ФИЗИКА АТОМНОГО ЯДРА И ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

Непертурбативные эффекты радиационного вклада в магнитный момент электрона в водородоподобных атомах

К.А. Свешников, Д.И. Хомовский^{*а*}

Московский государственный университет имени М.В. Ломоносова, физический факультет, кафедра квантовой теории и физики высоких энергий. Россия, 119991, Москва, Ленинские горы, д. 1, стр. 2. E-mail: ^akhomovskij@physics.msu.ru

Статья поступила 11.05.2012, подписана в печать 22.05.2012.

В приближении точечного ядра проведены расчеты нижних уровней дискретного спектра водородоподобного атома с непертурбативным учетом швингеровского взаимодействия радиационной компоненты магнитного момента свободного электрона с кулоновским полем ядра. Исследовано поведение уровней $1s_{1/2}$, $2s_{1/2}$, $2p_{1/2}$ и $2p_{3/2}$ в зависимости от заряда ядра, включая область Z > 137, в которой при наличии швингеровского члена дираковский гамильтониан сохраняет самосопряженность. Показано, что при больших Z швингеровское взаимодействие существенно изменяет свойства дискретного спектра. В частности, первым уровнем, достигающим порога отрицательного континуума, оказывается $2p_{1/2}$, и это происходит при Z = 147. Также рассмотрено поведение g-фактора электрона для $1s_{1/2}$ - и $2p_{1/2}$ -состояний в зависимости от Z и показано, что при предельно больших зарядах поправка в g-фактор за счет швингеровского члена становится весьма существенным эффектом.

Ключевые слова: магнитный момент свободного электрона, радиационные поправки, швингеровское взаимодействие, водородоподобные атомы, большие *Z*.

УДК: 530.145. PACS: 31.30.Jv.

Введение

Развитие в последние годы новых экспериментальных и спектроскопических методов значительно расширило возможности проведения высокоточных измерений характеристик водородоподобных атомов при различных зарядах ядра Z и уточнения фундаментальных констант квантовой электродинамики (КЭД) [1–6], а также исследования КЭД-эффектов, в которых радиационные вклады уже нельзя считать малыми поправками [7–9].

В настоящей работе будет рассмотрен один из эффектов такого типа, который возникает в водородоподобном атоме при непертурбативном учете взаимодействия радиационной компоненты магнитного момента свободного электрона $\Delta g_{\rm iree}$ с кулоновским полем точечного ядра для больших Z.

В КЭД гиромагнитное отношение для свободного электрона $g_{\text{free}} = 2 + \Delta g_{\text{free}}$ известно с большой точностью [10–13]. Величина Δg_{free} определяется радиационными поправками, обусловленными виртуальными фотонами, и представляется в виде разложения по степеням α/π , в котором к настоящему времени вычислено до пяти петель включительно [8, 14]. Первые члены этого разложения имеют вид

$$\Delta g_{\text{free}} = \alpha / \pi - 0.656958 (\alpha / \pi)^2 + O((\alpha / \pi)^3).$$
(1)

Для электрона, находящегося в связанном состоянии в водородоподобном атоме, теоретическое выражение для гиромагнитного отношения может быть представлено в следующем виде [15–17]:

$$g_{\text{bound}}(Z) = g_D + \Delta g_{\text{rec}} + \Delta g_{\text{rad}}, \qquad (2)$$

где g_D — главная компонента в $g_{\text{bound}}(Z)$ при реально достижимых в настоящее время Z — определяет линейный отклик электрона, который находится в связанном состоянии в атоме и описывается соответствующим уравнением Дирака, на внешнее магнитное поле. g_D -фактор учитывает влияние кулоновского поля ядра на электронное состояние без радиационных поправок. Аналитическое выражение для g_D -фактора электрона в основном $1s_{1/2}$ -состоянии водородоподобного атома

$$g_D(Z) = \frac{2}{3} \left(1 + 2\sqrt{1 - (Z\alpha)^2} \right)$$
(3)

было найдено Брейтом еще в 1928 г. [18].

 $\Delta g_{\rm rec}$ отвечает поправке, обусловленной эффектом отдачи, возникающей за счет конечности массы ядра [9, 19]

$$\Delta g_{\rm rec}(Z) = O((Z\alpha)^2 m/M_N), \qquad (4)$$

где M_N — масса ядра.

 $\Delta g_{\rm rad}$ определяет радиационный вклад в гиромагнитное отношение связанного электрона и представляется в виде двойного ряда по степеням параметров α/π , отвечающего за процессы излучения — поглощения виртуальных фотонов электроном, и $Z\alpha$, что учитывает обмен виртуальными фотонами между электроном и атомным ядром. К настоящему времени в рамках КЭД надежно установлена структура $\Delta g_{\rm rad}$ в порядке $(Z\alpha)^2$ с учетом всех поправок по α/π [20, 21],

$$\Delta g_{\rm rad} = (g_{\rm free} - 2) \left[1 + (Z\alpha)^2 / 6 \right] + O\left(\alpha / \pi (Z\alpha)^4\right), \quad (5)$$

и рассчитаны вклады от двухпетлевых диаграмм и рассеяния света на свете [17, 22-25].

