ФИЗИКА ЗЕМЛИ, АТМОСФЕРЫ И ГИДРОСФЕРЫ

Солитонная теория шквальных бурь

С. А. Арсеньев^{*a*}, Н. К. Шелковников^{*b*}

Московский государственный университет имени М.В. Ломоносова, физический факультет, кафедра физики моря и вод суши. Россия, 119991, Москва, Ленинские горы, д. 1, стр. 2. E-mail: ^a arrsenyev@yandex.ru, ^b shelkovnikov@phys.msu.ru

Статья поступила 01.10.2009, подписана в печать 22.04.2010

Построена теория шквальных бурь. Результаты сравниваются с наблюдениями.

Ключевые слова: тропосфера, шквальная буря, солитон, температурная инверсия, длинные гравитационные волны, турбулентное перемешивание, ураганный ветер.

УДК: 551.510. PACS: 92.60.Qx, 92.60.Fm, 92.60.Gn, 92.60.hk, 47.35.Fg.

Введение

Шквальная буря, по определению, — это кратковременное и сильное увеличение средней скорости ветра без вращения в районах тяжелых штормов или при прохождении быстрых циклонов, несущих облачность и дожди [1]. На рис. 1 показан пример шквальной бури: на фоне слабого юго-западного ветра появляется сильное солитонное возмущение в виде северо-западного ветра с максимумом скорости 31 м/с. Ветровой солитон очень узок, за 10 мин скорость ветра возрастает от 3 до 31 м/с, а затем в течение 15 мин падает до 2 м/с. Общее время существования бури $t_* = 25$ мин. Характерное для смерчей и торнадо вращение воздуха отсутствует [1, с. 147].

Шквальные бури приводят к катастрофам на море. Например, в марте 1878 г. английский фрегат «Эвридик» был опрокинут шквальной бурей и практически мгновенно затонул вместе с экипажем. Такая же участь постигла и русский броненосец «Русалка» 19 сентября 1893 г. в Балтийском море, погибли 178 моряков [1]. На суше шквальные бури могут разрушить легкие строения и создать бурелом в лесу. Например, в Подмосковье 29 мая 1937 г. ураганная шквальная буря со скоростью ветра до 35 м/с и длительностью всего 10 мин вызвала значительные разрушения дачных поселков: деревья опрокидывались вместе с корнями, срывались крыши с домов, сносились заборы, были разбиты стекла в окнах [1], вращения ветра не было. В Сан-Франциско 21 ноября 1910 г. шквальная буря атаковала укрепленные городские дома. Они устояли, хотя и наблюдалось их сильное дрожание. Длительность бури составляла всего 2 мин, причем скорость ветра достигала 100 км/ч. Д.В. Наливкин [1, с. 148] отмечает: «Как будто над городом пронеслась одна громадная, длинная и узкая воздушная волна».

Характерной чертой швальных бурь является наличие облаков, на нижней границе которых имеется тонкий слой инверсии. Внутри инверсии температура растет с высотой, а выше и ниже нее температура с высотой падает (рис. 2). Возникновение инверсии несколько выше уровня конденсации, т. е. немногим выше нижней границы облаков, связано с тем, что внутри облака температура увеличивается за счет выделения

Рис. 2. Система координат и температура воздуха в нижнем пограничном слое атмосферы и в средней тропосфере. Положение слоя инверсии обозначено линией С

скрытой теплоты парообразования. Существенно, что инверсия обладает запирающими свойствами. Объем воздуха, поднявшийся снизу в слой инверсии, оказывается холоднее окружающего воздуха и выталкивается силами Архимеда вниз. Аналогично выталкивается обратно наверх более теплый воздух, поступивший в инверсию сверху. Это позволяет моделировать инверсию поверхностью тока $\zeta(x, y)$. Здесь могут существовать горизонтальные скорости ветра u, v, а вертикальная скорость w подчиняется условию непротекания [2]: при $z = \zeta$

$$w = \frac{\partial \zeta}{\partial t} + u \frac{\partial \zeta}{\partial x} + v \frac{\partial \zeta}{\partial y}.$$
 (1)

