БИОФИЗИКА И МЕДИЦИНСКАЯ ФИЗИКА

Молекулярные и супрамолекулярные структуры в биологических жидкостях и их гомохиральных моделях

С. В. Стовбун^{*a*}, А. А. Скоблин

Институт химической физики имени Н. Н. Семенова РАН. 119334, Россия, Москва, ул. Косыгина, д. 4. E-mail: ^as.stovbun@chph.ras.ru

Статья поступила 07.11.2011, подписана в печать 16.12.2011.

Исследована структура гомохиральных растворов, моделирующих биологические жидкости. Динамическое рассеяние света выявило в них 3 структурные группы: 1–10 нм (молекулярные ассоциаты); 10 мкм (струны), 1 мкм (изометрические гранулы). ИК-спектроскопия и хироптические измерения подтвердили наличие ассоциатов. Рассмотрены статистическая модель образования молекулярных ассоциатов и образование струн в среднем поле ассоциатов..

Ключевые слова: динамическое рассеяние света, ИК-спектроскопия, хиральность, молекулярные ассоциаты,

среднее поле.

УДК: 535.71. PACS: 87.16.ad, 87.64.km, 87.64.mc.

Биологические жидкости представляют собой, как правило, хиральные растворы. Хиральность — это (в соответствии с классическим определением лорда Кельвина) свойство объекта, означающее отличие его от собственного зеркального отражения, вне зависимости от природы указанного отличия [1]. Ранее была выявлена фундаментальная структурообразующая роль хиральности, было установлено [2–4], что в низкоконцентрированных ($10^{-3}-10^{-2}$ М) модельных гомохиральных растворах (трифторацетилированные аминоспирты в органических растворителях [2]) и в типичных биологических жидкостях (водный раствор фенилаланина, 10^{-1} М) происходит спонтанное формирование как изометрических (ранул (размером ≤ 1 мкм), так и анизометрических (отношение длины L к диаметру d: $L/d \sim 10^2 - 10^5$), $d \sim 1$ мкм, $L \lesssim 1$ мм) структурных элементов — струн (рис. 1), в отличие от близких по структуре ахиральных растворов, где формируются только изометрические гранулы. Прямолинейность струн на макроскопических масштабах указывает на их упругость. Рентгеноструктурный анализ свидетельствует о кристаллической упорядоченности составляющих их молекул [5]. Формирование развитой системы струн приводит к созданию в жидкости механического каркаса и отверждению при крайне низких концентрациях ($10^{-3} - 10^{-2}$) М [2–4]. Для получающейся в результате среды предложено название «анизометрический гель» [6]. Следует различать анизометрию свойство структурных элементов среды, означающее, что размеры объектов во взаимно перпендикулярных

Рис. 1. Микрофото. Ксерогель (испарение растворителя из гомохирального раствора). Струны и гранулы. Врезка — типичная ДРС сигнатура гомохирального раствора. По горизонтали — размер включений в нанометрах (логарифмическая шкала). Вертикальная ось градуирована в процентах от полного числа частиц

направлениях имеют разные масштабы (квазиодномерные и квазидвумерные объекты), и анизотропию как правило, свойство среды в целом, означающее неравнозначность различных направлений в среде или отсутствие инвариантности ее свойств относительно вращений.