Следует отметить, что поправки порядка $(Z\alpha)^2$ к $g_{\text{bound}}(Z) - 2$ имеют прежде всего кинематическую природу (см., например, [25, 26] и приведенную там библиографию). Такие нетривиальные КЭД-эффекты, как поляризация вакуума и рассеяние света на свете, проявляются только в порядке $O(\alpha/\pi(Z\alpha)^4)$. В то же время из (5) следует, что в этом «кинематическом» приближении $\Delta g_{\rm free}$ является параметром, не зависящим от конкретного электронного состояния, и при определении характеристик связанного состояния может рассматриваться как отдельный динамический фактор. В связи с этим возникает мотивация к непертурбативному учету вклада от $\Delta g_{\rm free}$ в свойства электронного состояния в атомах с большим Z непосредственно через швингеровский член в уравнении Дирака [27]

$$\Delta U_{\rm Schwinger} = \frac{\Delta g_{\rm iree}}{2} \frac{e}{4m} \sigma^{\mu\nu} F_{\mu\nu}, \qquad (6)$$

где $\sigma^{\mu\nu}F_{\mu\nu} = 2(i\alpha\mathcal{E} - \sigma\mathcal{H})$, а \mathcal{E} и \mathcal{H} — электрическая и магнитная компоненты тензора $F_{\mu\nu}$ соответственно.

Подчеркнем, что швингеровский член (6) имеет статус эффективного взаимодействия только на уровне уравнения Дирака в рамках одночастичного приближения (картины Фарри), а не дополнительного члена в затравочном лагранжиане теории. Последнее противоречило бы самой природе аномального магнитного момента, который возникает в КЭД как одна из радиационных поправок к вершинному формфактору в пределе малых переданных импульсов [28, 29], и швингеровский член (6) поэтому есть только один из видов эффективного взаимодействия, обусловленного радиационными поправками к затравочному лагранжиану. Но в то же время непертурбативный учет даже той части эффективного взаимодействия, которая обусловлена $\Delta g_{\rm free}$, может позволить существенно продвинуться вперед в понимании структуры радиационных КЭД-эффектов в той области, где они уже не малы. Тем более что вклад от швингеровского члена, как и от спин-орбитального взаимодействия в нерелятивистском атоме, быстро растет с увеличением заряда ядра, и при $Z\alpha \sim 1$ его корректный учет заведомо требует существенно непертурбативного подхода. Кроме того, швингеровский член в уравнении Дирака сохраняет все основные свойства последнего — эрмитовость, лоренц-ковариантность и возможность вероятностной интерпретации одночастичной волновой функции, поэтому полученные таким образом результаты могут быть непосредственно связаны с наблюдаемыми характеристиками электронного состояния.

В настоящей работе будет показано, как в приближении неподвижного точечного ядра в результате учета швингеровского взаимодействия спектр нижних электронных уровней и соответствующий g_D -фактор $1s_{1/2}$ - и $2p_{1/2}$ -состояний электрона в водородоподобном атоме изменяются по сравнению с чисто кулоновским случаем при различных значениях Z.

Следует отметить, что взаимодействие заряженной дираковской частицы с кулоновским полем точечного заряда с учетом аномального магнитного момента через швингеровский член рассматривалось в свое время в [30] с целью исследования возможности возникновения резонансов на масштабах порядка адронных размеров и масс за счет возрастания роли магнитных эффектов на предельно малых расстояниях. В настоящей работе мы рассматриваем другой аспект существенной роли магнитных эффектов на малых расстояниях, а именно общую задачу о спектре и свойствах стационарных состояний дираковской частицы при наличии швингеровского взаимодействия в зависимости от величины заряда кулоновского источника, для чего используются другие способы решения самого уравнения, а полученные результаты содержат существенно новую информацию о роли радиационных поправок в атомах с большими Z.

1. Кулоновская задача для уравнения Дирака со швингеровским членом

Стационарное уравнение Дирака со швингеровским членом (6) для электрона в кулоновском поле точечного ядра с зарядом Z имеет вид ($\hbar = c = 1$)

$$\left(\boldsymbol{\alpha}\boldsymbol{p} + \beta m - Z\alpha/r - i\Delta g_{\text{iree}}\frac{Z\alpha}{4m}\boldsymbol{\gamma}\boldsymbol{r}/r^3\right)\psi = E\psi. \quad (7)$$

В естественных единицах, когда масштабом энергии служит масса покоя частицы, расстояний — соответствующая комптоновская длина волны, из уравнения (7) для верхней и нижней компонент дираковского биспинора φ и χ следует

$$(\boldsymbol{\sigma}\boldsymbol{p} + iZ\lambda\boldsymbol{\sigma}\boldsymbol{n}/r^2)\varphi = (\epsilon + 1 + Z\alpha/r)\chi,$$

$$(\boldsymbol{\sigma}\boldsymbol{p} - iZ\lambda\boldsymbol{\sigma}\boldsymbol{n}/r^2)\chi = -(\epsilon - 1 + Z\alpha/r)\varphi,$$
(8)

