Образование изотопа ¹⁸ F в реакции ²³Na $(\gamma, \alpha n)^{18}$ F при $E_b = 55$ МэВ

С.С. Белышев^{1,*a*}, Л.З. Джилавян^{2,*b*}, А.Н. Ермаков³, Б.С. Ишханов^{1,3}, А.И. Карев⁴, В.Г. Раевский⁴, В.В. Ханкин³, В.И. Шведунов³

¹ Московский государственный университет имени М.В. Ломоносова, физический факультет, кафедра общей ядерной физики. Россия, 119991, Москва, Ленинские горы, д. 1, стр. 2.

² Институт ядерных исследований РАН. Россия, 117312, Москва, просп. 60-летия Октября, д. 7а. ³ Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына (НИИЯФ МГУ).

Россия, 119991, Москва, Ленинские горы, д. 1, стр. 2.

⁴ Физический институт имени П. Н. Лебедева РАН.

E-mail: ^{*a*} *belyshev*@*depni.sinp.msu.ru*, ^{*b*} *dzhil*@*cpc.inr.ac.ru*

Статья поступила 27.12.2011, подписана в печать 16.02.2012.

Измерена активность изотопа ¹⁸ F, полученного в реакции ²³ Na $(\gamma, \alpha n)^{18}$ F на пучке тормозных γ -квантов с максимальной энергией $E_b = 55$ МэВ.

Ключевые слова: радиоизотопы, ядерные реакции, активационный анализ, гамма-спектрометрия. УДК: 539.1.074.55. PACS: 25.20.-х.

Введение

В современной медицине радиоактивные изотопы широко используются для обнаружения и лечения различных заболеваний. Кроме того, применение радиоизотопов — важное методическое направление различных научных исследований в медицине и биологии. Одним из таких радиоизотопов является ¹⁸ F, который активно используется при применении методики позитронно-эмиссионной томографии. ¹⁸ F является β^+ -активным изотопом с удобным и в то же время достаточно малым в смысле получаемой при обследовании дозы облучения периодом полураспада $T_{1/2} \approx 109.8$ мин.

До сих пор необходимые для медицины радиоизотопы в основном нарабатывались в ядерных реакторах и на ускорителях легчайших ядер. В частности, изотоп ¹⁸ F получают на циклотронах под действием пучков протонов или дейтронов в реакциях ${}^{18}O(p, n)^{18}F$ или ${}^{20}Ne(d, \alpha){}^{18}F$ соответственно (см., например, обзор [1]). Однако неоднократно делались попытки альтернативной наработки радиоизотопов на сравнительно недорогих электронных ускорителях с использованием фотоядерных реакций. Возможности такого метода наработки ¹⁸ F в последние годы все более активно обсуждаются (см., например, [2], а также ссылки в ней). В настоящей работе сообщаются результаты эксперимента, выполненного на разрезном микротроне RTM-55 [3], по образованию изотопа ¹⁸ F в результа-те реакции 23 Na $(\gamma, \alpha n)^{18}$ F под действием тормозных γ -квантов с максимальной энергией $E_b = 55$ МэВ.

1. Методика эксперимента

Схема проведения эксперимента показана на рис. 1. Выведенный из RTM-55 пучок электронов с энергией 55 МэВ бомбардировал вольфрамовый радиатор толщиной 2.5 мм, в котором образовывалось тормозное γ -излучение. Исследуемая металлическая мишень-образец ²³ Na толщиной 1 см располагалась по оси пучка непосредственно после тормозной мишени-радиатора. Время

Рис. 1. Схема эксперимента по образованию изотопа ¹⁸ F и регистрации его распада

облучения мишени-образца $^{23}\,\mathrm{Na}$ составило ≈ 50 мин. Измеренный с помощью цилиндра Фарадея ток пучка электронов на мишени-радиаторе составлял ≈ 75 нА. После окончания облучения образец ²³ Na переносился к γ -спектрометру на основе сверхчистого германия (HPGe-детектор). Этот спектрометр регистрировал вторичные γ -кванты, испускаемые при распадах радиоизотопов, образованных в облученном образце ²³ Na. Расстояние между облученным образцом ИЗ и HPGe-детектором составляло ≈ 150 мм. HPGe-детектор и облученный образец размещались в специальной защите, что существенно уменьшало внешний радиационный фон. Предварительно с помощью стандартных радиоактивных источников $^{60}\mathrm{Co},~^{133}\mathrm{Ba},~^{137}\mathrm{Cs},~^{152}\mathrm{Eu}$ и $^{241}\,\mathrm{Am}$ была проградуирована шкала γ -спектрометра по энергии и измерена для пиков полного поглощения его эффективность регистрации, оказавшаяся, в частности, ≈ 0.236 и $\approx 0.107\%$ для γ -линий 511 и 1275 кэВ соответственно. Через 2 мин после конца

Россия, 119991, Москва, Ленинский проспект, д. 53.

