Нелинейно-электродинамические эффекты в электромагнитном поле вращающегося пульсара

М. И. Васильев^{1,*a*}, В. А. Соколов^{2,*b*}

¹ Российский государственный технологический университет имени К.Э. Циолковского, факультет прикладной математики, механики и информатики, кафедра прикладной математики и информационных технологий. Россия, 121552, Москва, ул. Оршанская, д. 3, корп. В.

² Московский государственный университет имени М. В. Ломоносова, физический факультет, кафедра квантовой теории и физики высокой энергии. Россия, 119991, Москва, Ленинские горы, д. 1, стр. 2. E-mail: ^a wasiljevmichail@gmail.com, ^b sokolov.sev@inbox.ru

E-mail. wasajeomichail@gmail.com, sokoloo.seo@moox.ru

Статья поступила 23.04.2012, подписана в печать 24.05.2012.

Проведено вычисление нелинейно-электродинамических эффектов, возникающих в электромагнитном поле быстро вращающегося пульсара. Получены точные и асимптотические уравнения для лучей и закон движения по этим лучам электромагнитной волны. Показано, что величина времени нелинейно-электродинамического запаздывания для быстро вращающихся пульсаров почти в 3.5 раза больше, чем для покоящихся или медленно вращающихся пульсаров, а величина угла нелинейно-электродинамического искривления лучей — больше почти в 1.7 раза.

Ключевые слова: пульсар, нелинейная электродинамика, уравнения эйконала, лучи.

УДК: 537.8, 524.354.4. PACS: 97.60.Gb, 03.50.De, 95.30.Sf.

Введение

В последние годы в научной литературе [1, 8] возрос интерес к нелинейной электродинамике вакуума и к ее проверяемым эффектам. Проведенные исследования показали, что проявление нелинейных свойств электромагнитного вакуума наиболее ярко происходит в сильных полях пульсаров и магнетаров. Поэтому расчет нелинейно-электродинамических эффектов в таких полях представляет несомненный интерес.

В ранее опубликованных работах [7, 8] авторы исследовали эффекты только в полях покоящихся или медленно вращающихся пульсаров, когда $\Omega R \ll c$, где Ω — угловая частота вращения пульсара, R — его радиус. В этом случае электромагнитные волны, проходящие вблизи пульсара, подвергаются нелинейно-электродинамическому воздействию со стороны только магнитного и гравитационного полей пульсара. Это приводит к появлению эффекта двулучепреломления, в результате которого электромагнитная волна, проходя область сильного магнитного поля, расщепляется на две нормальные волны, поляризованные во взаимно перпендикулярных плоскостях, распространяющиеся по разным лучам с различными скоростями. В случае же быстрого вращения, когда $\Omega R \approx c$, у пульсара появляется и электрическое поле, сравнимое по величине с магнитным полем. Это обстоятельство позволяет надеяться, что нелинейно-электродинамические эффекты в полях быстровращающегося пульсара будут проявляться сильнее. Выяснению этого вопроса и посвящена настоящая статья.

1. Вывод уравнений для лучей

Рассмотрим пульсар радиуса R, вращающийся с частотой Ω вокруг оси, расположенной под углом α к направлению распространения плоской электромагнитной волны. Будем считать, что вращение релятивистское, в результате чего $\Omega R \approx c$. Примером такого пульсара служит, например, пульсар J1748_{-2446ad}, имеющий период 1.4 мс [9].

Так как магнитосфера пульсаров прозрачна только для рентгеновского и гамма-излучения, то источником плоской волны будем считать удаленные на большие расстояния от рассматриваемого нами пульсара ядра активных галактик, которые излучают в этом диапазоне частот.

Решение уравнений Максвелла в области R < rдля вращающегося пульсара с магнитным дипольным моментом *m* дает [10]

$$\boldsymbol{B}(\boldsymbol{r},\tau) = \frac{3(\boldsymbol{m}(\tau)\boldsymbol{r})\boldsymbol{r} - r^2\boldsymbol{m}(\tau)}{r^5} - \frac{\boldsymbol{\dot{m}}(\tau)}{cr^2} + \frac{3(\boldsymbol{\dot{m}}(\tau)\boldsymbol{r})\boldsymbol{r}}{cr^4} + \frac{(\boldsymbol{\ddot{m}}(\tau)\boldsymbol{r})\boldsymbol{r} - r^2\boldsymbol{\ddot{m}}(\tau)}{c^2r^3},$$
$$\boldsymbol{E}(\boldsymbol{r},\tau) = \frac{[\boldsymbol{r},\boldsymbol{\dot{m}}(\tau)]}{cr^3} + \frac{[\boldsymbol{r},\boldsymbol{\ddot{m}}(\tau)]}{c^2r^2},$$