где $\lambda = \alpha \Delta g_{iree}/4$, $\epsilon = E/m$, а n = r/r. Поскольку полный момент j электрона при наличии швингеровского члена по-прежнему сохраняется, то в стандартном представлении для матриц Дирака верхний и нижний спиноры дираковской ВФ будут содержать шаровые спиноры Ω_{jlm_j} и $\Omega_{jl'm_j}$ различной четности и радиальные функции $if_i(r)$ и $g_i(r)$

$$\psi_{jm_j} = \begin{pmatrix} if_j(r)\Omega_{jlm_j} \\ g_j(r)\Omega_{jl'm_j} \end{pmatrix}.$$
 (9)

При этом $f_i(r)$ и $g_i(r)$ вещественны, и l+l'=2j. Далее состояния с фиксированным j и различной четностью, которую будем отождествлять с четностью верхнего спинора, будем рассматривать по отдельности. Для этого положим j = l + 1/2. Тогда при четности $(-1)^l$

$$\psi_{jm_j} = \begin{pmatrix} iu_l(r)\Omega_{jlm_j} \\ q_l(r)\boldsymbol{\sigma}\boldsymbol{n}\Omega_{jlm_j} \end{pmatrix}, \qquad (10)$$

и радиальные функции $u_l(r)$, $q_l(r)$ удовлетворяют уравнению

$$\begin{cases} \partial_r u_l - \left(l/r + Z\lambda/r^2\right)u_l = (\epsilon + 1 + Z\alpha/r)q_l,\\ \partial_r q_l + \left((l+2)/r + Z\lambda/r^2\right)q_l = -(\epsilon - 1 + Z\alpha/r)u_l, \end{cases}$$
(11)

а если четность равна $(-1)^{l+1}$, то

$$\psi_{jm_j} = \begin{pmatrix} i\upsilon_l(r)\boldsymbol{\sigma}\boldsymbol{n}\Omega_{jlm_j} \\ p_l(r)\Omega_{jlm_j} \end{pmatrix}, \qquad (12)$$

при этом уравнения для пары $v_l(r)$, $p_l(r)$ принимают вид

$$\begin{cases} \partial_r v_l + \left((l+2)/r - Z\lambda/r^2 \right) v_l = (\epsilon + 1 + Z\alpha/r) p_l, \\ \partial_r p_l - \left(l/r - Z\lambda/r^2 \right) p_l = -(\epsilon - 1 + Z\alpha/r) v_l. \end{cases}$$
(13)

При наличии швингеровского члена уравнение Дирака (7) становится самосопряженным для всех Z, поскольку на малых расстояниях от ядра за счет этого члена возникает эффективное отталкивание между электроном и ядром $\sim (Z\lambda)^2/r^4$. Наиболее наглядный вид этот эффект имеет в нерелятивистском пределе, когда (11), (13) сводятся к уравнениям шрёдингеровского типа на $u_l(r)$ и $v_l(r)$

$$-\left(u_l^{\prime\prime} + \frac{2}{r}u_l^{\prime}\right) + \left(\frac{l(l+1)}{r^2} + 2Z\frac{\lambda l}{r^3} + \frac{(Z\lambda)^2}{r^4}\right)u_l = 2\left(\varepsilon + \frac{Z\alpha}{r}\right)u_l,$$
(14a)

$$-\left(v_l'' + \frac{2}{r}v_l'\right) + \left(\frac{(l+1)(l+2)}{r^2} - 2Z\lambda\frac{l+2}{r^3} + \frac{(Z\lambda)^2}{r^4}\right)v_l =$$
$$= 2\left(\varepsilon + \frac{Z\alpha}{r}\right)v_l, \qquad (14b)$$

где $\varepsilon = \epsilon - 1 < 0$ есть нерелятивистская энергия связи, $|\varepsilon| \ll 1$.

При таком отталкивающем коре асимптотика радиальных функций при $r \to 0$ становится регулярной для всех Z и с точностью до множителя и замены $\Delta g_{\rm free}$ на α/π имеет вид

$$u_l(r) \to \exp(-Z\lambda/r), \quad q_l(r) \to -\frac{2\pi}{\alpha}r\exp(-Z\lambda/r), \quad (15a)$$

$$v_l(r) \to \exp(-Z\lambda/r), \quad p_l(r) \to \frac{2\pi}{\alpha}r\exp(-Z\lambda/r), \quad (15b)$$

что и обеспечивает самосопряженность уравнения Дирака (7) при всех Z. Кулоновское притяжение электрона к ядру теперь имеет вид потенциальной ямы конечной глубины с минимумом на расстояниях порядка боровского радиуса ($1/Z\alpha$ в используемых единицах). Для малых Z этот эффект отталкивания на малых расстояниях почти не заметен, но с увеличением Z роль швингеровского взаимодействия возрастает и приводит к тому, что при $Z\alpha > 1$ свойства нижних электронных уровней существенно отличаются от чисто кулоновского случая.

В табл. 1 и 2 приведены результаты численных расчетов для энергии уровней $1s_{1/2}$, $2s_{1/2}$, $2p_{1/2}$ и $2p_{3/2}$ для уравнения Дирака со швингеровским членом (7) в сравнении с чисто кулоновским спектром при различных значениях Z. При вычислениях было использовано $\alpha = 1/137.035999074$ и $\Delta g_{\rm free}/2 = 0.00115965218073$ [13].