Кроме того, вертикальные турбулентные напряжения на инверсии должны быть непрерывны: при $z = \zeta$

$$T_x^z = T_x^0, \quad T_u^z = T_u^0.$$
 (2)

Здесь T_x^z , T_y^z — турбулентные напряжения в нижнем пограничном слое атмосферы (НПСА), T_x^0 , T_y^0 — турбулентные напряжения на нижней границе средней тропосферы (СТ), ζ — возмущение уровня поверхности инверсии, ось *z* направлена вниз от невозмущенного уровня *z* = 0, поверхность Земли (ПЗ) находится на уровне *z* = *H* (рис. 2).

Если инверсия в каких-либо местах оказывается разрушенной очень сильными восходящими движениями, то условие (1) места не имеет и воздух стекается к этим пятнам, образуя мощные грозовые облака Cb [3]. Если же вертикальные движения недостаточны для разрушения инверсии, то условие (1) выполняется и на поверхности инверсии возникают гравитационные волны. Задачу об изучении этих волн на поверхности раздела с разными температурами и скоростями ветра впервые поставили еще в XIX в. Кельвин и Гельмгольц. Полное решение этой задачи с учетом сжимаемости воздуха и изменчивости температуры получил в 1947 г. Д. Л. Лайхтман [4] — оно описывает внутренние волны в тропосфере. Однако основная мода, соответствующая гравитационным волнам в однородной по плотности атмосфере, в этом решении пропущена. Между тем она появляется при анализе приливных уравнений Лапласа в атмосфере [5], и учет движений в НПСА, связанных с этой модой, является практически важной задачей. В настоящей работе эта задача решается для длинных гравитационных волн, для которых имеет место условие статики атмосферы

$$g\rho = \frac{\partial p}{\partial z}.$$
 (3)

Для этих волн длина волны λ значительно превышает толщину H ($\lambda \gg H$).

Постановка задачи

Входящие в уравнения (3) плотность ρ и давление *р* воздуха изменяются с высотой. Для того чтобы найти эти изменения, надо привлечь уравнение состояния

$$p = R_c \rho T, \tag{4}$$

где $R_c = 287 \text{ м}^2/\text{c}^2 \text{ K}$ — удельная газовая постоянная сухого воздуха. Эффекты влажности не имеют значения в НПСА на высотах ниже уровня конденса-

ции, которая практически совпадает с уровнем z = 0 (рис. 2). Поскольку нас интересуют движения внутри НПСА при $z \ge \zeta$, влиянием влажности мы в дальнейшем пренебрежем. Прологарифмируем (4) и возьмем от результата производную по z. Получим

$$\frac{dp}{dz} = \frac{1}{\rho} \frac{d\rho}{dz} + \frac{1}{T} \frac{dT}{dz}.$$
(5)

Подставляя в (5) давление p из (4), а градиент dp/dz из (3), найдем

$$\frac{g}{TR_c} = \frac{1}{\rho} \frac{d\rho}{dz} + \frac{1}{T} \frac{dT}{dz}.$$

Отсюда находим закон, определяющий изменение плотности с высотой

$$\frac{1}{\rho}\frac{d\rho}{dz} = \frac{1}{T}(\gamma_0 - \gamma),\tag{6}$$

где $\gamma = dT/dz$, $\gamma_0 = g/R_c = 3.42 \cdot 10^{-2}$ °С/м — постоянная величина. Она имеет смысл градиента температуры в однородной по плотности атмосфере, так как $d\rho/dz = 0$ при $\gamma_0 = \gamma$.