облучения с помощью HPGe спектрометра начались измерения вторичного γ -излучения из облученного образца ²³ Na. Измерения проводились непрерывно в течение ~ 13 дней. Каждые 3.5 с информация о спектре γ -квантов записывалась в память компьютера.

2. Результаты измерений

На рис. 2 приведены два спектра γ -квантов наведенной в образце ²³ Na активности. Верхний и нижний спектры на рис. 2 даны для скоростей счета, являющихся средними по интервалам времени после окончания облучения $(1 \div 10) \cdot 10^3$ с и $(6 \div 10) \cdot 10^5$ с соответственно. В этих спектрах выделяются пики, связанные с γ -линиями от распадов различных радиоизотопов, образовавшихся в результате облучения образца ²³ Na, и в особенности:

• от искомого радиоизотопа ¹⁸ F (β^+ -распад (96.9%) и электронный захват EC (3.1%), $T_{1/2} \approx 109.8$ мин);

Отсчеты на канал, с⁻¹

 10^{2}

 10^{0}

10

10² 10⁰

 10^{-2} 10^{-4}

500

511

• от образованного в реакции 23 Na (γ , n) радиоизотопа 22 Na (β^+ -распад (90.5%) и EC (9.5%), $T_{1/2} \approx 2.602$ года);

• от образованного в реакции $^{23}\,{\rm Na}\,(n,\gamma)$ радиоизотопа $^{24}\,{\rm Na}\,(\beta$ -распад, $T_{1/2}\approx 15.02$ ч).

Эти пики возникают от у-линий с энергиями:

• 511 кэВ (аннигиляцинной от 18 F, а также других β^+ -активных изотопов, включая 22 Na, в особенности для нижнего спектра на рис. 2);

• 1275 кэВ (от ²² Na);

• 1369 кэВ и 2754 кэВ (обе от ²⁴ Na).

2754

2500

Все спектроскопические данные взяты из работы [4].

На рис. З показана временная зависимость скорости счета в пике полного поглощения для аннигиляционной линии 511 кэВ. Эту зависимость можно в хорошем приближении представить суммой двух экспонент с $T_{1/2}$, соответствующих β^+ -распадам изотопов ¹⁸ Г и ²² Na.

3000

Puc. 2. Спектры γ -излучения от облученного образца ²³ Na (верхний и нижний спектры — скорости счета, средние по интервалам времени после окончания облучения $(1 \div 10) \cdot 10^3$ с и $(6 \div 10) \cdot 10^5$ с соответственно)

Энергия, кэВ

1500

2000

1275

1275

1000

1369

Puc. 3. Временная зависимость скорости счета в пике полного поглощения γ -линии 511 к
эВ облученного образца $^{23} \rm Na$

К моменту окончания облучения образца, полученная из наших данных наработанная в образце активность изотопа 18 F $A_{\rm F-18}\approx 0.35\cdot 10^6\,\,{\rm c}^{-1}$, а для 22 Na $A_{\rm Na-22}$ (по линии 511 кэВ) $\approx 0.825\cdot 10^3\,\,{\rm c}^{-1}$ и $A_{\rm Na-22}$ (по линии 1275 кэВ) $\approx 0.916\cdot 10^3\,\,{\rm c}^{-1}$. То есть на этот момент времени активность 18 F более чем в 300 раз превышала активность 22 Na.

3. Обсуждение результатов

На рис. 4 показана часть N-Z-диаграммы атомных ядер, на которой можно проследить эволюцию атомных ядер как образующихся при облучении изотопа ²³ Na, так и в более общем случае образования изотопа ¹⁸ F в фотоядерных реакциях.