Обратим внимание, что как и в чисто кулоновской задаче без швингеровского члена, при Z < 137нижним уровнем дискретного спектра является $1s_{1/2}$, и вырождение нижнего уровня по четности отсутствует. Для малых Z это есть очевидное следствие того, что швингеровский член является возмущением к кулоновскому потенциалу. Но с ростом Z его вклад, как и у спин-орбитального взаимодействия, быстро растет, и при $Z \sim 137$ в структуре нижних уровней дискретного спектра происходят качественные изменения (рис. 1). Как и при лэмбовском сдвиге, величина вклада в энергию от швингеровского взаимодействия для состояний $1s_{1/2}$, $2s_{1/2}$ и $2p_{1/2}$ имеет разный знак. В данном случае это приводит к тому, что при предельно больших зарядах ядра Z > 137 уровень $2p_{1/2}$

Рис. 1. Поведение нижних уровней дираковской частицы в спектральной задаче с гамильтонианом (7) как функция заряда ядра Z

«опережает» $1_{s_{1/2}}$ и становится нижним связанным состоянием над отрицательным континуумом. Значение заряда, при котором эти два уровня максимально сближаются, равно Z = 144. Значения Z, при которых уровни $1_{s_{1/2}}$, $2_{s_{1/2}}$, $2_{p_{1/2}}$ достигают порога отрицательного континуума, соответственно равны 159, 198, 147. Таким образом, при непертурбативном учете швингеровского члена в водородоподобном атоме с точечным ядром критическое значение Z, при котором первый дискретный уровень достигает порога отрицательного континуума, определяется уровнем $2p_{1/2}$ и равно 147.

Последний результат требует специального комментария, поскольку в КЭД при значениях Z, когда первый дискретный уровень достигает порога нижнего континуума, становятся существенными эффекты поляризации электрон-позитронного вакуума. Наиболее известный эффект такого типа, рассмотренный в [31-35], предсказывает спонтанное рождение электрон — позитронных пар и перестройку вакуума при заряде ядра Z > 170 (последняя оценка $Z \ge 173$ [36]). Но при этом ядро считается однородно заряженным шаром или сферой радиуса ~10-12 Фм, а критическое значение заряда ядра определяется достижением отрицательного континуума уровнем 1s_{1/2}. В такой модели учет швингеровского члена в уравнении (7) никаких значимых изменений в поведении уровней не порождает, поскольку швингеровское взаимодействие становится существенным на расстояниях порядка $\sim (\alpha/4\pi) \times (\hbar/m_e c) \sim 0.3 \Phi$ м от кулоновского источника. В то же время с позиций адронной физики представление об однородном распределении заряда в ядерной материи не является реалистическим. Фактическими источниками заряда в нуклонах и ядрах являются точечные кварки и кварк-антикварковые пары, и взаимодействие электрона с тяжелым ядром есть результат неаддитивной суммы его взаимодействий с большим числом почти точечных кулоновских источников, сложным образом распределенных по объему ядра. Заметим также, что 0.3 Фм примерно совпадает с радиусом области асимптотической свободы в киральных моделях барионов как кварковых мешков [37]. В такой картине швингеровское взаимодействие становится существенным, поскольку теперь электрон может находиться на предельно малых расстояниях от кулоновских источников (кварков). Кроме того, имеющиеся к настоящему времени экспериментальные данные, прежде всего по

Таблица 1

	энергии первого возбужденного уровня в чисто кулоновском случае								
Ζ	$\epsilon(1s_{1/2})$	$(\epsilon(1s_{1/2}) - \epsilon_0) \times m$ 3B	$\epsilon(2s_{1/2})$	$(\epsilon(2s_{1/2}) - \epsilon_1) \times m$ эВ					
1	0.999973373972	$1.680183 \cdot 10^{-6}$	0.999993343470	$2.100229 \cdot 10^{-7}$					
2	0.999893491672	$2.689699 \cdot 10^{-5}$	0.999973372556	$3.362579 \cdot 10^{-6}$					
6	0.9990410201	$2.1841451 \cdot 10^{-3}$	0.9997602257	$2.733465 \cdot 10^{-4}$					
7	0.9986944976	$4.0497662\cdot 10^{-3}$	0.9996735701	$5.070484 \cdot 10^{-4}$					
8	0.998294516	$6.9169026 \cdot 10^{-3}$	0.999573536	$8.664603 \cdot 10^{-4}$					
14	0.99476781	$6.555593 \cdot 10^{-2}$	0.99869108	$8.248384 \cdot 10^{-3}$					
20	0.98929295	0.27756915	0.99731958	$3.51658 \cdot 10^{-2}$					
26	0.98183766	0.810796	0.99544886	0.103693					
32	0.97235688	1.91518	0.99306471	0.247895					
40	0.95646026	4.91348	0.98905401	0.649033					
50	0.93108488	13.0181	0.98261719	1.77688					
60	0.89911119	30.0711	0.97444471	4.28047					
70	0.85981633	64.1203	0.96430375	9.61957					
82	0.80150655	151.4	0.94905031	24.5981					
92	0.741741	309.825	0.933149	54.7126					
101	0.677053	611.269	0.915616	118.229					
111	0.589204	1421.91	0.891232	310.692					
121	0.477162	3960.42	0.859109	1001.13					
131	0.325163	16170.1	0.813661	4827.57					
137	0.20061	90799.4	0.77507	30611.6					
144	$-2.9684 \cdot 10^{-3}$		0.711041						
150	-0.267096		0.630929						
155	-0.596373		0.541462						
159	-0.966048		0.455359						
169			0.198319						
174			0.0512659						
179			-0.11079						
193			-0.690479						
198			-0.96338						