где точка над вектором означает производную по запаздывающему времени $\tau = t - r/c$, а $m(\tau) =$ $= |m| \{ \cos(\Omega \tau) \sin \alpha, \sin(\Omega \tau) \sin \alpha, \cos \alpha \}$ — вектор магнитного дипольного момента пульсара.

Рассмотрим параметризованную постмаксвелловскую электродинамику [11] с лагранжианом

$$L = \frac{\sqrt{-g^{(0)}}}{32\pi} \left\{ 2I_2 + \xi \left[(\eta_1 - 2\eta_2)I_2^2 + 4\eta_2 I_4 \right] \right\} - \frac{1}{c} j^n A_n, \quad (1)$$

где $g^{(0)}$ — определитель метрического тензора $g^{(0)}_{ik}$, описывающего гравитационное поле, $\xi = 1/B_q^2$, $B_q = 4, 41 \cdot 10^{13}$ Гс, $I_2 = F_{nm}F^{mn}$, $I_4 = F_{nm}F^{mk}F_{ki}F^{in}$ — инварианты тензора электромагнитного поля, а величина безразмерных постмаксвелловских параметров η_1 и η_2 зависит только от выбора модели нелинейной электродинамики вакуума.

Для нелинейной электродинамики Борна–Инфельда [12] эти параметры совпадают: $\eta_1 = \eta_2 = a^2 B_q^2/4$, где 1/a — характерная для электродинамики Борна–Инфельда величина индукции магнитного поля. Для нелинейной электродинамики Гейзенберга-Эйлера [13] параметры η_1 и η_2 различны:

$$\eta_1 = \frac{\alpha}{45\pi} = 5.1 \cdot 10^{-5}, \quad \eta_2 = \frac{7\alpha}{180\pi} = 9.0 \cdot 10^{-5},$$

где α — постоянная тонкой структуры.

Как показано в работах [7, 14], уравнение эйконала электромагнитной волны, распространяющейся во внешнем электромагнитном поле в нелинейной электродинамике с лагранжианом (1), зависит от поляризации волны и имеет вид

$$\left[g_{(1)}^{ik}\frac{\partial S}{\partial x^{i}}\frac{\partial S}{\partial x^{k}}\right]\times\left[g_{(2)}^{nm}\frac{\partial S}{\partial x^{n}}\frac{\partial S}{\partial x^{m}}\right]=0,$$
(2)

где $g_{ik}^{(1)}$ — метрический тензор эффективного пространства-времени для одной нормальной волны, а $g_{nm}^{(2)}$ метрический тензор для другой нормальной волны, имеющей к первой волне ортогональную поляризацию. Эти тензоры зависят от метрического тензора $g_{nm}^{(0)}$, описывающего гравитационное поле, и квадратичной комбинации тензора внешнего электромагнитного поля:

$$g_{ik}^{(1)} = g_{ik}^{(0)} - 4\eta_1 \xi F_{ip} F_{\cdot k}^{p},$$

$$g_{nm}^{(2)} = g_{nm}^{(0)} - 4\eta_2 \xi F_{nl} F_{\cdot m}^{l}.$$

Отметим, что индексы у тензора электромагнитного поля F_{ik} в этих выражениях поднимаются с помощью метрического тензора $g^{(0)ik}$.

Так как эффекты, связанные с воздействием гравитационного поля пульсара на распространение электромагнитных волн, достаточно хорошо изучены в научной литературе и по величине малы, то их можно считать аддитивными добавками к нелинейно-электродинамическим эффектам. Поэтому в настоящей работе мы их рассматривать не будем. Выразим с учетом этого обстоятельства компоненты метрического тензора эффективного псевдориманова пространства-времени $g_{ik}^{(1,2)}$ через компоненты полей **В** и **E**:

$$g_{00}^{(1,2)} = 1 - 4\xi\eta_{1,2}\boldsymbol{E}^{2}(\boldsymbol{r},\tau), g_{0\alpha}^{(1,2)} = -4\xi\eta_{1,2}[\boldsymbol{E}(\boldsymbol{r},\tau)\boldsymbol{B}(\boldsymbol{r},\tau)]_{\alpha}, g_{\alpha\beta}^{(1,2)} = -\delta_{\alpha\beta} - 4\xi\eta_{1,2}\Big\{\boldsymbol{B}^{2}(\boldsymbol{r},\tau)\delta_{\alpha\beta} - E_{\alpha}E_{\beta} - B_{\alpha}B_{\beta}\Big\}.$$
(3)

