ФИЗИКА КОНДЕНСИРОВАННОГО СОСТОЯНИЯ ВЕЩЕСТВА

Фононный спектр и факторы Дебая-Уоллера UO₂ в модели подрешеток

А.С. Поплавной^{*a*}, Т.П. Федорова^{*b*}

Кемеровский государственный университет, физический факультет. Россия, 650043, г. Кемерово, ул. Красная, д. 6. E-mail: ^a popl@kemsu.ru, ^b kirienko@kemsu.ru

Статья поступила 26.02.2010, подписана в печать 31.03.2010

Факторы Дебая-Уоллера UO₂ в зависимости от температуры вычислены в модели Борна-Майера в приближении «замороженных» подрешеток. Показано, что результаты представленных расчетов хорошо согласуются с экспериментальными данными в диапазоне температур от 0 до 1500 К, т.е. до суперионного перехода.

Ключевые слова: динамика решетки, флюорит, фононы, суперионные кристаллы, Борна-Майера потенциал, плотность фононных состояний, факторы Дебая-Уоллера.

УДК: 538.913. РАСS: 63.20.D-, 61.05.С-, 63.70.+h, 66.30.Н.

Введение

Физические свойства диоксида урана UO₂, являющегося тепловыделяющим элементом (твэлом) ядерных реакторов, исследуются уже достаточно длительное время в широком интервале температур [1]. В частности, значительное внимание уделяется исследованиям динамики кристаллической решетки как экспериментальными [2-5], так и теоретическими [6-8] методами. Уже в 1960-е гг. [3] колебательные спектры монокристаллов UO₂ исследовались методом когерентного однофононного рассеяния медленных нейтронов. Там же вычислены фононные спектры в моделях жестких и поляризуемых ионов, некоторые термодинамические функции и факторы Дебая-Уоллера. Отмечается, что модель жестких ионов достаточно хорошо описывает основные особенности фононных спектров; подобные модели и до настоящего времени используются как для вычисления колебательных спектров, так и для моделирования поведения некоторых твэлов методами молекулярной динамики [9-13]. В цитированных работах отмечалось наличие аномалий в температурном поведении коэффициента теплового расширения, теплоемкости, проводимости при $T \sim 2000$ К, что объяснялось ангармоническими эффектами, образованием кислородных антифренкелевских дефектов и их возможными взаимодействиями с поляронами. Указывалось также на различную роль подрешеток урана и кислорода в этих явлениях и некоторое сходство в поведении ряда физических параметров UO2 с аналогичными в суперионных кристаллах щелочно-земельных фторидов с решеткой флюорита. В недавней работе [11] приводится значение температуры суперионного перехода в UO₂ $T_c \sim 2650$ K, которое отличается от вычисленного методом молекулярной динамики [8] $T_c \sim 2300$ К.

В работе [14] развит метод исследования особенностей фононных спектров кристаллов, составленных из подрешеток разного типа Браве. Установлены механизмы формирования фононных спектров, в частности возникновение квазивырождений, за счет свертывания спектров подрешеток. Рассмотрены ситуации, когда фононный спектр какой-либо из подрешеток оказывается близким к оптическим ветвям полного фононного спектра. UO₂, кристаллизующийся в решетку флюорита и сотоящий из атомов с существенно различающимися массами, представляет собой естественный объект для применения к нему метода подрешеток. В настоящей работе представлены результаты вычислений фононного спектра UO₂, его подрешеток и факторов Дебая-Уоллера.

1. Кристаллическая структура и динамическая матрица

Структура флюорита представляет суперпозицию двух кубических подрешеток, образованных катионами и анионами (рис. 1, *a*). Анионы образуют примитивную кубическую подрешетку, в то время как катионы располагаются в центрах кубов, образованных восемью анионами, занимая места лишь в половине всех анионных кубов и образуя гранецентрированную кубическую подрешетку. Во флюоритовой решетке можно выделить также гранецентрированную кубическую подрешетку, образованную пустыми позициями (междоузлиями). В частности, благодаря такой достаточно «рыхлой» катионной структуре возможен анионный перенос в этих кристаллах [15].

На рис. 1, δ представлены зоны Бриллюэна (ЗБ) анионной и катионной подрешетки — последняя является также ЗБ кристалла. ЗБ анионной подрешетки (кислорода) может быть свернута в ЗБ кристалла, что приводит к особенностям фононного спектра, обсуждавшимся в работе [14]. В табл. 1 приведены некоторые физические параметры кристаллов UO₂.

