Рентгеноструктурные, мёссбауэровские и магнитные исследования сплавов системы Y(Fe_{1-x} Al_x)₂

Е.В. Солодов^{1,*a*}, А.А. Опаленко¹, А.И. Фиров¹, А.С. Илюшин¹, З.С. Умхаева²

¹ Московский государственный университет имени М.В. Ломоносова, физический факультет,

кафедра физики твердого тела. Россия, 119991, Москва, Ленинские горы, д. 1, стр. 2.

² Чеченский государственный университет, физический факультет. Россия, 364907, Грозный, ул. Шерипова, д. 32.

E-mail: ^a solodov@phys.msu.ru

Статья поступила: 20.12.2010, подписана в печать 04.02.2011

В работе излагаются результаты исследования структурных превращений, магнитных фазовых переходов в квазибинарной системе Y (Fe_{1-x}Al_x)₂ с помощью методов мёссбауэровской спектроскопии, рентгеновской дифрактометрии и магнитных измерений поликристаллов.

Ключевые слова: магнитный фазовый переход, мёссбауэровский спектр, фазы Лавеса, редкоземельный сплавы.

УДК: 539.172; 539.621. РАСS: 61.10.Nz, 76.80.+у.

Введение

Редкоземельные интерметаллические соединения со структурой фаз Лавеса типа С15 являются перспективными магнитными материалами, уже нашедшими широкое применение в качестве магнитострикторов [1–5]. Открытая на соединениях TbFe₂ и TbCo₂ гигантская магнитострикция позволила исследователям наметить пути поисков таких составов сплавов, которые обеспечивали бы формирование в них оптимальных магнитоупругих свойств.

Обнаруженные в них разнообразные структурные и магнитные фазовые переходы по-прежнему вызывают большой интерес у физиков и металловедов.

В последние годы интерес исследователей сосредоточился преимущественно на синтезе многокомпонентных систем, сформированных на основе этих интерметаллидов, и на комплексном изучении их физико-химических характеристик с привлечением современных методов для установления взаимосвязи между атомно-кристаллической структурой.

Целью настоящей работы явились синтез сплавов, представляющих собой разбавленные фазы Лавеса

в квазибинарной системе $Y(Fe_{1-x}Al_x)_2$, и изучение их структурных и магнитных свойств.

Одной из задач исследования стало получение сплавов, представляющих собой твердые растворы алюминия в 3*d*-подсистеме фаз интерметаллида YFe₂.

В качестве методов исследования нами использовались рентгеновская дифрактометрия поликристаллов, температурная мёссбауэровская спектроскопия и магнитные измерения.

Результаты и обсуждение

Рентгенодифрактометрические измерения были проведены при комнатной температуре на дифрактометре ДРОН-3М на фильтрованном K_{α} Fe-излучении с автоматическим режимом записи рентгендифракционных спектров поликристаллов.

Мёссбауэровские измерения проводились на ЯГР спектрометре MS-1104m в температурном интервале от 90 до 400 К. Обработка мёссбауэровских спектров осуществлялась с использованием программного обеспечения UNIVEMS.

Для изучения магнитных свойств использовался вибрационный магнитометр Lake Shore (максимальное

Рис. 1. Мёссбаэровские спектры Y(Fe_{0.95} Al_{0.05})₂ при температурах 90 и 300 К

при x = 0.1 (a), 0.15 (б), 0.2 (в)

значение магнитного поля 16 кЭ). Продувной криостат в составе измерительного комплекса позволял проводить исследования магнитных свойств в диапазоне температур от 80 до 450 К.

Проведенное рентгенодифрактометрическое измерение образцов сплавов систем $Y(Fe_{1-x}Al_x)_2$ показало, что интерметаллид YFe_2 рентгеновски однофазен и изотипен кубической фазе Лавеса типа C15 с параметрами элементарной ячейки, равными a = 7.34 Å.

