ФИЗИКА АТОМНОГО ЯДРА И ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

Частица Дирака в одномерном «атоме водорода»

К. А. Свешников, Д.И. Хомовский^а

Московский государственный университет имени М.В. Ломоносова, физический факультет, кафедра квантовой теории и физики высоких энергий. Россия, 119991, Москва, Ленинские горы, д. 1, стр. 2. E-mail: ^akhomovskij@physics.msu.ru

Статья поступила 14.01.2012, подписана в печать 27.03.2012.

Исследованы специфические особенности поведения спектра стационарных состояний дираковской частицы в регуляризованном «кулоновском» потенциале $V_{\delta}(z) = -q/(|z|+\delta)$ как функции параметра обрезания δ в 1+1 D. Показано, что в таком одномерном релятивистском «атоме водорода» при $\delta \ll 1$ дискретный спектр становится квазипериодической функцией δ , причем этот эффект неаналитически зависит от константы связи и не имеет нерелятивистского аналога. Это свойство дираковской спектральной задачи явно демонстрирует наличие физически содержательного энергетического спектра при произвольно малом $\delta > 0$, но в то же время и отсутствие регулярного предельного перехода к $\delta \rightarrow 0$. Тем самым подтверждается необходимость доопределения дираковского гамильтониана с нерегуляризованным потенциалом в 1+1 D при всех ненулевых значениях константы связи q. Также отмечено, что аналогичным свойством обладает и трехмерная кулоновская задача при $q = Z\alpha > 1$, т. е. когда для дираковского гамильтониана с нерегуляризованным потенциалом требуется самосопряженное расширение.

Ключевые слова: релятивистские эффекты, уравнение Дирака, регуляризованный кулоновский потенциал, одномерный атом водорода.

УДК: 530.145. PACS: 31.30.Jv.

Введение

Квазиодномерные системы с «кулоновским» взаимодействием const /|z| в данное время привлекают большое внимание в связи с постоянно растущим количеством физических приложений [1-6]. Такие задачи естественным образом возникают в физических моделях различных квазиодномерных структур [1–3], а также как нулевое приближение для целого ряда двух- и трехмерных задач, в частности при описании «парения» электронов над сверхтекучей жидкостью [4], пороговой ионизации атомов интенсивным лазерным излучением [5], поведения атомов в сверхсильных магнитных полях [6].

В нерелятивистской квантовой механике задача о частице в потенциале

$$V(z) = -q/|z| \tag{1}$$

имеет специальное название «одномерный атом водорода» и является предметом активных обсуждений более 50 лет, начиная с известных работ Лоудона и Эллиотта [1]. Специфика этой задачи состоит в том, что гамильтониан

$$H = \frac{p^2}{2m} - q/|z| \tag{2}$$

не является самосопряженным оператором, что проявляется в «падении на центр» нижнего четного энергетического уровня. Самосопряженным расширениям уравнения Шрёдингера с гамильтонианом (2) посвящен целый ряд работ [1, 7–9]. В шрёдингеровском случае самосопряженность естественным образом восстанавливается через наложение дополнительных граничных условий при z = 0, но выбор граничных условий, как

извол [7], что в свою очередь отражается в структуре энергетического спектра. В частности, наиболее известное «каноническое» граничное условие $\psi(0) = 0$, рассмотренное в [1, 7, 8], соответствует очевидной физической картине, когда кулоновская сингулярность фактически играет роль непроницаемой стенки. При этом нижний четный уровень из спектра исключается, остальные энергетические уровни гамильтониана (2) становятся вырожденными по четности и соответствуют бальмеровской серии уровней в атоме водорода [1]. Отметим, что возможны и рассматриваются и другие граничные условия, при которых начало координат является для частицы как непроницаемым [7], так и проницаемым [7, 9], а энергетический спектр становится отличным от бальмеровского, что находит применение в ряде актуальных физических приложений, например, таких, как описание свойств экситонных возбуждений в углеродных нанотрубках [3].

и само самосопряженное расширение, содержит про-

Для целого ряда упомянутых выше физических приложений модели «одномерного атома водорода» актуальной проблемой является учет релятивистских эффектов, что требует перехода от шрёдингеровского описания частицы к уравнению Дирака. Как и в шрёдингеровском случае, для нерегуляризованного потенциала (1) соответствующий дираковский гамильтониан нуждается в доопределении. Однако существующие методы построения самосопряженных расширений дираковского гамильтониана с точечным кулоновским источником не имеют пока достаточно прозрачной физической интерпретации (см. [10] и цит. лит.).