Измерения динамического рассеяния света (ДРС) [7] выявили в гомохиральных растворах три четко разделенные по размеру группы структурных единиц (рис. 1, врезка): 1-10 нм (видимо, линейные молекулярные ассоциаты); десятки микрон и более (судя по всему, плавающие в растворе струны); микрон и меньше (изометрические гранулы, или небольшие струны, в зависимости от конкретного раствора). Разделение трех групп структурных единиц, по-видимому, указывает на различный механизм их формирования: анизотропная конденсация (линейные ассоциаты или элементарные струны); изотропная конденсация (изометрические гранулы); предположительно, объединение ассоциатов (элементарных струн) в микроскопические струны длиной десятки и более микрон (собственно струны). Формирование более толстых струн путем спирального сплетения более тонких является, судя по всему, основным механизмом образования струн; этот процесс экспериментально систематически прослеживается на нескольких последовательных иерархических уровнях формирования супрамолекулярной структуры растворов [8]. Если молекулы растворенного вещества имеют два хиральных центра, размер ассоциатов, как правило, приходится на интервал 10-100 нм [7], т.е. на порядок больше, чем в предыдущем случае, что согласуется с тем фактом, что отверждение этих растворов протекает при более низких концентрациях, вплоть до 10⁻⁴ М [2-4]. ДРС измерения для ахиральных растворов выявили только один пик, соответствующий изометрическим гранулам. Это согласуется с тем фактом, что в ахиральных растворах струны не наблюдаются, и отверждение их при низких концентрациях не происходит. Измерение ИК-спектров поглощения модельных растворов [9] показало, что спектры являются молекулярными при низкой концентрации, но далее претерпевают перестройку, сопровождающуюся появлением ярко выраженных новых максимумов и ослаблением максимумов, доминировавших ранее. При этом рост новых максимумов с концентрацией выходит на линейный, а максимумы, отвечающие неассоциированным молекулам, выходят на плато и далее несколько снижаются (рис. 2). Таким образом, молекулы растворенного вещества при определенной концентрации, начинают активно объединяться в ассоциаты, в которые далее объединяются практически все вновь растворяемые молекулы. Это хорошо согласуется с концентрационной и температурной зависимостями хироптических свойств растворов [4, 8].

Для описания объединения молекул растворенного вещества в линейные ассоциаты достаточно феноменологически учесть анизотропию или комплементарность межмолекулярного взаимодействия, обусловленную хиральностью молекул. Рассмотрим статистическую модель, опирающуюся на клеточную модель раствора [10]. Пусть N хиральных молекул блуждают

Рис. 2. Типичная зависимость коэффициентов поглощения ИКйзлучения гомохиральных растворов для различных полос (указанных в см⁻¹) от концентрации С. Полоса k_{1736} выходит на плато при $C \approx 0.3-0.4$ мг/мл и далее немного убывает; полоса k_{1700} формируется при $C \approx 0.15$ мг/мл и растет линейно при C > 0.25 мг/мл; полоса k_{725} растет линейно при всех исследованных С

по N^* клеткам растворителя размера $l, N^* \gg N$, V — объем раствора, n — концентрация, n = N/V, $n^* = N^*/V = l^{-3}$. Хиральные молекулы объединяются в линейные ассоциаты длины j = 1, 2, ..., J (*j*-меры). Ограничение $j \leq J$ позволяет учесть падение подвижности ассоциатов с ростом длины. Энергия связи двух молекул равна W, энергия связи линейного *j*-мера: (j-1)W. Статистическая сумма Z(N, V, T) модели (T — температура, k — постоянная Больцмана) дается следующим в основном комбинаторным выражением (допускаем попадание нескольких ассоциатов в одну клетку, что несущественно, так как растворенного вещества мало; зависимость от V дается через зависимость от $N^* = n^*V$):

$$Z(N, V, T) = \sum_{N1, N2, \dots, NJ} \prod_{j=1}^{J} \frac{(N^*)^{N_j}}{N_j!} \exp\left\{\sum_{j=1}^{J} (j-1)N_j \frac{W}{kT}\right\},$$
(1)

где штрих при сумме означает, что суммирование проводится по неотрицательным N_j , удовлетворяющим условию $\sum_{j=1}^{J} jN_j = N$. Так как число ассоциатов каждой длины термодинамически равновесно, и его относительные флуктуации ничтожны, выражение под знаком суммы имеет острый максимум при равновесных значениях N_j , которые находятся путем минимизации величины $\ln Z$ методом неопределенных множителей Лагранжа. Тривиальное вычисление приводит к следующему результату:

$$N_{j}(N, V, T) = \frac{N}{\theta} x^{j}, \quad j = 1, 2, \dots, J,$$

$$\theta = \frac{N}{N^{*}} e^{W/kT}, \quad \sum_{i=1}^{J} j x^{i} = \theta.$$
(2)

