# Влияние сопротивления жидкости на скорость распространения над ней импульсного разряда

А. Ф. Александров, Д. Н. Ваулин<sup>*a*</sup>, А. А. Квас, В. А. Черников<sup>*b*</sup>

Московский государственный университет имени М.В. Ломоносова, физический факультет, кафедра физической электроники. Россия, 119991, Москва, Ленинские горы, д. 1, стр. 2. E-mail: <sup>a</sup>vaud@yandex.ru, <sup>b</sup>vachernikov@rambler.ru

Статья поступила 19.07.2010, подписана в печать 15.09.2010

Приводятся результаты экспериментальных и теоретических исследований скорости распространения импульсного разряда в воздухе при атмосферном давлении над жидкостями с различными проводимостями.

*Ключевые слова*: импульсный разряд, поверхность жидкости, скорость распространения, проводимость, ток разряда.

УДК: 553.9:551.594. РАСS: 52.75.Di.

#### Введение

Изучение импульсного электрического разряда, развивающегося по поверхности воды, другой жидкости или влажного грунта, представляет интерес в связи с возможностью его различных технических применений, например для очистки воды [1, 2], при разработке и создании систем молниезащиты и др. [3-5]. При этом определенное внимание уделяется возможности достижения максимального расстояния, на которое распространяется разряд при заданном начальном напряжении в импульсе. Очевидно, что линейные размеры L разряда определяются скоростью его распространения V согласно простому соотношению  $L = V \tau$ , где  $\tau$  длительность импульса. Однако зависимость скорости движения разряда от собственного сопротивления жидкости, над которой происходит его распространение, до конца не исследована. В работе [6] отмечается, что имеются верхняя и нижняя границы удельной электропроводности жидкости, ограничивающие область существования разряда, однако вопрос о том, чем определяются эти пределы, остается открытым. Из простых физических соображений следует, что при условиях, когда сопротивление жидкости  $R_w \to 0$  либо  $R_w \to \infty$ , скорость распространения разряда стремится к нулю. Таким образом, при каких-то значениях сопротивления жидкости скорость распространения разряда должна достигать максимального значения. Поэтому целью настоящей работы было детальное экспериментальное исследование средней скорости распространения импульсного разряда над поверхностью дистиллированной воды с добавками соляного раствора различной концентрации, что позволило практически непрерывно и в широком диапазоне значений изменять сопротивление получаемых растворов.

## 1. Схема эксперимента

Экспериментальные измерения проводились на установке, схема которой приведена на рис. 1. Использовалась кювета из оргстекла 1, в которой была сделана полость, наполняемая дистиллированной водой или ее растворами 2. Над жидкостью располагался высоковольтный электрод (катод) в виде заостренного стержня 5. Плоский электрод (анод 3) при помощи стойки 4 размещался частично в воздухе, а частично непосредственно в воде у противоположной стенки полости. Источником питания 8 служил высоковольтный импульсный гнератор, вырабатывающий импульсы квазипрямоугольной формы длительностью  $\tau = 10-800$  мкс. и максимальной амплитудой в импульсе U<sub>0</sub> до 30 кВ. Последовательно с разрядом для ограничения тока включалось балластное сопротивление ( $R_b = 1-8$  кОм). Разрядный ток и падение напряжения на разряде регистрировались при помощи низкоомного шунта с сопротивлением ( $R_s = 0.5$  Ом) и делителя напряжения 6



Рис. 1. Схема экспериментальной установки: 1 — диэлектрическая кювета, 2 — жидкость, 3 — анод, 4 — крепление анода, 5 — катод, 6 — делитель напряжения, 7 — источник напряжения, 8 — балластное сопротивление, 9 — сигналы на осциллограф

с коэффициентом деления 2000, сигналы с которых подавались 9 на вход многоканального запоминающего осциллографа. Эксперименты проводились при расстоянии от катода до поверхности воды h = 5 мм.