В связи с этим приобретает актуальность исследование зависимости спектра УД от параметров регуляризованного потенциала и соответствующих предельных случаев снятия регуляризации, поскольку в шрёдингеровской задаче это в ряде случаев позволяет прояснить физический смысл граничных условий, восстанавливающих самосопряженность в нерегуляризованной задаче [7–9].

В настоящей работе рассматривается энергетический спектр частицы Дирака в одномерной задаче с регуляризованным «кулоновским» потенциалом

$$V_{\delta}(z) = -q/(|z| + \delta) \tag{3}$$

и исследуется его зависимость от параметра обрезания б. Эта зависимость оказывается весьма специфической, не имеющей нерелятивистского аналога, и позволяет наглядно продемонстрировать все характерные особенности энергетического спектра дираковской частицы для произвольно малых значений $\delta > 0$, включая такие, как наличие вполне содержательного дискретного спектра и бесконечный рост числа нулей у волновой функции нижнего связанного состояния частицы над отрицательным континуумом. Последний результат напоминает известное в нерелятивистской квантовой механике качественное пояснение эффекта «падения на центр» [11], но теперь это свойство является корректно определяемой характеристикой нижнего уровня дираковской частицы над отрицательным континуумом и проявляется как чисто релятивистский эффект.

Следует отметить, что одномерное уравнение Дирака с потенциалом (3) рассматривалось в [12], где ставилась цель определить условия, при которых основной терм водородоподобного атома, находящегося в сверхсильном магнитном поле, приближается к нижней границе дираковского континуума. В настоящей работе мы рассматриваем существенно более общую задачу о поведении всего спектра стационарных состояний при изменении параметра обрезания, для чего используются другие способы решения исходных уравнений, а результаты существенно уточняют и дополняют выводы работы [12].

1. Связанные состояния частицы Дирака в одномерном регуляризованном «кулоновском» потенциале

В рассматриваемом случае стационарное уравнение Дирака имеет вид ($\hbar = c = 1$)

$$(\alpha p + \beta m + V_{\delta}(z))\psi = E\psi.$$
(4)

В представлении $\alpha = \sigma_2$, $\beta = \sigma_3$ и в естественных единицах, когда масштабом энергии служит масса покоя частицы, длины — ее комптоновская длина волны, из уравнения (4) для верхней и нижней компонент дираковского спинора A(z) и C(z) следует

$$A' = [\varepsilon + 1 + q/(|z| + \delta)]C, \quad C' = -[\varepsilon - 1 + q/(|z| + \delta)]A.$$
(5)

В работе [12] волновые функции связанных состояний выражаются через функции Уиттекера. В данном случае, однако, значительно удобнее использовать метод Фробениуса (см., например, [13] и приведенную там библиографию), применение которого к этой системе позволяет представить ее решение на положительной полуоси $z \ge 0$ с точностью до общего постоянного множителя в следующем виде:

$$\begin{cases} A(z) = e^{-\gamma(z+\delta)} \left[\sqrt{1+\varepsilon} x \,\partial/\partial x + q\sqrt{1-\varepsilon} \right] \times \\ \times \operatorname{Re} \left[\lambda x^{iq} \Phi(b,c,x) \right], \\ C(z) = e^{-\gamma(z+\delta)} \left[\sqrt{1-\varepsilon} x \,\partial/\partial x - q\sqrt{1+\varepsilon} \right] \times \\ \times \operatorname{Re} \left[\lambda x^{iq} \Phi(b,c,x) \right]. \end{cases}$$
(6)

где

$$\gamma = \sqrt{1 - \varepsilon^2}, \quad b = iq - \varepsilon q/\gamma, \quad c = 1 + 2iq, \quad (7)$$
$$x = 2\gamma(z + \delta), \quad (8)$$

 $\Phi(b, c, x)$ — функция Куммера (вырожденная гипергеометрическая функция 1-го рода), $\lambda = e^{i\varphi}$ — пока не определенный фазовый коэффициент.