Na19	Na20	Na21	Na22	Na23
	447.9 мс	22.49 с	2.6019 л	100 %
р	ECa, EC, β^+	EC, β^+	EC, β^+	100 %
Ne18	Ne19	Ne20	Ne21	Ne22
1.672 c	17.22 c	00 18 %	027%	0 25 %
EC, β^+	EC, β^+	90.40 //	0.21 10	9.25 10
F17	F18	F19	F20	F21
64.49 c	109.77 м	100 %	11.00 c	4.158 c
EC, β^+	EC, β^+	100 %	β-	β-

Рис. 4. N-Z-диаграмма атомных ядер, образующихся в фотоядерных реакциях на изотопах 23 Na, $^{20-22}$ Ne и 19 F

В таблице приводятся различные фотоядерные реакции, в которых можно получать изотоп ¹⁸ F при облучении тормозными γ -квантами с максимальной энергией $E_b = 55$ МэВ.

Образование изотопа ¹⁸F в некоторых фотоядерных реакциях

Nº	Изотоп- мишень	$\eta_{\rm is}$ — изотопное содержание в естественной смеси, %	Тип реакции	Порог реакции $E_{\gamma \text{ thresh}},$ МэВ
1	¹⁹ F	100	$(\gamma, n)^{18}$ F	10.43
2	²⁰ Ne	90.51	$(\gamma, pn)^{18}$ F	23.26
3	²⁰ Ne	90.51	$(\gamma, 2n)^{18} \mathrm{Ne} \rightarrow {}^{18} \mathrm{F}$	28.50
4	²¹ Ne	0.27	$(\gamma, p2n)^{18}$ F	29.63
5	²¹ Ne	0.27	$(\gamma, 3n)^{18} \mathrm{Ne} \rightarrow {}^{18} \mathrm{F}$	35.27
6	²² Ne	9.22	$(\gamma, p3n)^{18}$ F	40.38
7	²² Ne	9.22	$(\gamma, 4n)^{18}$ Ne \rightarrow ¹⁸ F	45.63
8	²³ Na	100	$(\gamma, \alpha n)^{18}$ F	20.89

Образующийся в результате фотонейтронных реакций (γ , 2n), (γ , 3n) и (γ , 4n) соответственно на изотопах 20 Ne, 21 Ne и 22 Ne изотоп 18 Ne имеет период полураспада $T_{1/2} \approx 1.67$ с и уже в процессе облучения, претерпевая β^+ -распад, переходит в изотоп 18 F.

Наибольший выход изотопа ¹⁸ F наблюдается в реакции ¹⁹ $F(\gamma, n)$. Причиной этого являются низкий порог реакции (10.43 МэВ) и большая величина сечения реакции (γ, n) , так как основная доля нейтронов образуется в результате возбуждения дипольного электрического гигантского резонанса, максимум которого расположен для ядра ¹⁹ F при энергии у-квантов $E_{\gamma} \approx 24 \,$ МэВ. Интегральное сечение реакции в области от порога до $E_{\gamma} \approx 28~{
m M}$ эВ составляет $\sim 90~{
m M}$ бн MэВ [5, 6]. Однако использование в качестве мишени ¹⁹ F для образования изотопа ¹⁸ F встречает серьезную последующую проблему достижения требуемого высокого уровня конечной удельной активности ¹⁸ F, так как для разделения изотопов одного и того же химического элемента невозможно использовать традиционные радиохимические методы. Поэтому для наработки изотопа ¹⁸ F можно использовать либо изотопы ²⁰⁻²² Ne (реакции 2-7), либо ²³ Na (реакция 8). У последней реакции самый низкий порог и есть указания (см., например, [7]), что выход этой реакции, сопоставим с выходами для реакций 2-7 из таблицы для Ne-мишеней (или превышает их). Кроме того, для ²³ Na значительно проще обеспечить высокую поверхностную плотность ядер в облучаемой мишени, что и определило наш выбор ²³ Na в качестве мишени. В результатах наших измерений хорошо выделяется вклад ¹⁸ F активности (интенсивная линия 511 кэВ с периодом полураспада $T_{1/2} \approx 109.8$ мин), а образованный при этом ¹⁸ F можно выделять методами традиционной радиохимии с получением высокой удельной активности.