Как показано в математической физике, уравнения эйконала (2) методом Лагранжа-Шарпи могут быть представлены в виде уравнений геодезического движения:

$$\frac{dk^{m}}{d\sigma} + \Gamma_{pn}^{m}k^{p}k^{n} = 0, \quad g_{nm}^{(1,2)}k^{n}k^{m} = 0, \quad (4)$$

где σ — некоторый аффинный параметр, $k^m = dx^m/d\sigma$ — волновой четырехвектор, а Γ^m_{pn} — символы Кристоффеля эффективного пространства-времени с метрическим тензором $g^{(1)}_{nm}$ для нормальных волн первого типа и $g^{(2)}_{nm}$ — для нормальных волн второго типа.

Решая систему уравнений (4), можно найти лучи, по которым распространяются электромагнитные волны во внешнем электромагнитном поле, а также определить законы движения нормальных волн по этим лучам.

5 ВМУ. Физика. Астрономия. № 5

В уравнениях (4) удобно перейти от дифференцирования по параметру *о* к дифференцированию по координате *z* в соответствии с равенством

$$\frac{d}{d\sigma} = \frac{dx^3}{d\sigma}\frac{d}{dz} = k^3\frac{d}{dz}.$$

В результате приходим к системе уравнений:

$$\frac{d^2 x^0}{dz^2} + \left\{ \Gamma^0_{mi} - \frac{dx^0}{dz} \Gamma^3_{mi} \right\} \frac{dx^i}{dz} \frac{dx^m}{dz} = 0,$$

$$\frac{d^2 x}{dz^2} + \left\{ \Gamma^1_{mi} - \frac{dx}{dz} \Gamma^3_{mi} \right\} \frac{dx^i}{dz} \frac{dx^m}{dz} = 0,$$

$$\frac{d^2 y}{dz^2} + \left\{ \Gamma^2_{mi} - \frac{dy}{dz} \Gamma^3_{mi} \right\} \frac{dx^i}{dz} \frac{dx^m}{dz} = 0,$$

$$g^{(1,2)}_{nm} \frac{dx^n}{dz} \frac{dx^m}{dz} = 0.$$
(5)

Подставляя выражения (3) в систему уравнений (5), опуская все слагаемые, описывающие гравитационное воздействие и усредняя уравнения по периоду вращения пульсара, для того чтобы исключить быстроосциллирующие члены, приведем их к виду

$$\begin{split} & \frac{d^2ct}{dz^2} + \frac{\xi\eta_{1,2}|\boldsymbol{m}|^2}{r^{12}} \Big\{ \sin^2 \alpha \Big[2k^4r^4 \big[4r^4(z-r) + \\ & + (10r^3 - 8r^2z)(x^2 + y^2) + (3z - 5r)(x^2 + y^2)^2 \big] + \\ & + 24k^2r^2z(x^2 + y^2)^2 + 6z \big[2r^4 - 8r^2(x^2 + y^2) + 15(x^2 + y^2)^2 \big] \Big] + \\ & + 36z(x^2 + y^2) \big[4r^2 - 5(x^2 + y^2) \big] \cos^2 \alpha \Big\} = 0, \quad (6) \\ & \frac{d^2x}{dz^2} + \frac{\xi\eta_{1,2}|\boldsymbol{m}|^2}{r^{12}} \Big\{ \sin^2 \alpha \Big[2k^4r^4x \big[2r^3(r-z) + \\ & + 3z^2(x^2 + y^2) \big] - 4k^3r^5y \big[4r(z-r) + 5(x^2 + y^2) \big] + \\ & + 6k^2r^2x \big[5r^2(x^2 + y^2) - 4(x^2 + y^2)^2 \big] - 24kr^4yz + \\ & + 18x \big[7r^2(x^2 + y^2) - 5(x^2 + y^2)^2 - r^4 \big] \big] + \\ & + 12x\cos^2 \alpha \Big[11r^4 - 25r^2(x^2 + y^2) + 15(x^2 + y^2)^2 \Big] \Big\} = 0, \\ & \frac{d^2y}{dz^2} + \frac{\xi\eta_{1,2}|\boldsymbol{m}|^2}{r^{12}} \Big\{ \sin^2 \alpha \big[2k^4r^4y \big[2r^3(r-z) + \\ & + 3z^2(x^2 + y^2) \big] + 4k^3r^5x \big[4r(z-r) + 5(x^2 + y^2) \big] + \\ & + 6k^2r^2y \big[5r^2(x^2 + y^2) - 4(x^2 + y^2)^2 \big] + 24kr^4xz + \\ & + 18y \big[7r^2(x^2 + y^2) - 5(x^2 + y^2)^2 - r^4 \big] \Big] + \\ & + 12y\cos^2 \alpha \Big[11r^4 - 25r^2(x^2 + y^2) + 15(x^2 + y^2)^2 \Big] \Big\} = 0, \end{split}$$