Выражения (6)–(8) составляют общее решение системы (5), из которого спектр связанных состояний находится с помощью условий регулярности при $|z| \rightarrow \infty$ и четности-нечетности, которые в терминах компонент дираковского спинора A(z) и C(z) формулируются как A(z)-четная, C(z)-нечетная либо наоборот. Далее четность уровня будем отождествлять с четностью верхней компоненты A(z).

Условие регулярности на пространственной бесконечности приводит к уравнению

$$\operatorname{Re}\left[\lambda\frac{\Gamma(c)}{\Gamma(b)}\right] = 0,\tag{9}$$

а условие четного (нечетного) продолжения через начало координат *z* = 0 имеет вид

$$\operatorname{Re}\left\{\lambda(2\gamma\delta)^{iq}\left[q\left(\sqrt{1+\varepsilon}-i\sqrt{1-\varepsilon}\right)\Phi_{0}-b\sqrt{1-\varepsilon}\left(\Phi_{0}(b+)-\Phi_{0}\right)\right]\right\}=0\quad(10a)$$

для четного случая и

$$\operatorname{Re}\left\{\lambda(2\gamma\delta)^{iq}\left[q\left(\sqrt{1-\varepsilon}+i\sqrt{1+\varepsilon}\right)\Phi_{0}+b\sqrt{1+\varepsilon}\left(\Phi_{0}(b+)-\Phi_{0}\right)\right]\right\}=0\quad(10b)$$

соответственно для нечетного. В (10) при этом

$$\Phi_0 = \Phi(b, c, 2\gamma\delta), \quad \Phi_0(b+) = \Phi(b+1, c, 2\gamma\delta). \tag{11}$$

Исключая с помощью (9) фазовый множитель λ из уравнений (10), получаем трансцендентные уравнения для определения уровней энергии четных и нечетных связанных состояний в следующем виде:

$$(2\gamma\delta)^{-2iq} \frac{q\left(\sqrt{1+\varepsilon}+i\sqrt{1-\varepsilon}\right)\Phi_0^*-b^*\sqrt{1-\varepsilon}\left(\Phi_0^*(b+)-\Phi_0^*\right)}{q\left(\sqrt{1+\varepsilon}-i\sqrt{1-\varepsilon}\right)\Phi_0-b\sqrt{1-\varepsilon}\left(\Phi_0(b+)-\Phi_0\right)} = \frac{\Gamma(c^*)\Gamma(b)}{\Gamma(c)\Gamma(b^*)} \quad (12a)$$

для четных уровней и

$$(2\gamma\delta)^{-2iq} \frac{q\left(\sqrt{1-\varepsilon}-i\sqrt{1+\varepsilon}\right)\Phi_{0}^{*}+b^{*}\sqrt{1+\varepsilon}\left(\Phi_{0}^{*}(b+)-\Phi_{0}^{*}\right)}{q\left(\sqrt{1-\varepsilon}+i\sqrt{1+\varepsilon}\right)\Phi_{0}+b\sqrt{1+\varepsilon}\left(\Phi_{0}(b+)-\Phi_{0}\right)} = \frac{\Gamma(c^{*})\Gamma(b)}{\Gamma(c)\Gamma(b^{*})} \quad (12b)$$

для нечетных.

Уравнения (12) вполне эффективно решаются численно для всех ненулевых значений параметра регуляризации, например с помощью пакетов типа Mathematica или Matlab. Для предельно малых значений δ , однако уравнения могут быть существенно упрощены и допускают вполне наглядный качественный анализ. Основное упрощение состоит в том, что при $\delta \ll 1$ третий аргумент в гипергеометрических функциях оказывается такого же порядка малости, поскольку для дискретного спектра $0 < \gamma < 1$. Поскольку наше решение уравнения (5) построено на функциях Куммера, то для таких значений δ в уравнении (12) величины $\Phi_0, \Phi_0(b+)$ без какой-либо существенной потери точности можно заменить на единицы, что приводит к значительно более простым уравнениям на спектр

$$(2\gamma\delta)^{-2iq}\frac{\sqrt{1+\varepsilon}+i\sqrt{1-\varepsilon}}{\sqrt{1+\varepsilon}-i\sqrt{1-\varepsilon}} = \pm\frac{\Gamma(c^*)\Gamma(b)}{\Gamma(c)\Gamma(b^*)},$$
(13)