При $\gamma > \gamma_0$ плотность воздуха растет с высотой $d\rho/dz < 0$. Эта ситуация наблюдается редко, например при интенсивном прогреве НПСА в дневное время летом. Она соответствует неустойчивому состоянию атмосферы, так как тяжелый воздух находится наверху, а легкий внизу и $\gamma > \gamma_0 > \gamma_a$, где $\gamma_a = 10^{-2}$ °C/м сухоадиабатический градиент температуры. При охлаждении НПСА в штормовую погоду $\gamma \cong \gamma_0$, что соответствует однородной по плотности атмосфере. Случай $\gamma > \gamma_0$, когда плотность воздуха убывает с высотой, наблюдается наиболее часто, например выше НПСА в СТ практически всегда. Он соответствует устойчивой стратификации, когда тяжелый воздух находится внизу. В дальнейшем мы будем рассматривать случай $\gamma \cong \gamma_0$, при котором стратификация внутри НПСА неустойчива $(\gamma_0 > \gamma_a)$. Это означает, что воздух внутри НПСА турбулизирован за счет конвекции и вертикальных сдвигов средней скорости ветра.

Условие $\rho = \text{const}$ позволяет проинтегрировать (3) по вертикали от $z = \zeta$ до z и найти закон изменения давления воздуха с высотой внутри НПСА

$$p = p_0 + g\rho(z - \zeta), \tag{7}$$

где p_0 — давление на уровне $z = \zeta$.

Направим ось x вдоль ветрового течения на нижней границе СТ и обозначим скорость ветра на этой границе буквой W. Сильные ветра в СТ приводят к квадратичному закону сопротивления на инверсии. То есть при $z = \zeta$

$$T_x^0 = C_g W^2, (8)$$

где C_g — коэффициент сопротивления. В формулах (8), (2) тангенциальное напряжение ветра отнесено к плотности воздуха $\rho = 1.3$ кг/м³. Возникающие под действием ветра W течения внутри НПСА направлены также вдоль оси x, так как мы пренебрегаем силой Кориолиса из-за небольших толщин НПСА: $H \in [500, 2000]$ м. Таким образом, поперечные течения вдоль оси y становятся несущественными, и мы можем записать уравнения движения и неразрывности в виде

$$\frac{\partial u}{\partial t} = -\frac{1}{\rho} \frac{\partial p}{\partial x} - \frac{\partial T_x^z}{\partial z} + A_L \frac{\partial^2 u}{\partial x^2},\tag{9}$$

$$\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z} = 0,$$
 (10)

где A_L — коэффициент горизонтальной сдвиговой турбулентной вязкости. Уравнения (9), (10) содержат турбулентные напряжения и вертикальные скорости w внутри НПСА, от которых можно избавиться интегрированием по вертикали от $z = \zeta$ до z = H. В результате уравнение (10) принимает вид

$$\frac{\partial \zeta}{\partial t} = \frac{\partial S}{\partial x},\tag{11}$$

где $S = \int_{\zeta}^{H} u \, dz$ — полный поток. При выводе (11) мы

учли граничные условия (1), (2) и

$$u = w = 0 \quad при \quad z = H. \tag{12}$$

Из уравнения (9) легко исключить давление, используя закон (7):

$$\frac{1}{\rho}\frac{\partial p}{\partial x} = \frac{1}{\rho}\frac{\partial p^0}{\partial x} - g\frac{\partial \zeta}{\partial x}.$$
(13)

Уровень инверсии ζ удобно представить в виде суммы статической ζ_s и динамической ζ_d составляющих: $\zeta = \zeta_s + \zeta_d$. Тогда если статические наклоны уровня инверсии уравновешиваются градиентами давления на инверсии

$$\frac{1}{\rho}\frac{\partial p_0}{\partial x} = g\frac{\partial \zeta_s}{\partial x},$$

то уравнение (13) можно записать в виде

$$\frac{1}{\rho}\frac{\partial p}{\partial x} = -g\frac{\partial\zeta_d}{\partial x}.$$
(14)