	Поведение уровней $1s_{1/2}$ и $2s_{1/2}$ в зависимости от величины зар	ряда ядра Z.
$\epsilon_0 = $	$\sqrt{1-(\boldsymbol{Z} lpha)^2}$ соответствует энергии основного состояния, а $\epsilon_1 = \sqrt{(1-(\boldsymbol{Z} lpha))^2)}$	$\frac{1+\sqrt{1-(\boldsymbol{Z}\boldsymbol{\alpha})^2})/2}{1+\sqrt{1-(\boldsymbol{Z}\boldsymbol{\alpha})^2}}$

физике тяжелых ионов, не позволяют пока сделать однозначное заключение о достижении критической области, по крайней мере в диапазоне 140 < Z < 180 [36, 38, 39], а вышеприведенные результаты показывают, что для корректного анализа области критических зарядов необходим непертурбативный учет вклада от аномального магнитного момента электрона, равно как и других радиационных эффектов, в модели с неоднородным распределением заряда в тяжелом ядре.

2. g_D-факторы при учете швингеровского члена

Теперь покажем, как изменяется главная компонента $g_D(Z)$ гиромагнитного отношения для $1s_{1/2}$ - и $2p_{1/2}$ -состояний связанного электрона при учете швингеровского члена в уравнении (7). Общее выражение для g_D -фактора электрона в водородоподобном атоме через радиальные компоненты его ВФ легко получить, повторяя оригинальный вывод Брейта [18] (см. также

[22, 26] и цит. лит.). В частности, в $1s_{1/2}$ -состоянии $g_D(Z)$ определяется выражением

$$g_D(Z) = -\frac{8}{3} \int_0^\infty u_0(r) q_0(r) r^3 dr, \qquad (16)$$

где радиальные функции $u_0(r)$, $q_0(r)$ определяются из уравнения (11), в котором следует положить l=0, и условием нормировки

$$\int_{0}^{\infty} \left(u_0^2 + q_0^2\right) r^2 dr = 1.$$
(17)

Численные результаты для $g_D(Z)$ в $1s_{1/2}$ -состоянии в зависимости от Z и их сравнение с формулой Брейта (3) для чисто кулоновского случая приведены в табл. 3. $\Delta g_D(Z)$ есть разность значений $g_D(Z)$,

Таблица 2

Z	$\epsilon(1p_{1/2})$	$(\epsilon(1p_{1/2}) - \epsilon_1) \times m$ эВ	$\epsilon(2p_{1/2})$	$(\epsilon(2p_{3/2}) - \epsilon_2) \times m$ эВ
1	0.999993343469	$-7.0518 \cdot 10^{-8}$	0.999993343558	$3.4947 \cdot 10^{-8}$
2	0.999973372548	$-1.12273 \cdot 10^{-6}$	0.999973373969	$5.60174 \cdot 10^{-7}$
6	0.9997602250	$-9.10871 \cdot 10^{-5}$	0.9997603403	$4.53957 \cdot 10^{-5}$
7	0.9996735688	$-1.689791 \cdot 10^{-4}$	0.9996737824	$8.41182 \cdot 10^{-5}$
8	0.999573534	$-2.88749 \cdot 10^{-4}$	0.999573899	$1.43535 \cdot 10^{-4}$
14	0.99869106	$-2.74568 \cdot 10^{-3}$	0.99869449	$1.34897 \cdot 10^{-3}$
20	0.99731948	$-1.16856 \cdot 10^{-2}$	0.99733389	$5.63624 \cdot 10^{-3}$
30	0.99391705	$-6.24624 \cdot 10^{-2}$	0.99399122	$2.87576 \cdot 10^{-2}$
60	0.97443362	-1.38855	0.97574362	0.480476
92	0.93300772	-17.5011	0.94198236	2.8849
120	0.860399	-343.374	0.899071	9.32517
137	0.709801	-2740.78	0.866135	17.3199
142	0.354618		0.855353	
144	$-1.93239 \cdot 10^{-2}$		0.850893	
147	-0.938864		0.84404	
150			0.836988	
180			0.75424	
220			0.596948	
250			0.412538	
270			0.200025	
280			$-1.98044 \cdot 10^{-3}$	
290			-0.43888	
296			-0.950344	

Поведение уровней $2p_{1/2}$ и $2p_{3/2}$ в зависимости от величины заряда ядра Z. $\epsilon_2 = \sqrt{4 - (Z\alpha)^2}/2$ соответствует энергии уровня $2p_{3/2}$ в чисто кулоновском случае