где знаки \pm соответствуют четному и нечетному случаям соответственно. Легко видеть, что уравнение (13) инвариантно относительно мультипликативной замены параметра обрезания следующего вида:

$$\delta \to \delta e^{-\pi/q},$$
 (14)

т. е. энергетические спектры в задачах с параметрами $\delta_1 = \delta_0$ и $\delta_2 = \delta_0 e^{-\pi/q}$ практически (с точностью до замены $\Phi_0, \Phi_0(b+)$ на 1) совпадают, если начальное δ_0 само по себе достаточно мало. Кроме того, при замене $\delta \rightarrow \delta e^{-\pi/2q}$ четные и нечетные уровни меняются местами. Подчеркнем еще раз, что такая симметрия спектра имеет место только при достаточно малых $\delta \ll 1$. Поведение энергетических уровней как функций переменной $X = -\ln \delta$ показано на рис. 1, на котором приведен результат численного решения уравнений (12a) и (12b) для двух нижних уровней — четного и следующего за ним нечетного при константе связи q = 1/137.

Рис. 1. Поведение нижних уровней связанных состояний дираковской частицы в потенциале (3) как функция параметра $X = -\ln \delta$. Сплошная линия — четный уровень, пунктирная — нечетный

Как и следовало ожидать, с уменьшением δ от стартового значения $\delta_0 = 1$ эти уровни последовательно один за другим опускаются вниз до порога отрицательного континуума с шагом $\simeq \pi/2q$ по переменной X, и с каждым шагом меняется четность нижнего уровня и увеличивается на 1 число нулей верхней и нижней компонент его ВФ. Эффект изменения четности и увеличения числа нулей нижнего уровня дискретного

спектра легко пояснить следующим образом. При $\delta_0 \simeq 1$ и q < 1 спектр связанных состояний уравнения (4) по своей структуре весьма близок к дискретному спектру соответствующей нерелятивистской задачи (из этих соображений и выбирается начальное значение $\delta_0 = 1$), в котором основным состоянием является четный уровень с $\varepsilon_0 \simeq 1 - O(q^2)$ (с учетом массы покоя), верхняя компонента которого A(z) не имеет нулей, каждый следующий уровень имеет другую четность и на один нуль больше предыдущего для каждой из спинорных компонент, и уровни сгущаются к порогу верхнего континуума при $\varepsilon = 1$. Теперь начинаем изменять δ в сторону уменьшения начиная с $\delta_0 = 1$. После того как исходное основное состояние от начального значения ε_0 спустится вниз до отрицательного континуума за интервал $\simeq \pi/2q$ изменения параметра X, нижним дискретным уровнем станет тот, который был первым нечетным при $\delta_0 = 1$, причем его энергия будет теперь с точностью $O(\exp(-\pi/2q) \simeq \exp(-215)$ при q = 1/137)совпадать с ε_0 . На следующем шаге по X, уже практически совпадающем с $\pi/2q$, он также опустится до порога нижнего континуума, а на его место встанет тот, который был следующим четным после основного при $\delta_0 = 1$ и имеет тем самым 2 нуля. Поскольку в кулоновском потенциале дискретных уровней всегда бесконечно много, при дальнейшем уменьшении δ такой процесс будет повторяться неограниченное число раз. Таким образом, при $\delta \to 0$ нижним связанным состоянием над отрицательным континуумом будет становиться либо четный, либо нечетный уровень с постоянно растущим числом нулей, а предела у такой последовательности и тем самым предельного спектра связанных состояний не существует.

Оба эти свойства — квазипериодичность спектра и рост числа нулей нижнего уровня над отрицательным континуумом при уменьшении δ можно показать и другим способом. Для этого используем то обстоятельство, что при достижении дискретным уровнем порога отрицательного континуума $\varepsilon_1 = -1$ его ВФ существенно упрощаются, и при $z \ge 0$ спинорные компоненты A(z)и C(z) с точностью до общего множителя могут быть представлены в виде

$$\begin{cases} A(z) = K_{2iq} \left(\sqrt{8q(z+\delta)} \right), \\ C(z) = -\sqrt{(z+\delta)/2q} \left[K_{1+2iq} \left(\sqrt{8q(z+\delta)} \right) + K_{1-2iq} \left(\sqrt{8q(z+\delta)} \right) \right], \end{cases}$$
(15)

где $K_p(z)$ — функция Макдональда и использовано свойство $K_p(z) = K_{-p}(z)$. Четные уровни достигают нижнего континуума при таких значениях δ , когда C(0) = 0, а нечетные соответственно при A(0) = 0. Значения параметра $X = -\ln \delta$ для первых шести уровней чередующейся четности, полученные из решения соответствующих трансцендентных уравнений при q = 1/137, показаны в таблице. Эти результаты наглядно демонстрируют квазипериодичность по X с шагом $\pi/2q$, которая становится все более точной с ростом X.