Подставляя (14) в (9) и опуская индекс d (в дальнейшем рассматриваются только динамические наклоны уровня ζ_d), найдем

$$\frac{\partial u}{\partial t} = g \frac{\partial \zeta}{\partial x} - \frac{\partial T_x^z}{\partial z} + A_L \frac{\partial^2 u}{\partial x^2}.$$
 (15)

Проинтегрируем уравнение (15) по *z* в пределах НПСА. Получим

$$\frac{\partial S}{\partial t} = gH\frac{\partial \zeta}{\partial x} - T_x^H + T_x^0 + A_L\frac{\partial^2 S}{\partial x^2}.$$
 (16)

Система двух уравнений (16) и (11) относительно двух неизвестных S и ζ замкнута, если известны турбулентные напряжения на верхней и нижней границах НПСА или их связь с S или ζ .

Решение задачи

Будем искать решение этой системы в виде волны, бегущей со скоростью V: S = F(x + Vt). Тогда уравнение (11) даст алгебраическую связь между S и ζ . Обозначая $\chi = x + Vt$, получим (индекс χ при Fобозначает производную по χ)

$$\frac{\partial S}{\partial x} = F_{\chi}, \quad \frac{\partial S}{\partial t} = F_{\chi}V,$$
$$\frac{\partial \zeta}{\partial t} = \frac{\partial S}{\partial x} = F_{\chi} = \frac{1}{V}\frac{\partial S}{\partial t} = \frac{\partial}{\partial t}\left(\frac{S}{V}\right).$$

Отсюда, интегрируя по времени t, находим

$$S = \zeta V, \tag{17}$$

так как константа интегрирования равна нулю (при S = 0 и $\zeta = 0$). Формула (17) позволяет исключить уровень ζ из уравнения (16):

$$\frac{\partial S}{\partial t} = \frac{gH}{V} \frac{\partial S}{\partial x} - T_x^H + T_x^0 + A_L \frac{\partial^2 S}{\partial x^2}.$$
 (18)

Для напряжения трения на нижней границе НПСА можно принять известный в теории длинных волн [6-8] закон

$$T_x^H = \omega_T S. \tag{19}$$

Здесь ω_T — частота трения, которую можно оценить по формуле (8):

$$\omega_T = \frac{3A}{H^2(1-n)^2},$$
 (20)

где $n = z_0/H$, z_0 — высота выступов шероховатости на поверхности Земли и A — коэффициент сдвиговой турбулентной вязкости. С другой стороны — напряжение трения на верхней границе НПСА определяется формулой (8). Входящую в нее скорость ветра W на нижней границе СТ можно связать со скоростью ветра на верхней границе НПСА u° соотношением

$$u^{\circ} = kW, \qquad (21)$$

где k — ветровой коэффициент. Если скорость ветра при переходе через инверсию не терпит разрыв, то k = 1. В противном случае 0 < k < 1, так как скорость ветра убывает с высотой. Отметим, что формула (21) используется в физике океана для связи скорости ветра в приводном слое атмосферы со скоростью течения на поверхности океана [9, 10].

Полный поток S можно выразить через скорость ветра u° , если задаться определенной моделью распределения скорости ветра по высоте внутри НПСА (логарифмический, параболический или какой-либо другой закон). Простейшей моделью является модель плиты (slab-model), в которой все части движутся с одинаковой скоростью $u^{\circ} = u$, за исключением тонкого приземного слоя атмосферы, толщиной порядка 10 м, где скорость резко убывает до нуля. Трение тогда сосредоточено вблизи уровня z = H, где выполняется соотношение (19). Для модели плиты S = uH и формулу (8) можно записать в виде

$$T_x^0 = \frac{C_g}{k^2 H^2} S^2.$$
 (22)

Подставляя (22) и (19) в (18), получим уравнение для S

$$\frac{\partial S}{\partial t} = \frac{gH}{V} \frac{\partial S}{\partial x} + \alpha S^2 - \omega_T S + A_L \frac{\partial^2 S}{\partial x^2}, \qquad (23)$$

где обозначено $\alpha = C_g/k^2 H^2$.