В качестве жидкости использовался соляной раствор определенной концентрации в дистиллированной воде, что позволяло в широких пределах (от 100 Ом до 300 кОм) изменять ее сопротивление. При этом, говоря об изменении интегральной величины — сопротивления за счет изменения проводимости жидкости, мы предполагаем каждый раз, что геометрия разрядного промежутка остается неизменной. Заметим, что сопротивление жидкости можно было также изменять и меняя геометрию разрядного промежутка путем вариации расстояния между электродами. Предварительные эксперименты показали [7], что можно выделить три стадии развития разряда над поверхностью жидкости. Первая стадия соответствует линейному пробою между катодом и жидкостью. Во время второй стадии происходит распространение разряда от катода к аноду, которое заканчивается замыканием разряда на анод и формированием высокопроводящего плазменного канала. Затем до конца импульса реализуется третья стадия развития разряда — стадия протекания тока через полностью сформированный между анодом и катодом разрядный канал. По полученным ВАХ определялось время второй стадии разряда, а при данном расстоянии между электродами - средняя скорость его распространения. Кроме того, по осциллограммам определялись величины начального сопротивления жидкости и средней напряженности электрического поля между электродами.

#### 2. Экспериментальные результаты и их обсуждение

В экспериментах в основном определялось время второй стадии распространения разряда над поверхностью дистиллированной воды с добавками соляного раствора. На рис. 2 приведены типичные зависимости этого времени и сопротивления жидкости от концентрации соли в воде при различных значениях балластного сопротивления. Разряд носил нестабильный характер, вследствие чего соответствующие точки на представленных графиках получались как средние значения по трем измерениям, при этом ошибка измерений составляла 20–30%. Как следует из представленных зависимостей, с увеличением концентрации соляного раствора его сопротивление падает, а время распространения разряда сначала уменьшается до некоторого минимума, а затем растет. Таким образом, зависимость времени второй стадии от сопротивления жидкости имеет минимум.

По известным значениям времени распространения разряда и расстояния между электродами можно определить среднюю скорость разряда как отношение  $L/t_2$ , где  $t_2$  —время второй стадии, а L — межэлектродное расстояние.

Результаты таких расчетов приведены на рис. 3, а в виде зависимости средней скорости движения разряда от сопротивления жидкости  $R_w$  при различных значениях балластного сопротивления  $R_b$ . На рис. 3,  $\delta$  приведены аналогичные зависимости от отношения сопротивления жидкости к сопротивлению балласта  $R_w/R_b$ .

Как видно из рис. 3, *а*, зависимость скорости распространения разряда от сопротивления жидкости имеет максимум. Причем этот максимум соответствует тем большему сопротивлению жидкости, чем больше сопротивление балласта. В то же время из рис. 3,  $\delta$  следует, что скорость распространения разряда достигает максимального значения при одном и том же значении отношения сопротивления жидкости к сопротивлению балласта, а именно при  $R_w/R_b = 4$ , независимо от величины последнего.

Были также проведены эксперименты по определению средней скорости распространения разряда над поверхностью технической воды с добавками либо соляного раствора (что позволяло уменьшать начальное сопротивление жидкости), либо определенной концентрации спирта (что приводило к увеличению начального сопротивления). Сравнение результатов по определению скорости разряда, полученных для соляных растворов в дистиллированной и технической воде и спиртовых растворах, приведены на (рис. 4, *a*). Достаточно хоро-



Рис. 2. Зависимости от концентрации соли: a — времени второй стадии разряда, б — начального сопротивления раствора. L = 5 см.  $\blacklozenge$  —  $R_b = 1$  кОм,  $U_0 = 17$  кВ,  $\blacksquare$  —  $R_b = 2$  кОм,  $\blacktriangle$  —  $R_b = 4$  кОм,  $U_0 = 20$  кВ



Рис. 3. Зависимости скорости распространения разряда от: a — начального сопротивления раствора, б — отношения сопротивления жидкости к сопротивлению балласта. L = 5 см,  $\blacksquare$  —  $R_b = 1$  кОм,  $U_0 = 17$  кВ,  $\square$  —  $R_b = 2$  кОм,  $\blacktriangle$  —  $R_b = 4$  кОм,  $U_0 = 20$  кВ



Рис. 4. Зависимости от отношения сопротивления жидкости к сопротивлению балласта: а — скорости распространения разряда: растворы соли в технической (■) и дистиллированной воде (□), спирта в технической воде (▲):  $R_b = 1$  кОм,  $U_0 = 20$  кВ, L = 5 см;  $\delta$  — начального тока разряда (■) и средней напряженности электрического поля (▲):  $R_b = 2$  кОм,  $U_0 = 20$  кВ, L = 5 см

шее совпадение результатов, полученных в различных экспериментах, еще раз подтверждает вывод о том, что скорость распространения разряда при определенных значениях  $R_w/R_b$  достигает максимального значения.