Из явного вида (15) ВФ уровней при $\varepsilon = \varepsilon_1 = -1$ легко установить также и изменение четности и увеличение числа нулей каждого следующего уровня, достигшего отрицательного континуума. Действительно, функция Макдональда с мнимым индексом $K_{i\nu}(z)$

Значения параметра $X = -\ln \delta$ для первых шести уровней чередующейся четности, при которых соответствующий уровень достигает порога отрицательного континуума

Уровень	1 чет.	1 нечет.	2 чет.	2 нечет.	3 чет.	3 нечет.
$-\ln(\delta)$	212.127	427.326	642.525	857.724	1072.92	1288.12

при $z \to 0$ осциллирует как $\sin(\nu \ln z)$. Поэтому с каждым следующим уровнем значение δ и тем самым аргумента K-функций в (15) при z = 0 будут сдвигаться к нулю таким образом, чтобы каждая из спинорных компонент приобрела на один нуль больше и четность уровня изменилась. Поведение верхних спинорных компонент A(z) для первых трех уровней на полуоси $z \ge 0$ для q = 1 показано на рис. 2. Необходимость выбора такого большого (в физическом смысле) значения константы связи обусловлена тем, что только при таких значениях q знакопеременность ВФ в окрестности нуля становится заметной на фоне гладкого экспоненциального убывания. А поскольку в течение всей эволюции уровня от $\varepsilon_0 \simeq 1$ до $\varepsilon_1 = -1$ его четность и число нулей не меняется, то число нулей уровня на пороге отрицательного континуума однозначно определяет четность и число нулей его прообраза — нижнего дискретного уровня на интервале $\pi/2q$ по X вплоть до достижения этим уровнем порогового значения ε_1 .

Рис. 2. Поведение на пороге отрицательного континуума верхних спинорных компонент A(z) на полуоси $z \ge 0$ для первых трех уровней — 1-го и 2-го четного (пунктир) и 1-го нечетного (сплошная линия) при q = 1

Следует специально отметить, что такая периодичность дискретного спектра по параметру обрезания является чисто релятивистским эффектом, который отсутствует в аналогичной шрёдингеровской задаче, когда при $\delta \rightarrow 0$ в отрицательную бесконечность опускается только нижний четный уровень. Релятивистскую природу этого эффекта легко показать, восстановив в (14) в явном виде зависимость от исходных размерных параметров в константе связи q, а именно

$$q = e_1 e_2 / \hbar c, \tag{16}$$

так что (квази)периодичность спектра по δ приобретает следующий вид:

$$\delta \to \delta \exp\left[-\pi\hbar c/e_1 e_2\right]. \tag{17}$$

Поскольку e^{-x} не имеет степенного разложения по 1/xпри $x \to \infty$, из (17) непосредственно следует, что в рамках квазирелятивистского разложения уравнения Дирака такая мультипликативная (квази)периодичность спектра по параметру обрезания не проявляется ни в каком конечном порядке разложения по 1/c, а возникает как чисто непертурбативный релятивистский эффект. Более детально эти свойства одномерного атома водорода рассмотрены в работе [14].

2. Трехмерная аналогия эффекта квазипериодичности

Такая квазипериодичность спектра дираковской частицы по параметру обрезания в регуляризованном кулоновском потенциале (3) не есть исключительно свойство одного пространственного измерения. На самом деле почти аналогичная картина будет иметь место и в двух и в трех пространственных измерениях для таких значений заряда, когда при снятии регуляризации дираковский гамильтониан становится несамосопряженным.