Вспомним теперь, что мы ищем решение в виде бегущей волны $S = F(\chi)$. Тогда $\partial S/\partial t = VF_{\chi}$, $\partial S/\partial x = F_{\chi}$, $\partial^2 S/\partial x^2 = F_{\chi\chi}$ и уравнение (23) принимает вид

$$A_L F_{\chi\chi} + \alpha S^2 - \omega_T S - V \left(1 - \frac{gH}{V^2}\right) F_{\chi} = 0.$$
 (24)

Для волн, бегущих со скоростью $V = (gH)^{1/2}$, уравнение (24) переходит в уравнение

$$A_L F_{\chi\chi} + \alpha S^2 - \omega_t S = 0. \tag{25}$$

Его легко решить, умножая на F_{χ} :

$$\frac{A_L}{2} \frac{d}{d\chi} \left[\left(\frac{dF}{d\chi} \right)^2 \right] + \frac{\alpha}{3} \frac{dF^3}{d\chi} - \frac{\omega_T}{2} \frac{dF^2}{d\chi} = 0.$$
(26)

Отсюда, интегрируя, найдем

$$\left(\sqrt{\frac{3A_L}{2\alpha}}\right)F_{\chi} = F\sqrt{\beta - F},\qquad(27)$$

где $\beta = (3/2)(\omega_T/\alpha)$. Константа интегрирования обращается в нуль, так как $F \to 0$, $F_{\chi} \to 0$ при $\chi \to \infty$.

В уравнении (27) переменные разделяются:

$$\frac{dF}{F\sqrt{\beta-F}} = d\chi\sqrt{\frac{2\alpha}{3A_L}}.$$

Отсюда, интегрируя еще раз, получим

$$-\frac{2}{\sqrt{\beta}}\operatorname{Arth}\left(\sqrt{\frac{\beta-F}{\beta}}\right) = \chi\sqrt{\frac{2\alpha}{3A_L}},$$

или

$$\sqrt{\frac{\beta - F}{\beta}} = -\operatorname{th}\left(\chi\sqrt{\frac{\alpha\beta}{6A_L}}\right). \tag{28}$$

Имеет место тождество $th^2 x \equiv 1 - \operatorname{sech}^2 x$. Следовательно,

$$\frac{\beta - F}{\beta} = 1 - \sec h^2 \left(\chi \sqrt{\frac{\beta \alpha}{6A_L}} \right).$$

Таким образом,

$$S = F = \beta \operatorname{sech}^{2}(\chi/\Delta), \qquad (29)$$

$$u = (\beta/H) \operatorname{sech}^{2}(\chi/\Delta), \qquad (30)$$

$$\zeta = \left[\beta/(gH)^{1/2}\right]\operatorname{sech}^2(\chi/\Delta).$$
(31)

Здесь

$$\Delta = \sqrt{\frac{4A_L}{\omega_t}} = H(1-n)\sqrt{\frac{4A_L}{3A}}$$
(32)

— ширина солитонов (29)-(32).

Используя решение (31) и (7), находим изменения давления в НПСА

$$p = p^{0} + g\rho z - g\rho \frac{\beta}{\sqrt{gH}} \sec h^{2} \left(\frac{\chi}{\Delta}\right).$$
(33)

В частности, на поверхности Земли, при z = H

$$P = p_0 + g\rho H - g\rho \frac{\beta}{\sqrt{gH}} \sec h^2 \left(\frac{\chi}{\Delta}\right).$$
(34)

Из (30) и (34) видно, что при прохождении шквальной бури давление падает, а скорость ветра возрастает. Время длительности шквальной бури можно оценить по формуле

$$t_* = \frac{\Delta}{V} = \sqrt{\frac{4A_L}{g\omega_T H}}.$$
(35)