Γ	а	б	Л	И	Ц	а	3
---	---	---	---	---	---	---	---

 g_D -фактор для электронного уровня $1s_{1/2}$ с учетом швингеровского члена в зависимости от заряда ядра Z. Третий столбец показывает различие с формулой Брейта (3)

Ζ	$g_D(Z)$	$\Delta g_D(Z)$	Ζ	$g_D(Z)$	$\Delta g_D(Z)$
1	1.99996449	$\sim 10^{-9}$	40	1.9420256	$9.1 \cdot 10^{-5}$
2	1.99985810	$1.1 \cdot 10^{-7}$	50	1.908249	$1.7 \cdot 10^{-4}$
3	1.99968077	$3.2 \cdot 10^{-7}$	60	1.865707	$3.0 \cdot 10^{-4}$
4	1.99943248	$6.2 \cdot 10^{-7}$	70	1.813455	$5.3 \cdot 10^{-4}$
5	1.99911317	$9.9 \cdot 10^{-7}$	82	1.73600	$1.1 \cdot 10^{-3}$
6	1.99872280	$1.4 \cdot 10^{-6}$	92	1.65678	$1.9 \cdot 10^{-3}$
7	1.99826131	$2.0 \cdot 10^{-6}$	101	1.57131	$3.5 \cdot 10^{-3}$
8	1.9977286	$2.6 \cdot 10^{-6}$	111	1.456	$7.4 \cdot 10^{-3}$
14	1.9930319	$8.4 \cdot 10^{-6}$	121	1.31123	$1.9 \cdot 10^{-2}$
20	1.9857411	$1.8 \cdot 10^{-5}$	131	1.12264	$6.5 \cdot 10^{-2}$
26	1.9758134	$3.2 \cdot 10^{-5}$	137	0.979266	0.282039
32	1.9631896	$5.2 \cdot 10^{-5}$			

рассчитанных по формуле (16) при учете швингеровского взаимодействия и для чисто кулоновского случая (3):

$$\Delta g_D(Z) = g_D(Z) - \frac{2}{3} \left(1 + 2\sqrt{1 - (Z\alpha)^2} \right).$$
(18)

Из табл. З следует, что учет швингеровского взаимодействия увеличивает гиромагнитное отношение для 1s_{1/2}-состояния связанного электрона в водородоподобном атоме, причем $\Delta g_D(Z)$ начинает особенно быстро расти при $Z \sim 137$. При Z > 137 чисто кулоновская задача для дираковского электрона становится несамосопряженной, и формула Брейта (3) для $g_D(Z)$ теряет смысл. Но для уравнения Дирака (7) швингеровский член обеспечивает самосопряженность гамильтониана для всех Z, и в такой постановке задачи $g_D(Z)$, определяемый теперь по формуле (16), при Z > 137 продолжает существовать как основная компонента $g_{\text{bound}}(Z)$ для $1s_{1/2}$ -состояния связанного электрона до тех пор, пока этот уровень при Z = 159 не достигнет отрицательного континуума. Поведение $g_D(Z)$ на всем интервале изменения Z приведено на рис. 2. Для 2p_{1/2}-состояния g_D-фактор определяется выражением

$$g_D(Z) = \frac{8}{3} \int_0^\infty v_0(r) p_0(r) r^3 dr, \qquad (19)$$

где радиальные функции $v_0(r)$, $p_0(r)$ определяются теперь из уравнения (13), в котором следует положить l = 0, и условием нормировки

$$\int_{0}^{\infty} \left(v_0^2 + p_0^2 \right) r^2 \, dr = 1.$$
(20)

Рис. 2. Поведение g_D -фактора для электронного уровня $1s_{1/2}$ с учетом швингеровского члена (сплошная линия) и без него (пунктир) в зависимости от заряда ядра Z

Рис. 3. Поведение g_D -фактора для электронного уровня $2p_{1/2}$ с учетом швингеровского члена (сплошная линия) и без него (пунктир) в зависимости от заряда ядра Z

Т	а	б	Л	И	Π	а	- 4
	ч.	~				ч.	

 g_D -фактор связанного электрона в состоянии $2p_{1/2}$ с учетом швингеровского члена в зависимости от заряда ядра Z. Третий столбец показывает различие с чисто кулоновским случаем

Ζ	$g_D(Z)$	$\Delta g_D(Z)$	Ζ	$g_D(Z)$	$\Delta g_D(Z)$
1	0.666657781	$-1.0 \cdot 10^{-8}$	50	0.643455	$-3.0 \cdot 10^{-5}$
2	0.666631122	$-4.0 \cdot 10^{-8}$	60	0.632535	$-4.6 \cdot 10^{-5}$
3	0.666586685	$-9.0 \cdot 10^{-8}$	70	0.618976	$-7.0 \cdot 10^{-5}$
4	0.66652446	$-1.6 \cdot 10^{-7}$	82	0.59855	$-1.2 \cdot 10^{-4}$
5	0.66644444	$-2.6 \cdot 10^{-7}$	92	0.57720	$-1.9 \cdot 10^{-4}$
6	0.66634660	$-3.7 \cdot 10^{-7}$	101	0.55352	$-3.2 \cdot 10^{-4}$
7	0.66623091	$-5.1 \cdot 10^{-7}$	111	0.52013	$-6.9\cdot10^{-4}$
8	0.66609739	$-6.6 \cdot 10^{-7}$	121	0.47412	$-2.1 \cdot 10^{-3}$
14	0.6649194	$-2.0 \cdot 10^{-6}$	131	0.39518	$-1.0 \cdot 10^{-2}$
20	0.6630885	$-4.2 \cdot 10^{-6}$	137	0.28092	$-6.0 \cdot 10^{-3}$
26	0.6605910	$-7.2 \cdot 10^{-6}$	142	0.09811	
32	0.657408	$-1.1 \cdot 10^{-5}$	145	0.03135	
40	0.652052	$-1.8 \cdot 10^{-5}$	147	0.00180	