Расчет фононных спектров производился в модели жестких ионов. В качестве модели межионного взаимодействия был выбран потенциал в форме Борна-Майера-Хаггинса, который также успешно применялся в [11] при моделировании свойств UO₂ методами молекулярной динамики:

$$U_{\mu\nu}(r) = \frac{Z_{\mu}Z_{\nu}e^2}{r} + A_{\mu\nu}\exp\left(-\frac{r}{\rho_{\mu\nu}}\right) - \frac{C_{\mu\nu}}{r^6},$$
 (1)

где Z_{μ} — эффективный заряд иона типа μ в единицах заряда электрона $e; A_{\mu\nu}, \rho_{\mu\nu}, C_{\mu\nu}$ — параметры

Рис. 1. Кристаллическая структура флюорита (*a*) и зона Бриллюэна флюорита (*б*), вписанная в зону Бриллюэна подрешетки кислорода

Таблица 1

Физические параметры кристалл	а UO ₂ со структурой флюорита
-------------------------------	--

	Массы	ионов,	Постоянная решетки	Эффективный заряд	Ионный	радиус, А	T_c , K	T_m , K
	a.e. a		a, Å [16]	<i>U</i> , <i>e</i> [настоящая работа]	U [17]	O [17]	[11]	[8]
UO_2	238	16	5.47	2.35	1.00	1.38	2650	3120

Таблица 2

Параметры потенциала центральных сил для кристалла UO₂

Порядок координа-	Взаимодействующие	Расстояние в единицах <i>а</i>	Расстояние, Å	Параметры короткодействия			
ционной сферы	атомы (μu)			$A_{\mu\nu}$, эВ	$ ho_{\mu u}$, Å	$C_{\mu u}$, э $\mathrm{B}\cdot\mathrm{\AA}^6$	
1	$\begin{array}{l} \text{Me}\leftrightarrow\text{O1}\ (12)\\ \text{Me}\leftrightarrow\text{O2}\ (13) \end{array}$	$\frac{a\sqrt{3}}{4} \approx 0.43a$	2.369	833	0.358	_	
1	$O1 \leftrightarrow O2$ (23)	$\frac{a}{2} \approx 0.5a$	2.735	18211	0.216	15	

модели. Первое слагаемое соответствует кулоновскому взаимодействию, а другие — близкодействующему вза-имодействию между ионами.

Дальнодействующая часть динамической матрицы, т. е. кулоновское взаимодействие, вычислялась по методу Эвальда. Короткодействующая часть динамической матрицы была вычислена в приближении центральных сил, которые описываются близкодействующим отталкиванием между ионами в форме Борна-Майера (второе слагаемое) и взаимодействием Ван-дер-Ваальса (третье слагаемое) в формуле (1). Учитывалось взаимодействие ионов, входящих только в первую координационную сферу, — соответствующие параметры приведены в табл. 2. Эффективный заряд указан в табл. 1. Параметры силового взаимодействия определялись путем подгонки теоретических значений частот под имеющийся эксперимент.

Динамическая матрица флюорита может быть записана в виде блоков [14] трехмерных матриц $\{D_{ij}\}_{\mu\nu} = D_{\mu\nu}$, каждый из которых отвечает определенному типу атомов или взаимодействию между ними, в следующей форме:

$$\boldsymbol{D}(\boldsymbol{k}) = \begin{vmatrix} \boldsymbol{D}_{11} & \boldsymbol{D}_{12} & \boldsymbol{D}_{13} \\ \boldsymbol{D}_{21} & \boldsymbol{D}_{22} & \boldsymbol{D}_{23} \\ \boldsymbol{D}_{31} & \boldsymbol{D}_{32} & \boldsymbol{D}_{33} \end{vmatrix},$$
(2)