Замещение атомов железа атомами алюминия от x = 0.05 вплоть до концентрации x = 0.2 сопровождалось изменениями фазового состава сплава и появлением на дифракционных спектрах наряду с максимумами от кубической фазы типа C15 дифракционных максимумов, принадлежащих фазе, изотипной соединению RFe₃.

Проведенные нами расчеты показали, что при этом параметр элементарной ячейки сплавов $Y(Fe_{1-x}Al_x)_2$, изотипных фазе C15, практически линейно возрастает от 7.34 до 7.41 Å при увеличении концентрации алюминия в системе от x = 0 до 0.2. Попытки получить сплавы твердых растворов алюминия в YFe_2 с концентрациями, превышающими значение x = 0.2, не увенчались успехом. Вероятно, это обусловлено значительной разницей в величинах атомных радиусов железа и алюминия. Относительная разница их $\Delta R/R$ составляет 12.12%. Согласно одному из эмпирических правил Юма-Розери, для твердых растворов при таком значении $\Delta R/R$ растворимость легирующего элемента в твердом состоянии должна быть ограниченной.

Интерметаллид YFe_2 является ферромагнетиком с температурой Кюри $T_C = 540$ К, а интерметаллид YAl_2 представляет собой парамагнетик. В соединении YFe_2 ось легкого намагничивания ориентирована вдоль

кристаллографического направления типа <111>. В результате этого атомы железа, занимающие узлы в углах тетраэдров структуры С15, оказываются в двух магнитонеэквивалентных позициях. Поэтому в мёссбауэровском спектре магнитоупорядоченного интерметаллида YFe₂ присутствуют два секстета с отношением площадей этих порциальных спектров 3:1.

Измерения сверхтонких магнитных полей на ядрах железа в YFe_2 дали значения, равные $H_1 = 220$ и $H_2 = 210$ кЭ, что хорошо согласуется с литературными данными [8].

На рис. 1 приведены два мёссбауэровских спектра, полученных на сплаве состава x = 0.05 при температурах 300 и 90К. Из рис. 1 видно, что при изменении температуры произошла существенная трансформация спектров.

Проведенная нами расшифровка спектров показала, что они представляют собой суперпозицию двух секстетов с отношением площадей, близким к 3:1. Кроме того, в спектре выявлен секстет, относящийся к фазе, изотипной интерметаллиду YFe₃.

Известно [2], что в структуре фазы Лавеса типа С15 YFe₂ каждый атом железа окружен шестью атомами железа. При разбавлении соединения YFe₂ атомами алюминия есть определенная вероятность появления их в первой координационной сфере.

Статистические закономерности этого явления можно описать при помощи формулы $P_6^m = C_6 x_m (1-x)^{6-m}$. Здесь x — концентрация примеси в сплаве, P_m вероятность обнаружить m атомов примеси на первой координационной сфере.

Для сплава состава x = 0.05 расчет по указанной выше формуле дал следующие значения: $P_0 = 73\%$, $P_1 = 23\%$ и $P_2 = 3\%$. Это означает, что наиболее ве-

Рис. 3. Температурные зависимости площадей секстетов ко всей интегральной площади спектра при x = 0.1 (*a*), 0.15 (*b*), 0.2 (*b*)

роятными случаями в сплаве состава x = 0.05 должны быть следующие: либо в первой координационной сфере вообще нет атомов алюминия (вероятность 73%), либо есть только один атом алюминия (вероятность 23%). Вероятность обнаружить два атома составляет 3%, а вероятность обнаружить четыре или более атомов укладывается в 1%.

Отсюда легко заметить, что при статистической погрешности мёссбауэровского эксперимента $\sim 3-4\%$ достаточно использовать суперпозицию двух парциальных спектров в форме секстетов. Один из них отвечает локальным окружениям с отсутствием атомов алюминия в первой координационной сфере (m = 0), а другой — с одним атомом алюминия в первой координационной сфере (m = 1).