Вполне естественно следует предположить, что основными параметрами, определяющими скорость распространения разряда, являются величина разрядного тока и средняя напряженность электрического поля в головной части движущегося разряда, поэтому необходимо рассмотреть зависимости этих параметров от сопротивления жидкости. На рис. 4,  $\delta$  представлены зависимости начальных значений тока разряда и средней напряженности электрического поля от отношения  $R_w/R_b$ . При этом начальный ток разряда определялся по соответствующим осциллограммам, а значение средней напряженности оценивалось как  $E_i = U_i/L$ , где  $U_i$  — начальное падение напряжения на разряде, опреде-

ляемое из осциллограмм, а *L* — расстояние между электродами.

Из рис. 4,  $\sigma$  следует, что при малых значениях  $R_w/R_b$  величина начального тока падает, в то время как средняя напряженность электрического поля растет. Отсюда можно сделать вывод, что при малых значениях  $R_w/R_b$  скорость распространения разряда определяется напряженностью электрического поля.

При больших же значениях  $R_w/R_b$  средняя напряженность электрического поля (в пределах статистической ошибки) остается практически постоянной, а величина тока разряда падает. Следовательно, можно сделать вывод, что при больших значениях  $R_w/R_b$ скорость распространения разряда определяется разрядным током.

Таким образом, на основании полученных результатов можно предположить, что средняя скорость распространения разряда пропорциональна произведению начальных значений тока разряда  $I_i$  и средней напряженности  $E_i$  электрического поля:  $V \sim I_i E_i$ . Однако последнее выражение пропорционально отношению мощности, выделяемой в разрядном промежутке, к его длине, и его максимальное значение достигается при  $R_w = R_b$ , в то время как в экспериментах максимум скорости наблюдается при  $R_w = 4R_b$ .

В этом случае можно предположить, что величина скорости определяется соотношением

$$V = CI_i^{R}E_i^{m},$$

где *С* —коэффициент пропорциональности, а показатели степени *k* и *m* могут принимать некоторые значения. В этом случае ток разряда равен  $I_i = U_0/(R_w + R_b)$ , где  $U_0$  — начальное напряжение в импульсе, а средняя начальная напряженность электрического поля  $E_i = U_i/L = I_i R_w/L = U_0 R_w/((R_w + R_b)L)$ . Тогда для определения скорости получаем следующее соотношение:

$$V = CU_0^{k+m} R_w^m / ((R_w + R_b)^{k+m} L^m).$$
(1)

Для определения показателя степени k воспользуемся аппроксимацией выражения (1), полученной при условии  $R_w \gg R_b$ . В этом случае получаем, что скорость разряда определяется соотношением:

$$V = C \left( U_0^{k+m} / L^m \right) R_w^{-k}$$

Таким образом, при условии  $R_w \gg R_b$  скорость разряда равна  $V = C_2 R_w^{-k}$ , где  $C_2 = C(U_0^{k+m}/L^m)$ , т.е.  $V = V(R_w^{-k})$ . Следовательно, коэффициент k можно определить из зависимости V от  $R_w$ , полученной экспериментально при условии  $R_w \gg R_b$ . Вид такой зависимость показан на рис. 5.

Уравнение кривой, аппроксимирующей данную зависимость, имеет вид  $V = 3 \cdot 10^4 \cdot R_w^{-0.8}$ , откуда можно получить, что k = 0.8 и скорость распространения разряда  $V \sim I^{0.8}$ .

Величину коэффициента т можно найти из условия максимума функции  $V(R_w)$ , которое легко получается обычным образом путем дифференцирования выражения (1). В итоге получаем



$$R_{w} = (m/k)R_{b}$$



Рис. 5. Зависимость средней скорости распространения разряда от сопротивления жидкости при  $R_w \gg R_b$ .  $R_b = 1 \text{ кОм}, \ U_0 = 17 \text{ кB}, \ L = 5 \text{ см}$ 

Таким образом, максимум скорости, определяемой выражением (1), соответствует условию  $R_w = (m/k)R_b$ . В то же время, согласно экспериментальным данным, максимум скорости разряда регистрируется при  $R_w = 4R_b$ . Из этих двух условий следует, что m/k = 4, или m = 4k, т.е. при k = 0.8 коэффициент m = 3.2.