Выход фотоядерной реакции $Y\{E_b\}$ связан со спектром падающих фотонов $\Phi\{E_{\gamma}, E_b\}$ и сечением этой реакции $\sigma\{E_{\gamma}\}$ соотношением

$$Y\{E_b\} \equiv \int_{0}^{E_b} \Phi\{E_\gamma, E_b\} \sigma\{E_\gamma\} dE_\gamma$$

Здесь функция тормозного спектра $\Phi\{E_{\gamma}, E_b\}$ зависит не только от процесса тормозного излучения электрона при взаимодействии его с атомом, но и от потерь энергии в радиаторе. Поэтому для большей определенности вида функции $\Phi\{\vec{E_{\gamma}}, E_b\}$ в прецизионных экспериментах по исследованию сечений фотоядерных реакций, как правило, предпочитают использовать тонкие радиаторы (см., например, [8]). Только в случаях, когда необходимо исследовать фотоядерные реакции с относительно малыми сечениями идут при некотором снижении точности на использование сравнительно толстых радиаторов (см., например, [9]). В прикладных исследованиях, когда необходимо получение максимального выхода используемой реакции, использование толстых радиаторов, как правило, является необходимостью. Но и при этом с целью оптимизации условий облучения необходимо оценивать получаемые выходы. Для этого используем следующий наглядный аналитический подход. Аналогично работе [2] аппроксимируем функцию спектра тормозного излучения на атоме электрона с кинетической энергией Е_b:

$$\Phi_a \{ E_\gamma, E_b \} dE_\gamma dx_r \approx (E_\gamma \cdot X_{0r})^{-1} dE_\gamma dx_r,$$

где dx_r и X_{0r} – элемент толщины и радиационная длина радиатора. Тогда для элементов толщины радиатора

и облучаемой фотоядерной мишени при полном «охвате» последней потока тормозных фотонов из радиатора имеем

$$Y\{E_b\} dx_t dx_r \approx dx_t dx_r (X_{0r})^{-1} \int_{0}^{E_b} (1/E_{\gamma}) \sigma\{E_{\gamma}\} dE_{\gamma} \equiv dx_t dx_r (X_{0r})^{-1} \sigma_{-1} (E_b),$$

где dx_t — элемент толщины мишени. Для многих фотоядерных реакций данные о $\sigma(E_{\gamma})$ можно найти в литературе, а для многих фотонейтронных реакций систематизированные сведения о $\sigma(E_{\gamma})$ и $\sigma_{-1}(E_b)$ даны в [5, 6]. Как следует из анализа данных из работ [5, 6], для интересующих нас фотоядерных реакций у $\sigma_{-1}(E_b)$ имеется существенная особенность: зависимости $\sigma_{-1}(E_b)$ по мере увеличения E_e после начального участка с монотонным и сравнительно крутым ростом выходят в область насыщения, где $\sigma_{-1}(E_b) \approx (\sigma_{-1})_{\text{satur}}$ (в частности, для реакции $^{23}\,\mathrm{Na}\,(\gamma,n)$ величина $(\sigma_{-1})_{\mathrm{satur}}\gtrsim 6$ мбн [5]). Пренебрегая ослаблениями потока фотонов в радиаторе и мишени (что, в данной задаче приемлемо, как первое приближение), можно для наработки изотопа вместо $\sigma_{-1}(E_e)$ брать $(\sigma_{-1})_{\text{satur}}$, но при эффективной толщине радиатора $(X_r)_{\rm eff} = \chi_{\rm eff} \cdot X_r$. Нужные данные для радиоизотопов, мишеней и реакций (схемы распадов, $T_{1/2}$, изотопный состав η_{is} , молекулярный вес мишени-образца M_t и $(E_{\gamma})_{\text{thresh}}$) можно взять из работы [4].

Приведенные ниже оценки активностей образуемых радиоизотопов сделаны для следующих условий. Мишень-образец металлического Na с плотностью $\rho_t \approx 0.971$ г см⁻³, молекулярным весом $M_t \approx 22.99$ г моль⁻¹, химическим $\eta_{\rm chem} = 1$ и изотопным $\eta_{\rm is} = 1$ составами, толщиной $X_t \approx 1$ см находится непосредственно за облучаемым электронами со средним потоком $N_e \approx 0.47 \cdot 10^{12}$ с⁻¹ вольфрамовым радиатором с толщиной $X_r \approx 2.5$ мм $\approx 0.7(X_0)_r$ [10]. Полагая, что весь пучок фотонов попадает на мишень, и в рамках описанного приближения получаем (аналогично [2]) сразу после облучения длительностью τ (здесь она ≈ 50 мин) для интересуемого радиоизотопа, имеющего свой $T_{1/2}$, наработанную в выбранной фотоядерной реакции со своим (σ_{-1})_{satur} активность A:

$$A \approx \left[\left(1 - \exp\left\{ -\tau (\ln 2) \cdot (T_{1/2})^{-1} \right\} \right) \cdot N_e \cdot \left((X_r)_{\text{eff}} \cdot (X_{0r})^{-1} \right) \times (\sigma_{-1})_{\text{satur}} \cdot N_A \cdot \left((X_t \cdot \rho_t) \cdot \eta \cdot (M_t)^{-1} \right) \right],$$

где $N_A \approx 6.022 \cdot 10^{23}$ моль⁻¹ — число Авогадро, $\eta = (\eta_{\text{chem}} \cdot \eta_{\text{is}}).$

Сопоставление измеренных и рассчитанных в описанном приближении результатов для величин активностей, наработанных при таком облучении, позволяет в описанных условиях получить значения $[(\sigma_{-1})_{satur} \cdot \chi_{eff}]$ для реакций ²³ Na $(\gamma, n\alpha)^{18}$ F и ²³ Na $(\gamma, n)^{22}$ Na, которые оказались ≈ 0.16 и ≈ 4.24 мбн соответственно, что согласуется с имеющееся об этих величинах информацией соответственно из работы [7] (см. также в [2] приведенный диапазон значений указанной величины $(0.1 \div 0.3)$ мбн, полученный на основе проанализированных взятых из других источников данных для реакции ²³ Na $(\gamma, n\alpha)^{18}$ F) и из работ [5, 6] для реакции ²³ Na $(\gamma, n)^{22}$ Na.

Образование в одном эксперименте изотопа 22 Na из реакции 23 Na (γ, n) и изотопа 18 F из реакции

²³ Na (γ , $n\alpha$) в идентичных условиях позволяет независимо дополнительно оценить величину $[(\sigma_{-1})_{\text{satur}} \cdot \chi_{\text{eff}}]$ реакции ²³ Na (γ , $n\alpha$)¹⁸ F. Изотоп ²² Na имеет период полураспада $T_{1/2} \approx 2.602$ года и может быть идентифицирован в условиях, когда распались практически все, кроме ²² Na, радиоизотопы, образовавшиеся в облученной мишени ²³ Na. Сравнение интенсивностей пиков полного поглощения для γ -линии 511 кэВ изотопа ¹⁸ F, с одной стороны, и изотопа ²² Na — с другой, приводит для реакции ²³ Na(γ , αn)¹⁸ F к оценке величины [$(\sigma_{-1})_{\text{satur}} \cdot \chi_{\text{eff}}$] ≈ 0.159 мбн в согласии с вышеприведенной полученной по прямому способу величиной.

Проведенный эксперимент подтвердил сделанные в [2] оценки возможной фотоядерной наработки радиоизотопа ¹⁸ F и показал, что при увеличении среднего тока электронов до ≈ 40 мкА, толщины Na-мишени до $(X_t \cdot \rho_t) \approx 5$ г см⁻² и времени облучения до $\tau \approx 3T_{1/2} \approx 5.5$ ч можно получить наработку активности ¹⁸ F до ~ 0.1 Ки.

Заключение

Полученные в настоящей работе результаты являются сильным аргументом в пользу перспективности наработки радиоизотопа ¹⁸ F на электронных ускорителях и стимулом дальнейшего развития этого направления для удовлетворения растущих запросов современной медицины в позитронно-эмиссионной томографии с использованием препаратов на основе радиоизотопа ¹⁸ F и прежде всего ¹⁸ F-фтордезоксиглюкозы. На следующем этапе необходимо исследование возможностей оперативного и высокоэффективного радиохимического извлечения образующегося ¹⁸ F из облученных образцов металлического Na с выбором наиболее оптимального метода для этого, а также разработка методики получения конечного фармпрепарата.