Последнее соотношение в (2) является уравнением для определения параметра x. Это позволяет, не теряя точности в пределе $N \to \infty$, записать статистическую сумму в следующем виде:

$$Z(N, V, T) = \prod_{j=1}^{J} \frac{(N^*)^{N_j(N, V, T)}}{N_j(N, V, T)!} \times \exp\left\{\sum_{j=1}^{J} (j-1)N_j(N, V, T) \frac{W}{kT}\right\}, \quad (3)$$

где $N_i(N, V, T)$ берутся из (2). Соотношение (3) дает выражение для свободной энергии $F = -(kT) \ln Z$, через которую выражаются все термодинамические характеристики системы. В частности, осмотическое давление p определяется соотношением $p = (T/V) \sum_{j=1}^{I} N_j(N, V, T)$, т.е. p зависит от полного числа ассоциатов независимо от их длины. Состояние раствора определяется параметром θ , введенным в (3). Если раствор низкоконцентрированный, т.е. $\theta \ll 1$, то хиральные молекулы движутся в нем практически независимо. При этом ИК-спектр сволится к молекулярно-

висимо. При этом ИК-спектр сводится к молекулярному, то же касается вращения плоскости поляризации проходящего света, а осмотическое давление зависит от полного числа хиральных молекул: p = TN/V. Если концентрация раствора высока, т.е. в велико, а именно $\theta > Je^J$, то практически все хиральные молекулы объединены в ассоциаты максимально допустимой длины Ј. При этом в ИК-спектре доминируют составляющие, отвечающие кооперативному взаимодействию молекул с проходящим светом, концентрационная зависимость поворота плоскости поляризации резко перестраивается, а осмотическое давление определяется соотношением p = TN/VJ. ДРС измерения и измерения осмотического давления показывают, что формирование молекулярных ассоциатов удовлетворительно описывается предлагаемой моделью при *J* ~ 10-20 (для молекул, имеющих два хиральных центра, $J \sim 100$) и $W \approx 0.2 - 0.5$ 9B.

Изотропная конденсация, приводящая к формированию изометрических гранул, подробно рассматривалась ранее [11].

Описанная выше иерархическая супрамолекулярная структура струн в гомохиральных растворах связана со сложным комплексом действующих в них слабых межмолекулярных сил, включающих богатый набор близкодействующих водородных связей, обеспечивающих комплементарность, и дальнодействующее диполь-дипольное взаимодействие. Последнее может оказывать существенное влияние, если энергия W = Ed' ассоциата с дипольным моментом d' в среднем поле ассоциатов *E* сопоставима с тепловой: *W* ~ *kT*. Полагаем, что дипольные моменты молекул в ассоциате почти параллельны, так что $d' \approx dJ$, где d — дипольный момент молекулы. В неполярном растворителе напряженность поля Е выражается через поляризацию Р системы ассоциатов: $E = 4\pi P$. Оценка для поляризации Р не зависит от факта ассоциирования молекул: $P \approx nd \approx n'd'$, где n' = n/J — концентрация ассоциатов. Объединяя написанные выражения, получаем значение концентрации раствора *n*, при которой диполь-дипольное взаимодействие ассоциатов становится существенным, а также отвечающую этой концентрации характерную напряженность среднего поля Е: $n \approx kT/4\pi d^2 J$; $E \approx 4\pi n d \approx kT/dJ$. Так, при $d \approx 5$ Д,

 $J \approx 10: n \approx 10^{19}$ см⁻³ (или $2 \cdot 10^{-2}$ M), $E \approx 3 \cdot 10^5$ В/см; при $L \approx 100$ (два хиральных центра): $n \approx 10^{18}$ см⁻³ (или $2 \cdot 10^{-3}$ M), $E \approx 3 \cdot 10^4$ В/см. Полученные значения согласуются с экспериментально наблюдаемыми концентрациями интенсивного струнообразования [2–4]. Анализ литературных данных показывает, что при уменьшении d в гомологическом ряду соединений [12] струнообразование сменяется изотропной конденсацией, что также согласуется с проведенным анализом.