Анализ полученных результатов мёссбауэровских экспериментов показал, что в сплаве состава x = 0.05 в фазе C15 реализуется однородное локальное распределение атомов примеси, отвечающее статистическим закономерностям.

Следующие серии температурных мёссбауэровских измерений были проведены на образцах сплавов составов (по *x*): 0.10; 0.15 и 0.20 при различных температурах в пределах от 90 до 375 К (рис. 2).

Видно, что при температуре 90К спектр весьма сложен. Расчеты, выполненные с использованием модели биноминального распределения, показали, что интегральный спектр можно разложить на три парциальных спектра, демонстрирующих зеемановское расщепление на три секстета.

При обработке мёссбауэровских спектров были получены данные о соотношении интенсивностей парциальных спектров, которые в пределах точности эксперимента согласуются с данными, полученными в результате модельных расчетов. Это указывает на то, что и в сплавах составов $0.1 \le x \le 0.2$ реализуется однородное статистическое распределение атомов примеси алюминия.

По мере повышения температуры величина сверх-

Рис. 4. а — Полевые зависимости намагниченности насыщения для образцов x = 0.1, 0.15 и 0.2 при температурах 80, 300 и 450 К. б — Зависимости магнитных моментов от температуры

тонких полей уменьшается, а часть секстетов трансформируется в дублеты.

Используя результаты мёссбауэровских измерений, мы рассчитали величины отношений площадей секстетов ко всей интегральной площади спектра при различных температурах. На рис. З приведены кривые температурных зависимостей этих отношений для сплавов составов x = 0.1, 0.15 и 0.2.

Поскольку парциальные спектры в форме секстетов характеризуют магнитоупорядоченное состояние сплавов, то легко понять, что исчезновение секстетов связано с переходом сплавов в парамагнитное состояние.

Температурные мёссбауэровские измерения сплавов состава x = 0.2 показали, что даже при 90 К спектр представляет собой парамагнитный дублет. Однако при внимательном анализе фона спектра удалось выявить наличие парциальных спектров в форме секстетов, характерных для фазы YFe₃. При повышении температуры выше 350 К от этих секстетов не остается и следа.

В принципе подавляющее большинство структурных типов интерметаллических соединений элементов с 3*d* -переходными являются политипами и могут легко преобразовываться друг в друга путем направленного смещения вдоль плотноупакованных слоев с гексагональной симметрией.

В работе [2] показано, что в кристалло-структурном плане интерметаллические соединения YFe₂ и YFe₃ родственны друг другу в отношении координации атомов. Они могут быть представлены как плотные упаковки единичных структурных блоков, являющихся по существу структурами соединений RCo₅.

Планы построения структурных типов фаз Лавеса С14 и С15, а также фаз YFe₃ одинаковы. Они представляют собой многослойные структуры, которые могут быть получены путем различного чередования слоев. Если чередовать двойной слой А, являющийся элементарной ячейкой гексагональной фазы RCo₅ в последовательности ABABAB... AB, то возникает гексагональная фаза Лавеса типа C14. Если чередовать их в следующем порядке: ABCABCABC... ABC..., то возникает кубическая фаза Лавеса типа C15. Если же последовательность чередования таких слоев будет AABBAABBAA... или AABBCCBBAACC..., то возникает либо гексагональная, либо ромбоэдрическая структура интерметаллида YFe₃.

Полевые зависимости намагниченности насыщения для образцов x = 0.1, 0.15 и 0.2 были измерены при температурах 80, 300 и 450 К. (рис. 4, *a*).

Результаты проведенных нами измерений температурных зависимостей намагниченности насыщения в магнитном поле 100 Э представлены в графических зависимостях величин магнитных моментов M от температуры (рис. 4, σ). Отчетливо видно, что на кривых M(T) имеются две характерные температурные области, вблизи которых идет резкое уменьшение величины M. Ход этих кривых подобен ходу кривых на рис. 3. В обоих случаях эти аномалии обусловлены

магнитными фазовыми переходами в YFe₂ (типа C15) и YFe₃ из ферромагнитного в парамагнитное состояние.