В качестве примера рассмотрим связанные состояния частицы в кулоновском потенциале, обрезанном простейшим образом:

$$V(r) = -Z\alpha/r, r > \delta; V(r) = -Z\alpha/\delta, r \leq \delta,$$
 (18)

для случая трех пространственных измерений при $q = Z\alpha > j + 1/2$, где j — полный момент частицы. Действуя в полной аналогии с одномерной задачей по методу Фробениуса, представим радиальные функции $f_j(r)$ и $g_j(r)$ дираковской ВФ для частицы с полным моментом j (в стандартном представлении матриц Дирака, когда верхний и нижний спиноры дираковской ВФ содержат шаровые спиноры различной четности) в следующем виде.

При $r > \delta$

b

$$\begin{cases} f_{j}(r) = \left(\frac{e^{-\gamma r}}{r}\right) \left[\sqrt{1+\varepsilon} \left(x\partial/\partial x \pm (j+1/2)\right) + q\sqrt{1-\varepsilon}\right] \times \\ & \times \operatorname{Re} \left[\lambda x^{i\kappa_{j}} \Phi(b, c, x)\right], \\ g_{j}(r) = \left(\frac{e^{-\gamma r}}{r}\right) \left[\sqrt{1-\varepsilon} \left(x\partial/\partial x \mp (j+1/2)\right) - q\sqrt{1+\varepsilon}\right] \times \\ & \times \operatorname{Re} \left[\lambda x^{i\kappa_{j}} \Phi(b, c, x)\right], \end{cases}$$
(10)

где знаки \pm соответствуют решениям УД различной четности $(-1)^{j\mp 1/2}$ верхнего спинора, опущен общий множитель,

$$\gamma = \sqrt{1 - \varepsilon^2}, \quad \kappa_j = \sqrt{q^2 - (j + 1/2)^2}, \quad (20)$$
$$= i\kappa_j - \varepsilon q/\gamma, \quad c = 1 + 2i\kappa_j, \quad x = 2\gamma r,$$

и λ , как и ранее, — фазовый коэффициент, который определяется из условия регулярности решений при $r \to \infty$, аналогичному соотношению (9).

При $r \leqslant \delta$ решения уравнения Дирака с четностью верхнего спинора $(-1)^{j-1/2}$ имеют вид

$$f_{j}(r) = A_{j}J_{j}(\xi r) / \sqrt{r}, \quad g_{j}(r) = B_{j}J_{j+1}(\xi r) / \sqrt{r},$$
$$B_{j} = -\frac{1}{2}\sqrt{\frac{\varepsilon + q/\delta - 1}{\varepsilon + q/\delta + 1}} \frac{A_{j}}{j+1},$$
(21a)

а с противоположной четностью $(-1)^{j+1/2}$

$$f_{j}(r) = C_{j}J_{j+1}(\xi r)/\sqrt{r}, \quad g_{j}(r) = D_{j}J_{j}(\xi r)/\sqrt{r},$$

$$C_{j} = \frac{1}{2}\sqrt{\frac{\varepsilon + q/\delta + 1}{\varepsilon + q/\delta - 1}}\frac{D_{j}}{j+1}.$$
(21b)

В (21) при этом $\xi = \sqrt{(\varepsilon + q/\delta)^2 - 1}$.

Сшивая внутреннее и внешнее решения при $r = \delta$, получим трансцендентное уравнение на спектр, которое в общем случае выглядит достаточно громоздко. Но как и в одномерном случае, при $\delta \ll 1$ и $q = Z\alpha > j + 1/2$, что для связанных состояний с $|\varepsilon| < 1$ предполагает $|\varepsilon \pm 1| \ll q/\delta$, оно может быть существенно упрощено за счет свойств функций Куммера. Окончательный результат после ряда алгебраических преобразований имеет вид

$$\begin{cases} \sigma_{j} \left[\sqrt{1+\varepsilon} \left(i\kappa_{j} - (j+1/2) \right) - q\sqrt{1-\varepsilon} \right] + \\ + 2(j+1) \left[\sqrt{1-\varepsilon} \left(i\kappa_{j} + (j+1/2) \right) + q\sqrt{1+\varepsilon} \right] \right\} \times \\ \times \left\{ \sigma_{j} \left[\sqrt{1+\varepsilon} \left(i\kappa_{j} + (j+1/2) \right) + q\sqrt{1-\varepsilon} \right] + \\ + 2(j+1) \left[\sqrt{1-\varepsilon} \left(i\kappa_{j} - (j+1/2) \right) - q\sqrt{1+\varepsilon} \right] \right\}^{-1} = \\ = -(2\gamma\delta)^{2i\kappa_{j}} \frac{\Gamma(c^{*})\Gamma(b)}{\Gamma(c)\Gamma(b^{*})}, \quad (22a) \end{cases}$$