Эти уравнения необходимо дополнить начальными условиями. Для этого зададим две точки, через которые должен проходить луч. В соответствии с постановкой задачи будем считать, что лучи обеих нормальных волн начинаются в одной и той же точке $x = x_0$, $y = y_0$, z = -L в момент времени $t = t_0$ и проходят через точку $x = x_0$, $y = y_0$, z = L, в которой находится детектор рентгеновского или гамма-излучения.

2. Интегрирование уравнений для лучей

Интегрируя уравнения (6) с учетом последнего из соотношений (5), получим уравнение лучей

$$\begin{split} x(z) &= zC_1 + C_2 + \xi\eta_{1,2} |\mathbf{m}|^2 \Big\{ \sin^2 \alpha \Big[k^4 x_0 \Big[\frac{z^2 - r_0^2}{8(z^2 + r_0^2)^2} - \\ &- \frac{19z}{8r_0^3} \arctan \Big(\frac{z}{r_0} \Big) - \frac{4z}{3r_0^2 \sqrt{z^2 + r_0^2}} \Big] - \\ &- k^3 y_0 \Big[\frac{2z}{r_0^2(z^2 + r_0^2)} + \frac{2}{r_0^3} \arctan \Big(\frac{z}{r_0} \Big) + \frac{4}{3\sqrt{(z^2 + r_0^2)^3}} \Big] + \\ &+ k^2 x_0 \Big[\frac{3z^2 - r_0^2}{8(z^2 + r_0^2)^3} - \frac{45z}{16r_0^5} \arctan \Big(\frac{z}{r_0} \Big) + \frac{15}{16r_0^2(z^2 + r_0^2)^2} \Big] - \\ &- \frac{ky_0}{128r_0^7} \Big[\frac{3}{2} \arctan \Big(\frac{z}{r_0} \Big) + \frac{57x_0}{64r_0^2(z^2 + r_0^2)^2} + \frac{285x_0}{128r_0^4(z^2 + r_0^2)^4} \Big] + \\ &+ \frac{3x_0(5z^2 - r_0^2)}{16(z^2 + r_0^2)^4} \Big] + \\ &+ x_0 \cos^2 \alpha \Big[\frac{15(7r_0^2 + 5z^2)}{64r_0^4(r_0^2 + z^2)^2} - \frac{5r_0^2 + 23z^2}{8(r_0^2 + z^2)^4} - \\ &- \frac{225z}{64r_0^7} \arctan \Big(\frac{z}{r_0} \Big) \Big] \Big\}, \end{split}$$