Численные результаты для $g_D(Z)$ в $2p_{1/2}$ -состоянии в зависимости от Z и их сравнение с соответствующим результатом для чисто кулоновского случая приведены в табл. 4. $\Delta g_D(Z)$ есть разность значений $g_D(Z)$, рассчитанных по формуле (20) при учете швингеровского взаимодействия и известных результатов для чисто кулоновского случая [22]:

$$\Delta g_D(Z) = g_D(Z) - \frac{2}{3} \left(\sqrt{2 \left(\sqrt{1 - (Z\alpha)^2} + 1 \right)} - 1 \right).$$
(21)

Из табл. 4 следует, что для $2p_{1/2}$ -состояния как энергия, так и g_D -фактор электрона смещаются вниз относительно чисто кулоновского случая, причем с ростом Z этот эффект становится все более четко выраженным, а при $Z > 144 \ g_D$ -фактор вообще оказывается близок к нулю. Обратим внимание, что в этой области по Z уровень $2p_{1/2}$ становится одновремнно и нижним энергетическим. Поведение $g_D(Z)$ как функции Z на всем интервале для $2p_{1/2}$ -уровня приведено на рис. 3.

Заключение

В настоящий момент в области больших зарядов ядра теоретическое значение g-фактора электрона в состоянии 1s_{1/2} оказывается несколько меньше соответствующего экспериментального значения [8, 22-24], поэтому эффект увеличения g-фактора в этом состоянии в результате учета швингеровского взаимодействия может являться одним из возможных решений этой проблемы. Однако сопоставлять полученные в настоящей работе численные значения поправок к g-факторам реальных ионов, для которых имеются экспериментальные данные по магнитному моменту, представляется преждевременным, поскольку приближение точечного ядра является слишком грубым для такой цели. Следует также заметить, что представление о $g_D(Z)$ как о главной составляющей $g_{\text{bound}}(Z)$ для области Z > 137уже не является очевидным. При учете швингеровского взаимодействия нижним энергетическим уровнем в этой области становится $2p_{1/2}$, а из поведения $g_D(Z)$ для $2p_{1/2}$, приведенного на рис. 3, следует, что теперь возникает область значений $Z \sim 144-147$, где g_D становится близким к нулю, и для корректного определения суммарного g-фактора основного состояния в этой области необходим учет эффектов отдачи (4) и остальных членов в радиационной поправке (5), причем с учетом интерференции между различными радиационными вкладами в характеристики электронного состояния. Но, в отличие от $\Delta g_{\rm free}$, полностью непертурбативный учет всего радиационного вклада при больших Z представляет пока трудноразрешимую проблему [2, 6, 26].

В заключение отметим еще раз, что полученные результаты для свойств нижних электронных уровней водородоподобного атома в приближении точечного ядра однозначно указывают, что для корректного описания электронного спектра и свойств связанных состояний электрона в атомах с большими Z необходим непертурбативный учет вклада от аномального магнитного момента свободного электрона, равно как и других радиационных эффектов в модели с неоднородным распределением заряда в тяжелом ядре.

Список литературы

- 1. Gabrielse G., Hanneke D., Kinoshita T. et al. // Phys. Rev. Lett. 2006. 97. 030802; Phys. Rev. Lett. 2007. 99. 039902.
- 2. Vogel M., Alonso J., Blaum K. et al. // Eur. Phys. J. Special Topics. 2008. 163. P. 113.
- 3. Hanneke D., Fogwell S., Gabrielse G. // Phys. Rev. Lett. 2008. 100. 120801.
- 4. Dawling M., Mondejar J., Piclum J.H. et al. // Phys. Rev. A. 2010. 81. 022509.
- 5. Mondejar J., Piclum J.H., Czarnecki A. // Phys. Rev. A. 2010. 81. 062511.
- 6. Czarnecki A., Dawling M., Mondejar J., Piclum J.H. // arXiv:1007.1176vl [hep-ph].
- 7. Karshenboim S.G. // Phys. Lett. A. 2000. 266. P. 380.
- 8. Beier T., Lindgren I., Persson H. et al. // Phys. Rev. A. 2001. **62**. 032510.
- 9. Shabaev V.M., Yerokhin V.A. // Phys. Rev. Lett. 2002. 88. 091801.
- 10. Odom B., Hanneke D., D'Urso B., Gabrielse G. // Phys. Rev. Lett. 2006. 97. 030801
- 11. Kinoshita T. // Lepton g 2 from 1947 to present // Lepton Dipole Moments / Ed. by B. L. Roberts, W. J. Marciano. Adv. Ser. Dir. HEP. Vol. 20. P. 69. World Scientific, Singapoure.
- 12. Laporta S., Remiddi E. // Analytic QED calculations of the anomalous magnetic moment of the electron // Lepton Dipole Moments / Ed. by B.L. Roberts, W.J. Marciano. Adv. Ser. Dir. HEP. Vol. 20. P. 119. World Scientific, Singapoure.
- 13. Hanneke D., Fogwell Hoogerheide S., Gabrielse G. // arXiv:1009.4831v1 [physics.atom-ph].
- 14. Kinoshita T., Nio M. // Phys. Rev. D. 2006. 73. 013003.
- 15. Beier T. // Phys. Rep. 2000. 339. P. 79.
- 16. Mohr P.J., Taylor B.N. // Rev. Mod. Phys. 72. P. 351.
- 17. Pachuki K., Czarnecki A., Jentschura U.D., Yerokhin V.A. // Phys. Rev. A. 2005. 72. 022108.