где блок **D**₁₁ отвечает атомам урана, двумерный блок атомам кислорода; блоки $oldsymbol{D}_{12}, oldsymbol{D}_{13}, oldsymbol{D}_{21}, oldsymbol{D}_{31}$ взаимодействию урана и кислорода. Двумерный блок представляет собой динамическую матрицу простой кубической решетки, составленную атомами кислорода, с удвоенной элементарной ячейкой. При этом $D_{22} = D_{33}$, в точке L ЗБ кристалла $D_{22} = D_{33} = 0$. Таким образом, в этой точке имеет место вырождение фононных ветвей, обусловленное «свертыванием» ветви из ЗБ кислорода в ЗБ кристалла (рис. 1, б). В модели «замороженных» подрешеток $\boldsymbol{D}_{12} = \boldsymbol{D}_{13} = \boldsymbol{D}_{21} = \boldsymbol{D}_{31} = 0$, но это не означает, что исключается взаимодействие кислорода и урана, взаимодействие между ними входит через силовые матрицы ${oldsymbol \varPhi}_{\mu\mu}$ в диагональных элементах динамической матрицы. Фактически при «замораживании» подрешеток взаимодействие уран-кислород учитывается в первом порядке теории возмущений, второй порядок учитывается при «размораживании» учете недиагональных элементов $\boldsymbol{D}_{12}, \ \boldsymbol{D}_{13}, \ \boldsymbol{D}_{21}, \ \boldsymbol{D}_{31}$. Дальнейшие вычисления фононных спектров кристалла и подрешеток выполнены в изложенной модели.

2. Фононные спектры, плотности частот кристалла и подрешеток

На рис. 2 в центральной части приведен фононный спектр кристалла UO₂. Ромбами и кружками обозначе-

Рис. 2. Фононные спектры, плотности фононных частот кристалла UO₂ и его подрешеток

Точка	Полрешетка	Частота								
(линия) ЗБ	подрешетки	$\omega_{ m LA}$	$\omega_{ ext{TA}}$	$\omega_{ ext{TA}}$	$\omega_{ m TO2}$	$\omega_{ m TO2}$	$\omega_{ m LO2}$	$\omega_{ m TO1}$	$\omega_{ m TO1}$	$\omega_{ m LO1}$
Γ	U	0.881	0.881	0.881	0	0	0	0.119	0.119	0.119
	0	0.119	0.119	0.119	1	1	1	0.881	0.881	0.881
Λ	U	0.945	0.950	0.950	0.006	0.006	0	0.044	0.044	0.055
	0	0.055	0.050	0.050	0.994	0.994	1	0.956	0.956	0.945
L	U	0.982	0.967	0.967	0.033	0.033	0	0	0	0.018
	0	0.018	0.033	0.033	0.967	0.967	1	1	1	0.982
Δ	U	0.976	0.932	0.932	0.006	0.006	0	0.062	0.062	0.024
	0	0.024	0.068	0.068	0.994	0.994	1	0.938	0.938	0.976
X	U	1	0.994	0.994	0.006	0.006	0	0	0	0
	0	0	0.006	0.006	0.994	0.994	1	1	1	1

Вклады в колебания UO2 векторов поляризации подрешеток

ны экспериментальные данные по нейтронному рассеянию для UO₂ [3]. В правой части рисунка представлены фононные спектры подрешетки кислорода (точечные линии) в «замороженной» подрешетке урана и подрешетки урана в «замороженной» подрешетке кислорода (сплошные линии). «Замораживание» означает обращение в ноль смещений соответствующей подрешетки. Как отмечалось, в фононном спектре подрешетки кислорода в точке L ЗБ имеет место вырождение частот, обусловленное «свертыванием» ветвей из ЗБ кислорода в ЗБ кристалла (рис. 1, б). «Размораживание» подрешеток и взаимодействие их колебаний приводит к снятию вырождения, однако, как это видно из центральной части рисунка, соответствующие расщепления невелики для данного соединения в связи с существенно различающимися массами урана и кислорода. В фононных спектрах подрешеток отсутствуют акустические ветви, поскольку условия их реализации выполняются для полной динамической матрицы, а не для ее отдельных блоков.

Сравнение фононных спектров кристалла (центральная часть рисунка) со спектрами подрешеток (правая часть рисунка) показывает, что оптические ветви кристаллов чрезвычайно близки к спектрам подрешетки кислорода в «замороженной» подрешетке урана.

Таблица З

В левой части рис. 2 приведены плотности фононных частот кристалла и подрешеток урана и кислорода. Кристаллическая плотность представлена жирной линией, подрешетки урана — тонкой, а кислорода точечной. Из рисунка видно, что основные особенности высокочастотной части фононной плотности кристалла коррелируют с особенностями функции плотности частот подрешетки кислорода.

Нами также вычислены векторы поляризации для колебаний кристалла и подрешеток. Для того чтобы определить вклады в колебания кристаллической решетки каждой из подрешеток, динамическая матрица записывалась в базисе векторов поляризации подрешеток. Результаты соответствующих вычислений приведены в табл. З для кристалла UO₂. Обозначения частот в табл. З даны на рис. 2.