$$y(z) &= zC_3 + C_4 + \xi\eta_{1,2} |\mathbf{m}|^2 \Big\{ \sin^2 \alpha \Big[k^4 y_0 \Big[\frac{z^2 - r_0^2}{8(z^2 + r_0^2)^2} - \\ &- \frac{19z}{8r_0^3} \arctan \Big(\frac{z}{r_0} \Big) - \frac{4z}{3r_0^2 \sqrt{(z^2 + r_0^2)^2}} \Big] + \\ &+ k^3 x_0 \Big[\frac{2z}{r_0^2(z^2 + r_0^2)} + \frac{2}{r_0^3} \arctan \Big(\frac{z}{r_0} \Big) + \frac{4}{3\sqrt{(z^2 + r_0^2)^3}} \Big] + \\ &+ k^2 y_0 \Big[\frac{3z^2 - r_0^2}{8(z^2 + r_0^2)^3} - \frac{45z}{16r_0^5} \operatorname{arctg} \Big(\frac{z}{r_0} \Big) + \frac{15}{16r_0^2(z^2 + r_0^2)^3} \Big] - \\ &- \frac{855zy_0}{r_0^5} \operatorname{arctg} \Big(\frac{z}{r_0} \Big) + \frac{2r_0(5r_0^2 + 3z^2)}{2(z^2 + r_0^2)^2} \Big] - \\ &- \frac{855zy_0}{128r_0^7} \operatorname{arctg} \Big(\frac{z}{r_0} \Big) + \frac{57y_0}{64r_0^2(z^2 + r_0^2)^2} + \frac{285y_0}{128r_0^4(z^2 + r_0^2)^4} \Big] + \\ &+ y_0 \cos^2 \alpha \Big[\frac{15(7r_0^2 + 5z^2)}{64r_0^4(r_0^2 + z^2)^2} - \frac{5r_0^2 + 23z^2}{8r_0^6(r_0^2 + z^2)^4} - \\ &- \frac{225z}{8r_0^6(r_0^2 + z^2)^4} - \\ &- \frac{225z}{64r_0^7} \operatorname{arctg} \Big(\frac{z}{r_0} \Big) \Big] \Big\}$$

и закон движения электромагнитных импульсов по этим лучам

$$ct(z) = \xi \eta_{1,2} |\mathbf{m}|^2 \left\{ \sin^2 \alpha \left[k^4 \left[\frac{r_0^2 z}{4(r_0^2 + z^2)^2} + \frac{19}{8r_0} \operatorname{arctg} \left(\frac{z}{r_0} \right) - \frac{13z}{8(r_0^2 + z^2)} + \frac{4}{\sqrt{r_0^2 + z^2}} - \frac{2r_0^2}{3\sqrt{(r_0^2 + z^2)^3}} \right] + k^2 \left[\frac{15z}{16r_0^2(r_0^2 + z^2)} + \frac{5z}{8(r_0^2 + z^2)^2} + \frac{15}{16r_0^3} \operatorname{arctg} \left(\frac{z}{r_0} \right) + \frac{15}{8(r_0^2 + z^2)^2} + \frac{15}{16r_0^3} \operatorname{arctg} \left(\frac{z}{r_0} \right) \right] \right\}$$

$$+\frac{r_0^2 z}{2(r_0^2+z^2)^3} + \frac{171z}{128r_0^4(r_0^2+z^2)} + \frac{57z}{64r_0^2(r_0^2+z^2)^2} + \frac{5z}{16(r_0^2+z^2)^3} + \frac{9zr_0^2}{8(r_0^2+z^2)^4} + \frac{171}{128r_0^5} \operatorname{arctg}\left(\frac{z}{r_0}\right) - 9\cos^2 \alpha \left[\frac{z(5r_0^2-z^2)}{24(r_0^2+z^2)^4} - \frac{5z(5r_0^2+3z^2)}{192r_0^4(r_0^2+z^2)^2} - \frac{5}{64r_0^5}\operatorname{arctg}\left(\frac{z}{r_0}\right) \right] + z + C_5,$$

где C_1, C_2, C_3, C_4, C_5 — постоянные интегрирования, r_0 — прицельное расстояние луча $R < r_0 = \sqrt{x_0^2 + y_0^2}$, R — радиус пульсара. Постоянные интегрирования C_1, C_2, C_3, C_4, C_5 мож-

Постоянные интегрирования C_1 , C_2 , C_3 , C_4 , C_5 можно определить, потребовав, чтобы лучи обеих нормальных волн начинались в одной и той же точке $x = x_0$, $y = y_0$, z = -L в момент времени $t = t_0$ и проходили через точку $x = x_0$, $y = y_0$, z = L, в которую помещен детектор рентгеновского и гамма-излучения.