Концентрационные зависимости температур Кюри T_C для сплавов $Y(Fe_{1-x}Al_x)_2$ и YFe_3 приведены на рис. 5. Видно, что в обоих случаях эти зависимости практически линейны.

Рис. 5. Концентрационные зависимости температур Кюри T_C для сплавов $Y(Fe_{1-x} Al_x)_2$ и YFe_3

Заключение

В квазибинарной системе $Y(Fe_{1-x}Al_x)_2$ в области концентраций $0 \le x \le 0.2$ синтезированы сплавы, представляющие собой однородные твердые растворы атомов алюминия в 3d-подрешетке, и определены их кристаллоструктурные параметры. Методами температурных магнитных и мёссбауэровских измерений в этих сплавах обнаружены магнитные фазовые переходы типа «порядок-беспорядок».

В заключение считаем своим приятным долгом выразить благодарность Н.Б. Кольчугиной за помощь в изготовлении образцов и Н.С. Попову за помощь в проведении магнитных измерений.

Список литературы

- 1. Тейлор К. Интерметаллические соединения редкоземельных металлов. М., 1974.
- 2. Илюшин А.С. Основы структурной физики редкоземельных интерметаллических соединений. М., 2005.
- 3. Белов К.П. Магнитрострикционные явления и их приложения. М., 1987.
- Физика и химия редкоземельных элементов: Справочник. М., 1982.
- 5. Ilyushin A.S. // J. of Guandong Non-Ferruos Metals. 2005. 15, № 2-3. P. 74.
- 6. Илюшин А.С., Никанорова И.А., Цвященко А.В. и др. // Вестн. Моск. ун-та. Физ. Астрон. 2004. № 2. С. 51.
- Лавес Ф. Факторы, определяющие кристаллическую структуру // Интерметаллические соединения. М., 1970. С. 139.
- Kirchmayr H.R, Burzo E. // Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology. New Series. Vol. III/19D2, H.P.J. Wijn, 1990.

X-ray, Mössbauer and magnetic research of alloys system $Y(Fe_{1-x}Al_x)_2$

E. V. Solodov^{1,a}, A. A. Opalenko¹, A. I. Firov¹, A. S. Ilyushin¹, Z. S. Umhaeva²

¹Department of Solid State Physics, Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow 119991, Russia. ²Faculty of Physics, Chechen State University, Grozny 364907, Chechen Republic, Russia. E-mail: ^a solodov@phys.msu.ru.

In this work structure and magnetic phase transitions in the quasibinary system $Y(Fe_{1-x}Al_x)_2$ were investigated by Mössbauer spectroscopy, X-ray diffractometry and magnetic measurement of polycrystals.

Keywords: magnetic phase transition, Mössbauer spectra, Laves phases, rare earth alloys. PACS: 61.10.Nz, 76.80.+y. Received 20 December 2010.

English version: Moscow University Physics Bulletin 3(2011).

Сведения об авторах

- 1. Солодов Евгений Викторович инженер; тел (495) 939-23-91, e-mail: solodov@phys.msu.ru.
- 2. Опаленко Анатолий Архипович докт. физ. мат. наук, вед. науч. сотр.; тел.: (495) 939-23-91, e-mail: tellur125@mail.ru.
- 3. Фиров Александр Иванович вед. электроник; тел.: (495) 939-23-91.
- 4. Илюшин Александр Сергеевич докт. физ. мат. наук, профессор, зав. кафедрой; тел.: (495) 939-23-87.
- 5. Умхаева Зарган Сайпутдиновна канд. физ. мат. наук, профессор, зав. кафедрой молекулярной физики; тел.: (963) 585-55-23.