Как видно из табл. 3, частоте $\omega_{\rm LO2}$ отвечают только колебания подрешетки кислорода в точках Γ и L, на линии Λ имеется незначительный вклад колебаний

подрешетки урана. Частоте ω_{TO2} в точке Γ, X и на линии Δ отвечают только колебания подрешетки кислорода, в L и на линии Λ имеются вклады подрешетки урана. Для ω_{TO1} в точке *L*, *X* имеются только колебания подрешетки кислорода, вклады подрешетки урана имеются в Γ и на Λ и Δ . В акустических частотах ω_{LA} и ω_{TA} , напротив, на линиях Λ и Δ преобладают вклады от подрешетки урана, а в точке Х вклад подрешетки кислорода вообще отсутствует. Таким образом, в точке X колебания в спектре кристалла могут быть разделены на частоты, соответствующие колебаниям отдельных подрешеток. Такое поведение фононных ветвей на линии Δ и особенно в точке Xможно сопоставить с тем, что точка Х ЗБ кристалла совпадает с аналогичной точкой ЗБ подрешетки кислорода (рис. 1, б).

3. Факторы Дебая-Уоллера

Из изложенного ясно, что колебания подрешетки кислорода в «замороженной» подрешетке металла достаточно хорошо описывают высокочастотную часть фононного спектра кристалла в целом. Это позволяет описывать статистические и термодинамические характеристики кристаллов UO₂, относящиеся к кислороду, рассматривая только эту подрешетку как подрешетку Браве. В частности, вычисления факторов Дебая–Уоллера ($\alpha = U$ или O) можно выполнить по формуле

$$B_{\alpha} = \frac{8\pi^2}{3} \frac{\hbar}{2m_{\alpha}} \int_{\omega_{\min}}^{\omega_{\max}} \coth\left(\frac{\hbar\omega}{2k_BT}\right) \left[\frac{g_{\alpha}(\omega)}{\omega}\right] d\omega, \quad (3)$$

где $g_{\alpha}(\omega)$ — фононная плотность состояний соответствующих подрешеток, ω_{\min} и ω_{\max} — граничные частоты соответствующих спектров, \hbar , k_B — известные стандартные константы.

Как видно из рис. 2, фононный спектр подрешетки урана существенно отличается от кристаллического, однако пики плотности состояний коррелируют с кристаллическими. По этой причине мы применим формулу (3) не только для вычисления среднеквадратичных смещений кислорода, но и урана, понимая, что здесь приближение будет более грубым, однако пригодным для качественных оценок.

На рис. З представлены вычисленные по формуле (3) величины B_{α} для кислорода и урана вместе с экспериментальными [4, 18] и теоретическими значениями [3] при температуре ниже, чем T_c . Результаты наших расчетов отображают сплошная и точечная линии для кислорода и урана соответственно. Пунктирная линия и пунктирная с точкой описывают изменение величин B_0 и B_U по результатам работы [3], в которой вычисление факторов Дебая–Уоллера проводилось непосредственно по точкам ЗБ с учетом векторов поляризации. Светлыми и темными кружками на рис. З приведены экспериментальные данные по нейтронному рассеянию из [18], а крестиками и ромбами — из [4] для кислорода и урана соответственно.

Как видно из рисунка, обе теоретические модели дают завышенные значения факторов Дебая-Уоллера, особенно по сравнению с более поздними экспериментальными данными [4], при этом точный расчет [3] несколько лучше описывает эксперимент. Вместе с тем

Рис. 3. Факторы Дебая-Уоллера в кристаллах UO_2 для кислорода B_0 (сплошная кривая — наш расчет, штриховая — расчет [3], светлые кружки — эксперимент [18], кресты — эксперимент [4]) и урана B_U (пунктир — наш расчет, штрихпунктир — расчет [3], черные кружки — эксперимент [18], ромбы эксперимент [4])

отличие результатов теоретических расчетов друг от друга не столь значительное, особенно для кислорода. Таким образом, модель «замороженных» подрешеток, существенно упрощающая вычисление факторов Дебая-Уоллера, кажется вполне приемлемой для соединений, у которых имеет место разделение или слабое перекрывание акустических и оптических ветвей фононного спектра.