Таким образом, в выражении (1) остается неизвестной константа C. Для ее определения можно воспользоваться экспериментальными результатами, полученными для сопротивления балласта  $R_b = 1$  кОм. Подставляя в формулу (1) известные значения скорости распространения разряда, начального напряжения в импульсе, расстояния между электродами, сопротивления жидкости, а также известные значения коэффициентов m и k, можно определить значения константы C. Полученное таким методом среднее значение искомой постоянной равно C = 45 при средней расчетной относительной ошибке  $\pm 40\%$ .

Таким образом, получаем следующую полуэмпирическую формулу, связывающую среднюю скорость распространения разряда с сопротивлением жидкости:

$$V = 45U_0^4 R_w^{3.2} / ((R_w + R_b)^4 L^{3.2}).$$
<sup>(2)</sup>

*Рис. 6.* Зависимости средней скорости распространения разряда от сопротивления жидкости.  $U_0 = 20$  кВ, L = 5 см. ■ — экспериментальные значения,  $\Box$  — рассчитанные по формуле (2):  $a - R_b = 2$  кОм,  $\delta - R_b = 4$  кОм

Сравнение экспериментальных зависимостей  $V(R_w)$ , полученных при различных значениях балластных сопротивлений, и зависимости  $V(R_w)$ , полученной по данной формуле, представлено на рис. 6, где видно, что наблюдается удовлетворительное (в пределах ошибок измерений) соответствие между экспериментальными и расчетными величинами. Полученный результат свидетельствует о возможности использования предложенной полуэмпирической формулы (2) для объяснения экспериментальных результатов.

### Заключение

Проведенные эксперименты показали, что скорость распространения разряда над поверхностью жидкости сложным образом зависит от ее сопротивления, причем ее максимальное значение в условиях данных экспериментов достигается при сопротивлении жидкости  $R_w = 4R_b$ , где  $R_b$  — величина сопротивления балласта. Предложена полуэмпирическая формула для зависимо-

сти скорости от сопротивления жидкости, удовлетворительно объясняющая экспериментальные результаты.

Работа выполнена при финансовой поддержке проекта CRDF RUP2-1514-MO-06.

#### Список литературы

- 1. *Белошеев В.П.* Устройство для обеззараживания питьевой и сточной воды. Патент РФ № 2042641 от 14.05.92.
- 2. Шмелев В.М., Евтюхов Н.В., Козлов Ю.Н., Бархударов Э.М. // Хим. физика. 2004. **23**, № 9. С. 77.
- 3. Базелян Э.М. // Электричество. 1991. № 11. С. 27.
- Базелян Э.М., Хлапов А.В., Шкилев А.В. // Электричество. 1992. № 9. С. 19.
- 5. Резинкина М.М. Князев В.В., Кравченко В.И. // ЖТФ. 2007. 77, № 8. С. 44.
- 6. Шмелев В.М., Марголин А.Д. // ТВТ. 2003. **41**, № 6, С. 831.
- 7. Александров А.Ф., Ваулин Д.Н., Ершов А.П. и др. // Вестн. Моск. ун-та. Физ. Астрон. 2009. № 1. С. 1.

## Liquid resistance influence on velocity of impact discharge propagation over it

# A. F. Aleksandrov, D. N. Vaulin<sup>a</sup>, A. A. Kvas, V. A. Chernikov<sup>b</sup>

Department of Physical Electronics, Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow 119991, Russia. E-mail: <sup>a</sup>vaud@yandex.ru, <sup>b</sup>vachernikov@rambler.ru.

The experimental and theoretical study results of the impact atmospheric discharge propagating over the liquid surface velocity dependence from it conductivity are presenting.

*Keywords*: impact discharge, liquid surface, propagating velocity, conductivity, discharge current. PACS: 52.75.Di.

Received 19 July 2010.

English version: Moscow University Physics Bulletin 2(2011).

#### Сведения об авторах

1. Александров Андрей Фёдорович — докт. физ.-мат. наук, профессор; тел.: (495) 939-25-74.

- 2. Ваулин Дмитрий Николаевич аспирант; тел.: (495) 939-38-85, e-mail: vaud@yandex.ru.
- 3. Квас Андрей Андреевич студент.; тел.: (495) 939-38-85.
- 4. Черников Владимир Антонович канд. физ. мат. наук, доцент; тел.: (495) 939-38-85, vachernikov@rambler.ru.