Структура диполь-дипольного гамильтониана U [13] позволяет в общем случае объяснить характер иерархической супрамолекулярной структуры, формируемой в гомохиральном растворе системой струн. Действительно, в фурье-представлении U имеет вид

$$U = \int d^3 k U(\mathbf{k}), \quad U(\mathbf{0}) = 0, \quad k \neq 0;$$

$$U(\mathbf{k}) = \frac{8\pi}{3} \mathbf{P}_{\parallel}(\mathbf{k}) \mathbf{P}_{\parallel}^*(\mathbf{k}) - \frac{4\pi}{3} \mathbf{P}_{\perp}(\mathbf{k}) \mathbf{P}_{\perp}^*(\mathbf{k}),$$
(4)

где k — аргумент фурье-преобразования, k = |k|, звезда означает комплексное сопряжение, **Р**(**k**) — поляризация в фурье-представлении, введены ее продольная и поперечная компоненты $P_{\parallel}(k) = (P(k)k)k/k^2$, $P_{\parallel}(k) = P(k) - P_{\parallel}(k)$. Очевидно, минимуму (4) отвечает чисто поперечная поляризация, что, в частности реализуется для коллинеарных ассоциатов с антипараллельными дипольными моментами и со средней поляризацией, равной нулю (что на примере двух диполей вообще очевидно). Фактически это означает, что именно такая квазиодномерная флуктуация (с самым большим временем жизни) и вызовет сборку системы струн. При этом близко расположенные струны (как правило, имеющие противоположную ориентацию, так как суммарный дипольный момент равен нулю) с распределенной волной зарядовой плотности, имеющей спиральный мотив (навязанный короткодействующими силами), могут притянуться друг к другу и спирально заплестись друг вокруг друга. Этот сюжет может быть повторен в нескольких масштабах. На наиболее высоком макроскопическом уровне это может привести к следующей типологии: а) уединенная струна (имеющая спиральный мотив), окруженная мезофазой распределенными в растворителе в окрестности струны ассоциатами, ориентированными в основном так, чтобы скомпенсировать дипольный момент струны; б) пара коллинеарных струн с противоположной поляризацией (рис. 3); в) ДНК-подобная структура, образованная парой струн с противоположной поляризацией; г) струна, свитая из нескольких более тонких струн. Все перечисленные случаи многократно наблюдались экспериментально [8]. Вообще требование антипараллельности дипольных моментов, имеющих спиральные огибающие одной хиральности, при плотной их упаковке, неизбежно ведет к образованию структуры антипода имеющего соответственно спиральную огибающую другой хиральности. Существует огромное число фундаментальных примеров, подтверждающих этот вывод (ДНК, РНК-двойные спирали и др.).

Сборка струны по механизму среднего поля характеризуется временами, отвечающими диффузии вещества радиально к оси струны. При этом длина струны определяется только однородностью раствора. Этот процесс может быть прерван (например, при испарении

Рис. 3. Атомно-силовая микроскопия. Размер кадра 7 × 7 мкм. Ксерогель. Пара коллинеарных «пунктирных» струн (незавершенное формирование струн в самосогласованном поле)

растворителя), что порождает в ксерогеле характерные «пунктирные» струны (рис. 3).