Заключение

Как показано в настоящей работе на примере UO₂, в соединениях с существенно различающимися массами компонентов оптические ветви фононного спектра кристалла в достаточно хорошем приближении описываются колебаниями кислорода в «замороженной» подрешетке металла. В этом приближении можно использовать простые формулы, относящиеся к простой кубической решетке, для вычисления различных физических величин, отвечающих подсистеме кислорода в кристалле. С формальной точки зрения эффект «замораживания» отвечает учету взаимодействия металл-кислород в первом порядке теории возмущений, поэтому полученные результаты можно уточнять, учитывая недиагональные блоки матрицы (2) во втором порядке теории возмущений. Ангармонические эффекты также могут быть учтены с использованием формул, полученных для простой кубической решетки Браве.

Работа выполнена при финансовой поддержке целевой программы «Развитие научного потенциала высшей школы (2009–2010 гг.)» (проект 2.1.1./1230).

Список литературы

- http://en.wikipedia.org/wiki/Nuclear_fuel (обзорная статья «Ядерное топливо»).
- Clausen K., Hayes W., Hutchings M.T. et al. // Rev. Phys. Appl. 1984. 19, N 9. P. 719.
- Dolling G., Cowley R.A., Woods A.D.B. // Can. J. Phys. 1965. 43, N 8. P. 1397.

- Ruello P., Desgranges L., Baldinozzi G. et al. // J. Phys. Chem. Sol. 2005. 66, N 5. P. 823.
- Livneh T. // J. Phys.: Condens. Matter. 2008. 20, N 8. P. 085202.
- Yin Q., Savrasov S.Y. // Phys. Rev. Lett. 2008. 100, N 22. P. 225504.
- Govers K., Lemehov S., Hou M., Verwerft M. // J. Nucl. Mat. 2007. 366, N 1-2. P. 161.
- Goel P., Choudhury N., Chaplot S.L. // J. Phys.: Condens. Matter. 2007. 19, N 38. P. 386239.
- Brutzel L. van, Chartier A., Crocombette J.P. // Phys. Rev. B. 2008. 78, N 2. P. 024111.
- Arima T., Idemitsu K., Inagaki Y. et al. // J. Nucl. Mat. 2009. 389, N 1. P. 149.
- 11. Поташников С.И., Боярченков А.С., Некрасов К.А.,

Купряжкин А.Я. // Альтернативная энергетика и экология. 2007. № 8. С. 43.

- Govers K., Lemehov S., Hou M., Verwerft M. // J. Nucl. Mat. 2008. 376, N 1. P. 66.
- Kurosaki K., Imamura M., Sato I. et al. // J. Nucl. Sci. Tech. 2004. 41, N 8. P. 827.
- 14. *Поплавной А.С.* // Изв. вузов. Физика. 2008. **51**, № 7. С. 31.
- 15. Жуков В.П., Зайнуллина В.М. // ФТТ. 1998. **40**, № 11. С. 2019.
- Caciuffo R., Amoretti G., Santini P. et al. // Phys. Rev. B. 1999. 59, N 21. P. 13892.
- 17. Shannon R.D., Prewitt C.T. // Acta Cryst. B. 1969. 25, N 5. P. 925.
- Willis B.T.M. // Proc. R. Soc. London. A. 1963. 274, N 1356. P. 134.

Phonons and UO₂ Debye-Waller factors in sublattice model

A. S. Poplavnoi^a, T. P. Fedorova^b

Faculty of Physics, Kemerovo State University, Krasnaya str. 6. Kemerovo 650043, Russia. E-mail: ^apopl@kemsu.ru, ^bkirienko@kemsu.ru.

Temperature dependence of UO₂ Debye–Waller factors is calculated for Born–Mayer model in «frozen» sublattice approximation. The results are known to be in good agreement with the experimental data in temperature range from 0 to 1500 K, i.e., up to a superionic transition.

Keywords: lattice dynamics, fluorite, phonons, superionic crystals, Born-Mayer potential, phonon density of states, Debye-Waller factors. PACS: 63.20.D-, 61.05.C-, 63.70.+h, 66.30.H.

Received 26 February 2010.

English version: Moscow University Physics Bulletin 5(2010).

Сведения об авторах

1. Поплавной Анатолий Степанович — докт. физ.-мат. наук, профессор, зав. кафедрой; тел.: (384-2) 58-31-95, e-mail: popl@kemsu.ru.

2. Федорова Татьяна Петровна — ассистент; тел.: (384-2) 58-31-95, e-mail: kirienko@kemsu.ru, kirienko_tp@mail.ru.