В качестве примера на рис. З и 4 приведены расчеты колебаний приземного давления и скорости ветра при следующих значениях параметров: $C_g = 10^{-2}, \ k = 0.7, \ H = 980$ м, $p_0 = 888.4$ гПа,

Рис. 3. Расчет изменения давления *P* у поверхности Земли при прохождении шквальной бури. Минимальное давление равно 973.756 гПа, максимальное соответственно 1013.25 гПа. Аномалия давления равна 34.49 гПа

Рис. 4. Расчет изменения скорости ветра у поверхности Земли при прохождении шквальной бури. Максимальная скорость равна 31 м/с

 $g = 9.8 \text{ м/c}^2$, $\rho = 1.3 \text{ кг/м}^3$, $z_0 = 0.05 \text{ м}$ (трава, рожь), $A = 129.7 \text{ м}^2/\text{c}$, $A_L = 2.16 \cdot 10^6 \text{ m}^2/\text{c}$. В этом случае $\Delta = 147 \cdot 10^3 \text{ м}$, $\beta = 30\,380 \text{ m}^2/\text{c}$, $\alpha = 2.08 \cdot 10^{-8}$. Из рис. 3, 4 мы видим, что максимальная скорость ветра достигает 31 м/с, время ее прохождения (35) составляет 25 мин, что соответствует наблюдениям (рис. 1). Минимальное давление равно 973.76 гПа, а ширина солитона равна 147 км, т.е. шквальная буря является мезомасштабным атмосферным явлением, возникающим при ураганных ветрах в средней тропосфере в данном случае максимальное значение W составляет 44.3 м/с.

Авторы благодарны академику Г.С. Голицыну за плодотворные обсуждения.

Список литературы

- 1. Наливкин Д.В. Ураганы, бури и смерчи. Л., 1969.
- 2. Кочин Н.Е., Кибель И.А., Розе Н.В. Теоретическая гидромеханика: В 2 т. М.; Л., 1948.
- 3. Сноу Дж.Т. // В мире науки. 1984. № 6. С. 44.
- 4. Хргиан А.Х. Физика атмосферы: В 2 т. Л., 1984.

- 5. Дикий Л.А. Теория колебаний земной атмосферы. Л., 1969.
- 6. Гилл А. Динамика атмосферы и океана: В 2 т. М., 1986.
- фов. М., 1989. 9. Арсеньев С.А., Фельзенбаум А.И. // Изв. АН СССР. Физика атмосферы и океана. 1977. **13**, № 10. С. 1034.
- 7. *Ле Меоте Б.* Введение в гидродинамику и теорию волн на воде. Л., 1974.
- 10. Арсеньев С.А. // Изв. АН СССР. Физика атмосферы и океана. 1977. **13**, № 12. С. 1325.

8. Арсеньев С.А., Шелковников Н.К. Динамика вод шель-

The soliton theory of squall storms

S. A. Arsenyev^a, N. K. Shelkovnikov^b

Department of Marine and Inland Water Physics, Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow 119991, Russia. E-mail: ^a arrsenyev@yandex.ru, ^b shelkovnikov@phys.msu.ru.

The theory of squall storms is created. Results of the theoretical calculations are compared with observations.

Keywords: troposphere, squall storm, soliton, thermal inversion, long gravitational waves, turbulent mixing, hurricane wind. PACS: 92.60.Qx, 92.60.Fm, 92.60.Gn, 92.60.hk, 47.35.Fg.

Received 1 October 2009.

English version: Moscow University Physics Bulletin 5(2010).

Сведения об авторах

1. Арсеньев Сергей Александрович — докт. физ.-мат. наук, профессор, гл. науч. сотр.; тел.: (495) 911-34-09, e-mail: arrsenyev@yandex.ru. 2. Шелковников Николай Константинович — докт. физ.-мат. наук, профессор, гл. науч. сотр.; e-mail: shelkovnikov@phys.msu.ru.