Учитывая, что пульсары находятся от Земли на расстояниях порядка 10 кпс, будем считать, что $L \to \infty$, и во всех выражениях ограничиваться только асимптотически главной частью. Тогда получим следующие выражения, справедливые только при $|z| \sim L \to \infty$:

$$ct(z) = ct_0 + z + L + \frac{\xi \eta_{1,2} |\mathbf{m}|^2}{r_0^5} \times \\ \times \left\{ \left[\frac{19k^4 r_0^4}{8} + \frac{15k^2 r_0^2}{16} + \frac{171}{128} \right] \sin^2 \alpha + \frac{45}{64} \cos^2 \alpha \right\} \times \\ \times \left[\frac{\pi}{2} + \operatorname{arctg} \left(\frac{z}{r_0} \right) \right],$$

$$\begin{aligned} x(z) &= x_0 + \frac{\xi \eta_{1,2} |\boldsymbol{m}|^2 x_0}{r_0^7} \times \\ &\left\{ \left[\frac{19k^4 r_0^4}{8} + \frac{45k^2 r_0^2}{16} + \frac{855}{128} \right] \sin^2 \alpha + \frac{225}{64} \cos^2 \alpha \right\} \times \\ & \times \left[\frac{\pi L}{2} - z \arctan\left(\frac{z}{r_0}\right) \right] + \\ &+ \frac{4\xi \eta_{1,2} |\boldsymbol{m}|^2 k^4 x_0}{3r_0^2} \left[\frac{z}{L} - \operatorname{sgn}(z) \right] \sin^2 \alpha + \\ &+ \frac{ky_0}{4r_0^5} (4k^2 r_0^2 + 3) \left[\frac{\pi z}{L} - 2 \operatorname{arctg}\left(\frac{z}{r_0}\right) \right] \sin^2 \alpha, \end{aligned}$$

3. Вычисление нелинейно-электродинамических эффектов

Полученные соотношения позволяют найти время нелинейно-электродинамического запаздывания электромагнитного сигнала, переносимого из точки $x = x_0, y = y_0, z = -L$ в точку x = 0, y = 0, z = L первой нормальной волной, по сравнению с сигналом, переносимым второй нормальной волной:

$$\Delta t = t_2 - t_1 = \frac{\pi \xi (\eta_2 - \eta_1) |\mathbf{m}|^2}{c r_0^5} \times \left\{ \frac{45}{64} \cos^2 \alpha + \left[\frac{19k^4 r_0^4}{8} + \frac{15k^2 r_0^2}{16} + \frac{171}{128} \right] \sin^2 \alpha \right\}$$

Из этого выражения следует, что величина времени нелинейно-электродинамического запаздывания Δt достигает максимального значения при $\alpha = \pi/2$ и минимального при $\alpha = 0$.

Найдем теперь углы $\beta_{1,2}$ нелинейно-электродинамического искривления лучей нормальных волн после их прохождения через электромагнитное поле вращающегося пульсара. Для этого вычислим компоненты касательных векторов к лучу $\mathbf{K}^{(1)} = (d\mathbf{r}/dz)_{|z=-L}$ в точке z = -L и $\mathbf{K}^{(2)} = (d\mathbf{r}/dz)_{|z=L}$ в точке z = L:

$$\begin{split} K_x^{(1)} &= -K_x^{(2)} = \frac{\pi \xi \eta_{1,2} |\boldsymbol{m}|^2 x_0}{2r_0^7} \times \\ & \times \left\{ \left[\frac{19k^4 r_0^4}{8} + \frac{45k^2 r_0^2}{16} + \frac{855}{128} \right] \sin^2 \alpha + \frac{225}{64} \cos^2 \alpha \right\}, \\ K_y^{(1)} &= -K_y^{(2)} = \frac{\pi \xi \eta_{1,2} |\boldsymbol{m}|^2 y_0}{2r_0^7} \times \\ & \times \left\{ \left[\frac{19k^4 r_0^4}{8} + \frac{45k^2 r_0^2}{16} + \frac{855}{128} \right] \sin^2 \alpha + \frac{225}{64} \cos^2 \alpha \right\}, \\ K_x^{(1)} &= K_x^{(2)} = 1. \end{split}$$

Составляя векторное произведение этих векторов и определяя из него синус угла между нимми, найдем углы $\beta_{1,2}$ между асимптотами к лучам обеих нормальных волн:

$$\sin \beta_{1,2} \approx \beta_{1,2} = \frac{\pi \xi \eta_{1,2} |\boldsymbol{m}|^2}{r_0^6} \times \\ \times \left\{ \left[\frac{19k^4 r_0^4}{8} + \frac{45k^2 r_0^2}{16} + \frac{855}{128} \right] \sin^2 \alpha + \frac{225}{64} \cos^2 \alpha \right\}$$

Из этого выражения следует, что величина угла $\beta_{1,2}$ нелинейно-электродинамического искривления лучей нормальных волн после их прохождения через электромагнитное поле вращающегося пульсара достигает максимального значения при $\alpha = \pi/2$ и минимального при $\alpha = 0$.