при четности верхнего спинора $(-1)^{j-1/2}$ и

$$\begin{cases} \sigma_{j} \left[\sqrt{1 - \varepsilon} \left(i\kappa_{j} - (j + 1/2) \right) + q\sqrt{1 + \varepsilon} \right] + \\ - 2(j + 1) \left[\sqrt{1 + \varepsilon} \left(i\kappa_{j} + (j + 1/2) \right) - q\sqrt{1 - \varepsilon} \right] \right\} \times \\ \times \left\{ \sigma_{j} \left[\sqrt{1 - \varepsilon} \left(i\kappa_{j} + (j + 1/2) \right) - q\sqrt{1 + \varepsilon} \right] - \\ - 2(j + 1) \left[\sqrt{1 + \varepsilon} \left(i\kappa_{j} - (j + 1/2) \right) + q\sqrt{1 - \varepsilon} \right] \right\}^{-1} = \\ = -(2\gamma\delta)^{2i\kappa_{j}} \frac{\Gamma(c^{*})\Gamma(b)}{\Gamma(c)\Gamma(b^{*})} \quad (22b) \end{cases}$$

при противоположной четности, при этом $\sigma_i =$ $= J_{i+1}(q)/J_i(q).$

Из (22) непосредственно следует, что в области значений зарядов $Z\alpha > i + 1/2$ и малых $\delta \ll 1$ кулоновские уровни энергии связанных состояний в трехмерном случае, так же как и в одномерном, при фиксированном *j* будут периодическими функциями параметра $X = -\ln \delta$ с периодом

$$\tau_j = \pi / \sqrt{q^2 - (j + 1/2)^2}.$$
 (23)

На уровне общих свойств УД это еще одна манифестация несамосопряженности нерегуляризованной задачи при таких зарядах, поскольку периодичность спектра по Х означает отсутствие регулярного предела при $\delta \rightarrow 0$, и, как и в одномерном случае, этот эффект снова является существенно релятивистским.

Заключение

В заключение отметим, что такая (квази)периодичность по параметру обрезания однозначно показывает, что для регуляризованного одномерного уравнения Дирака с «кулоновским» потенциалом (3) при снятии обрезания предельного спектра не существует для всех значений константы связи q. В то же время при сколь угодно малом $\delta > 0$ такое УД будет иметь вполне содержательный набор дискретных уровней, ничем принципиально не отличающийся от той картины, которая будет наблюдаться при «физических» значениях $\delta \sim 1$. Качественная разница между этими двумя случаями будет проявляться на уровне структуры волновых функций, прежде всего числа их нулей. Нижним состоянием дискретного спектра при $\delta < \exp(-\pi/2q)$ оказывается уровень с несколькими узлами и четностью любого знака. Подчеркнем, что аналогичным свойством будет обладать кулоновская спектральная задача и при большем числе пространственных измерений. Такая периодичность релятивистских кулоновских спектров по параметру обрезания до сих пор, насколько известно авторам, не была описана в литературе и, видимо, не имеет близкого аналога среди других задач квантовой механики.

Детальное обсуждение физического содержания такого свойства УД в регуляризованном кулоновском потенциале представляется преждевременным. В КЭД при значениях δ , когда самый нижний (четный без узлов в одномерном случае или $1S_{1/2}$ в трехмерном случае) дискретный уровень достигает порога нижнего континуума, с неизбежностью должны начать проявляться эффекты поляризации электрон-позитронного вакуума. Наиболее известный эффект такого типа (в качестве обзора см. [15]), предсказывает спонтанное рождение электрон-позитронных пар и перестройку вакуума при заряде ядра Z > 170 (последняя оценка $Z \ge 173$ [16]). Но имеющиеся к настоящему времени зкспериментальные данные, прежде всего по физике тяжелых ионов, не позволяют пока сделать однозначное заключение о наличии такого эффекта [17]. Кроме того, вакуумные средние, в терминах которых описывается поляризация вакуума в квантовой теории поля, всегда содержат неоднозначность, связанную с перенормировкой возникающих при их вычислении расходимостей. Поэтому, как специально подчеркивалось в работе [10], одночастичная кулоновская задача для УД может иметь смысл и при достижении нижним уровнем порога отрицательного континуума.