Полученные результаты позволяют утверждать, что гомохиральные модели биологических жидкостей и, по-видимому, также типичные биологические жидкости, гомохиральные по целому ряду составляющих, являются дисперсными системами, содержащими линейные молекулярные ассоциаты длиной до нескольких десятков молекул, изометрические гранулы или небольшие струны размерами в пределах микрона, а также струны, длина которых составляет десятки микрон и более. Образование системы линейных ассоциатов удовлетворительно описывается статистической моделью, учитывающей комплементарность (обусловленную хиральностью) при образовании слабых межмолекулярных связей. При этом формирование иерархической супрамолекулярной структуры струн, по-видимому, происходит в среднем поле ассоциатов, связанном с дальнодействующим диполь-дипольным взаимодействием ассоциатов.

Список литературы

- 1. Твердислов В.А., Яковенко Л.В., Жаворонков А.А. // Росс. хим. журн. (Журн. Рос. хим. об-ва им. Д.И. Менеделеева). 2007. LI, № 1. С. 13.
- 2. Стовбун С.В., Михайлов А.И., Занин А.М., Костяновский Р.Г. // Вестн. МГОУ. Сер. Естественные науки. 2011. № 3. С. 92.
- 3. *Стовбун С.В.* // Хим. физ. 2011. **30**, № 8. С. 3.
- 4. Стовбун С.В., Занин А.М., Скоблин А.А. и др. // Хим. физ. 2011. **30**, № 12. С. 55.
- 5. Стовбун С.В., Скоблин А.А., Михайлов А.И. и др. // Вестн. МГОУ. Сер. Естеств. науки. 2012 (в печати). http://stringresearchesgroup.org/.
- 6. Стовбун С.В., Скоблин А.А., Занин А.М. и др. // Докл. РАН. 2012. **442**, № 5. С. 645.
- 7. Стовбун С.В., Скоблин А.А., Занин А.М. и др. // Вестн. МГОУ. Сер. Естеств. науки. 2012. № 1. С. 87. http://stringresearchesgroup.org/.
- 8. Стовбун С.В., Скоблин А.А., Занин А.М. и др. // Росс. нанотехнологии. 2012 (в печати). http://stringresearchesgroup.org/.
- 9. Стовбун С.В., Скоблин А.А., Занин А.М. и др. // Хим. физ. 2012 (в печати). http://stringresearchesgroup.org/.
- Денисов Е.Т. Кинетика гомогенных химических реакций. М., 1988.
- 11. Тигер Р.П., Тарасов Д.Н., Левина М.А., Берлин А.А. Энциклопедия инженера-химика. 2010. № 9. С. 13.
- 12. Бредихин А.А. // Современная химическая физика. Туапсе, 2011. С. 65.
- Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. II. Теория поля. М., 2006.

Molecular and supramolecular structures in biological fluids and their homochiral models

S. V. Stovbun^a, A. A. Skoblin

N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygina str. 4, Moscow 119334, Russia. E-mail: ^a s.stovbun@chph.ras.ru.

The structure of the homochiral solutions that simulate biological fluids has been investigated. Three types of particles were detected in mentioned solutions by means of dynamic light scattering: 1-10 nm (molecular associates), $10 \ \mu$ m (strings), $1 \ \mu$ m (isometric granules or small strings). The formation of molecular associates was confirmed by means of infrared spectroscopy. Statistical model for the formation of molecular associates was considered.

Keywords: dynamic light scattering, infrared spectroscopy, chirality, molecular associates?. PACS: 87.16.ad, 87.64.km, 87.64.mc. *Received 7 November 2011*.

English version: Moscow University Physics Bulletin 3(2012).

Сведения об авторах

1. Стовбун Сергей Витальевич — канд. физ.-мат. наук, ст. науч. сотрудник; тел: (495) 222-67-88, e-mail: s.stovbun@chph.ras.ru.

2. Скоблин Алексей Алексеевич — канд. физ.-мат. наук, ст. науч. сотрудник; тел: (495) 939-73-27.