Заключение

Проведенные расчеты показали, что наличие у быстро вращающегося пульсара электрического поля, сравнимого с магнитным полем, увеличивает величину времени нелинейно-электродинамического запаздывания Δt почти в 3.5 раза (при $kr_0 \sim 1$), а величину угла нелинейно-электродинамического искривления лучей $\beta_{1,2}$ — почти в 1.7 раза.

Следует отметить, что из-за большого расстояния от Земли до пульсаров провести эксперимент по измерению углов $\beta_{1,2}$ в настоящее время невозможно. Величина же Δt достигает значения, которое после увеличения точности поляризационных измерений у рентгеновского и гамма-излучений может быть измерено в будущих спутниковых экспериментах.

Работа выполнена при частичной финансовой поддержке РФФИ (грант 12-02-31033а_мол).

Список литературы

- Burke D.L., Feld R.C., Horton-Smith G. et al. // Phys. Rev. Lett. 1997. 79, N 9. P. 1626.
- 2. Denisov V.I. // Phys. Rev. D. 2000. 61, N 3. P. 036004.
- 3. Лобанов А.Е., Муратов А.Р. // ЖЭТФ. 2003. **123**. № 4. С. 757.
- 4. Кадышевский В.Г., Родионов В.Н. // ТМФ. 2003. **136**, № 3. С. 517.
- Denisov V.I., Krivchenkov I.V., Kravtsov N.V. // Phys. Rev. D. 2004. 69, N 6. P. 066008.
- 6. Родионов В.Н. // ЖЭТФ. 2004. 125, № 3. С. 453.
- Denisov V.I., Svertilov S.I. // Phys. Rev. D. 2005. 71, N 6. P. 063002.
- 8. Денисов В.И., Денисова И.П. // Докл. РАН. 2003. **393**, № 4. С. 465.
- Hessel J., Staris S., Freire I. et al. // Science. 2006. N 311. P. 1901.
- 10. Денисов В.И. // ЖЭТФ. 1978. 74, № 2. С. 401.
- 11. Денисов В.И., Денисова И.П. // Докл. РАН. 2001. **378**, № 4. С. 463.
- 12. Born M., Infeld L. // Proc. Roy. Soc. 1934. A144. P. 425.
- 13. Heisenberg W., Euler H. // Z. Phys. 1936. 26. P. 714.
- 14. Денисов В.И. // ТМФ. 2002. 132, № 2. С. 211.

Nonlinear-electrodynamic effects in the electromagnetic field of the rotating pulsar

M. I. Vasilyev^{1,a}, V. A. Sokolov^{2,b}

¹Department of Applied Mathematics and Information Technologies, Faculty of Applied Mathematics, Mechanics and Computer Science, Russian State Technological University, Mocsow 121552, Russia. ²Department of Quantum Theory and High-Energy Physics, Faculty of Physics, M. V. Lomonosov Moscow State

University, Moscow 119991, Russia.

E-mail: ^awasiljevmichail@gmail.com, ^bsokolov.sev@inbox.ru.

Nonlinear-electrodynamic effects have been calculated in the field of a fast-rotating pulsar. Exact and asymptotic equations of electrodynamic rays and the law of these rays' motion have been derived. It has been shown that

the value of time for a nonlinear-electrodynamic delay is 3.5 times greater for a fast-rotating pulsar than for fixed or slow-rotating pulsars, and the value of an angle for a nonlinear-electrodynamic curvature of rays is 1.7 times greater.

Keywords: pulsar, nonlinear-electrodynamic, eikonal function, rays. PACS: 97.60.Gb, 03.50.De, 95.30.Sf. *Received 23 April 2012*.

English version: Moscow University Physics Bulletin 5(2012).

Сведения об авторах

1. Васильев Михаил Иванович — ассистент; e-mail: wasiljevmichail@gmail.com.

2. Соколов Владимир Андреевич — канд. физ.-мат. наук, ст. преподаватель; e-mail: sokolov.sev@inbox.ru.