Авторы выражают глубокую благодарность профессору А.В. Борисову и другим участникам семинара кафедры теоретической физики физического факультета МГУ за интерес к работе и полезные обсуждения.

Список литературы

- 1. Elliott R.J., Loudon R. // J. Phys. Chem. Solids. 1960. 15. P. 196.
- 2. Dykman M.I., Platzman P.M., Seddighrad P. // Phys. Rev. B. 2003. 67. P. 55402.
- 3. Carbon Nanotubes. Advanced Topics in the Synthesis, Structure, Properties and Applications // Springer Series «Topics in Applies Physics». Berlin; Heidelberg, 2008. 4. *Nieto M.M.* // Phys. Rev. A. 2000. **61**. P. 034901.
- 5. Jensen R.V., Susskind S.M., Sanders M.M. // Phys. Rep. 1991. 201. P. 1.
- 6. Либерман М.А., Йоханссон Б. // УФН. 1995. 165. С. 121.
- 7. de Oliveira C.Ŕ., Verri A.A. // Ann. Phys. 2009. 324. P. 251.

- 8. de Oliveira C.R. // Phys. Lett. A. 2010. 374. P. 2805.
- 9. Newton R.G. // J. Phys. A: Math. Gen. 1984. 27. P. 4717.
- 10. Воронов Б.Л., Гитман Д.Т., Тютин И.В. // ТМФ. 2007. 150. С. 41.
- 11. Ландау Л.Д., Лифшиц Е.М. Квантовая механика. Т. 3. М., 1974.
- 12. Крайнов В.П. // ЖЭТФ. 1973. 64. С. 800.
- Славянов С., Лай В. Специальные функции. Единая теория, основанная на анализе особенностей. СПб., 2002.
- Свешников К.А., Хомовский Д.И. // Письма ЭЧАЯ. 2012.
 9. С. 793.
- 15. Гриб А.А., Мамаев С.Г., Мостепаненко В.М. // Вакумные квантовые эффекты в сильных полях. М., 1988.
- Reinhardt J., Greiner W. Quantum Electrodynamics. 3rd ed. Berlin, 2003.
- 17. Greiner W. // Adv. Quant. Chem. 2008. 53. P. 99.

Dirac particle in one-dimensional «hydrogen atom»

K.A. Sveshnikov, D.I. Khomovsky^a

Department of Quantum Theory and High Energy Physics, Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow 119991, Russia.

E-mail: ^a khomovskij@physics.msu.ru.

Specific features of the dependence of stationary levels of the Dirac particle in the regularized Coulomb potential $V_{\delta}(z) = -q/(|z| + \delta)$ on the cutoff parameter δ are studied in the case of 1 + 1 D. It is shown, that for $\delta \ll 1$ the energy spectrum of such one-dimensional «hydrogen atom» turns out to be quasi-periodic in δ , and this effect depends nonanalytically on the coupling constant q and shares no nonrelativistic analogue. Such property of the Dirac spectral problem demonstrates explicitly the existence of physically quite reasonable energy spectrum for any small $\delta > 0$, and simultaneously the absence of regular limit $\delta \rightarrow 0$. So the need of self-adjoint redefinition for the Dirac-Coulomb problem without regularization is confirmed for any q in 1 + 1 D. Similar features are shown to be valid in the three-dimensional Coulomb problem for the region $q = Z\alpha > 1$, where the Dirac Hamiltonian without regularization.

Keywords: relativistic effects, Dirac equation, regularized Coulomb potential, one-dimensional hydrogen atom. PACS: 31.30.Jv.

Received 14 January 2012.

English version: Moscow University Physics Bulletin 4(2012).

Сведения об авторах

- 1. Свешников Константин Алексеевич докт. физ.-мат. наук, профессор; тел.: (495) 939-26-96, e-mail: costa@bog.msu.ru.
- 2. Хомовский Дмитрий Игоревич аспирант; тел.: (495) 939-26-96, e-mail: khomovskij@physics.msu.ru.