Список литературы

- Ruth T.J., Pate B.D., Robertson R., Porter J.K. // Int. J. Appl. Radiation and Isotopes. Pt. B: Nucl. Med. Biol. 1989. B16, N 4. P. 323.
- Джилавян Л.З., Карев А.И., Раевский В.Г. // Ядерная физика. 2011. 74, № 12. С. 1728.
- Karev A.I., Lebedev A.N., Raevsky V.G et al. // XXII Russian Particle Accelerator Conf. RuPAC-2010, in proceedings. P. 316.
- 4. *Ekström L.P., Firestone R.B.* WWW Table of Radioactive isotopes, database version 2/28/99. http://ie.lbl.gov/toi/
- Dietrich S.S., Berman B.L. // Atomic Data and Nuclear Data Tables. 1988. 38. P. 199.
- Varlamov A.V., Varlamov V.V., Rudenko D.S., Stepanov M.E. // Atlas of Giant Dipole Resonances. Parameters and Graphs of Photonuclear Reaction Cross Sections. INDC-394. IAEA NDS. Vienna, Austria, 1999.
- Leij M. van der, Halteren B. W. van, Brinkman G.A. // Int. J. Appl. Radiation and Isotopes. 1985. 36, N 9. P. 717.
- 8. Варламов В.В., Ишханов Б.С., Капитонов И.М. Фотоядерные реакции. Современный статус экспериментальных данных. М., 2008.
- 9. Джилавян Л.З., Рыжих Г.Г., Чуприков А.Ю. Определение сечения по выходу фотоядерной реакции из мишени, стоящей вблизи толстого радиатора. Препринт ИЯИ АН СССР П-0492. М., 1986
- Seltzer S.M., Berger M.J. // Nucl. Instrum. Meth. 1985.
 B 12, N 1. P. 95.

Production of isotope ¹⁸**F in reaction** ²³**Na** $(\gamma, \alpha n)$ ¹⁸**F at** $E_b = 55$ **MeV**

S. S. Belyshev^{1,a}, L. Z. Dzhilavyan^{2,b}, A. N. Ermakov³, B. S. Ishkhanov^{1,3}, A. I. Karev⁴, V. G. Raevsky⁴, V. V. Khankin³, V. I. Shvedunov³

¹Department of General Nuclear Physics, Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow 119991, Russia. ²Institute for Nuclear Research, Russsian Academy of Sciences, Moscow 117312, Russia.

³D. V. Skobeltsyn Insitute of Nuclear Physics, M. V. Lomonosov Moscow State University,

Moscow 119991, Russia. ⁴ P. N. Lebedev Institute of Physics, Russian Academy of Sciences, Moscow 119991, Russia. E-mail: ^a belyshev@depni.sinp.msu.ru, ^b dzhil@cpc.inr.ac.ru.

The activity of ¹⁸ F produced in reaction ²³ Na(γ , αn)¹⁸ F with the maximum bremsstrahlung energy $E_b = 55$ MeV was measured.

Keywords: radioisotopes, nuclear reactions, activation analysis, gamma-spectrometry. PACS: 25.20.-x. *Received 27 December 2011.*

English version: Moscow University Physics Bulletin 3(2012).

Сведения об авторах

1. Белышев Сергей Сергеевич — физик; тел.: (495) 939-25-58; e-mail: belyshev@depni.sinp.msu.ru.

- 2. Джилавян Леонид Завенович науч. сотрудник; тел.: (499) 135-21-12; e-mail: dzhil@cpc.inr.ac.ru.
- 3. Ермаков Андрей Николаевич канд. физ. мат. наук, ст. науч. сотрудник; тел.: (495) 939-24-51; e-mail: a_ermak1978@mail.ru.
- 4. Ишханов Борис Саркисович докт. физ.-мат. наук, профессор, зав. кафедрой; тел.: (495) 939-50-95; e-mail: bsi@depni.sinp.msu.ru.
- 5. Карев Александр Иванович канд. физ. мат. наук, вед. науч. сотрудник; e-mail: darlingsasha@mail.ru.
- 6. Раевский Валерий Георгиевич канд. физ. мат. наук, зав. отделом; e-mail: raevsky@venus.lpi.troitsk.ru.
- 7. Ханкин Вадим Валерьевич вед. инженер; тел.: (495) 939-24-51, e-mail: v-k32@yandex.ru.
- 8. Шведунов Василий Иванович докт. физ.-мат. наук, профессор, зав. лабораторией; тел.: (495) 939-24-51, e-mail: shved@depni.sinp.msu.ru.