at the surface. Such bodies
can make the main contribution to the dark matter of the
Universe and explain the phenomena which were ear-
lier interpreted as a result of manifestation of black
holes. (5) Under certain conditions they can create
powerful sources of X-rays. (6) Under definite condi-
tions, they can form powerful sources of X-ray radia-
tion. (7) The existence of both microscopic (with
respect to dimensions, but not mass) and macroscopic
objects (up to giants) with Z0 = 2M0 on the surface is not
forbidden. (8) The gravitational field of the body plays
the key role in all the results.

Of course, all this requires further comparison with
observations. However, no contradictions with the
results presented above were found yet, both from the
theoretical point of view and from the point of view of
the available experimental data. If new problems arise
(which is quite possible), they should be considered
based on the material character of the existing world
and without going beyond the framework of strict
mathematical laws in order to not obtain just another
mystic consequence, as was the case with black holes.
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