- 18. Breit G. // Nature. 1928. 122. P. 649.
- 19. Shabaev V.M. // Phys. Rev. A. 2001. 64. 052104.
- 20. Grotch H. // Phys. Rev. Lett. 1970. 24. P. 39.
- 21. Czarnecki A., Melnikov K., Yelkhovsky A. // Phys. Rev. A. 2001. 63. 012509.
- 22. Lee R.N., Milstein A.I., Terekhov I.S., Karshenboim S.G. // Phys. Rev. A. 2005. 71. 052501.
- 23. Jentschura U.D., Czarnecki A., Pachuki K., Yerokhin V.A. // arXiv:0510049v2 [physics.atom-ph]
- 24. Jentschura U.D. // Phys. Rev. A. 2009. 79. 044501.
- 25. Каршенбойм С.Г., Иванов В.Г., Шабаев В.М. // ЖЭТФ. 2001. **120**. P. 546.
- 26. Shabaev V.M., Andreev O.V., Artemyev A.N. et al. // arXiv:0510083v1 [physics.atom-ph].
- 27. Schwinger J. // Phys. Rev. 1948. 73. P. 416.
- 28. Бьеркен Дж.Д., Дрелл С.Л. Релятивистская квантовая теория. М., 1978.
- 29. Берестецкий В.Б., Лифшиц Е.М., Питаевский Л.П. // Квантовая электродинамика. М., 1989.
- 30. Barut A.O., Kraus J. // Phys. Lett. B. 1975. 59. P. 175; J. Math. Phys. 1976. 17. P. 506.
- 31. Герштейн С.С., Зельдович Я.Б. // ЖЭТФ. 1969. 57. P. 654.
- 32. Pieper W., Greiner W. // Zeit. Phys. 1969. 218. P. 327.
- 33. Зельдович Я.Б., Попов В.С. // Успехи физ. наук. 1971. 105. P. 403.
- 34. Гриб А.А., Мамаев С.Г., Мостепаненко В.М. // Вакумные квантовые эффекты в сильных полях. М., 1988.
- 35. Greiner W., Mueller B., Rafelski J. // Quantum Electrodynamics of Strong Fields. Berlin, 1985.
- 36. Reinhardt J., Greiner W. // Quantum Electrodynamics. 3rd ed. Berlin, 2003.
- 37. Hosaka A., Toki H. // Phys. Rep. 1996. 277. P. 65; Quarks, baryons and chiral symmetry. 2001.
- Greiner W., Schramm S. // Am. J. Phys. 2008. 76. P. 509.
 Ruffini R., Vereshchagin G., Xue S.-S. // Phys. Rep. 2010. 487. P. 1. arXiv: 0910.0974v3.

Nonperturbative effects caused by the radiative component of the electron magnetic moment in hydrogen-like atoms

K.A. Sveshnikov, D.I. Khomovsky^a

¹Department of Quantum Theory and High Energy Physics, Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow 119991, Russia.

E-mail: a khomovskij@physics.msu.ru.

Calculation of the lower electronic levels in hydrogen-like atom with nonperturbative account of Schwinger interaction of radiative component of free electron magnetic moment with the Coulomb field of pointlike atomic nuclei is performed. The behaviour of $1s_{1/2}$, $2s_{1/2}$, $2p_{1/2}$ as well as $2p_{3/2}$ levels subject to the nuclei charge, including the region Z > 137, where the Dirac hamiltonian continues to be self-adjoint due to Schwinger term, is studied. It is shown, that for large Z > 137 the Schwinger interaction causes significant changes in the structure of the electronic spectrum. In particular, the first level, that reaches the threshold of negative continuum, turns out to be $2p_{1/2}$, and it happens at Z = 147. The dependence of the electronic g factor for $1s_{1/2}$ and $2p_{1/2}$ levels on Z is considered too. It is shown, that for extremely large Z the contribution of Schwinger interaction to the g-factor of these electronic states turns out to be the dominant effect.

Keywords: free electron magnetic moment, radiative corrections, Schwinger interaction, hydrogen-like atoms, large Z.

PACS: 31.30.Jv. Received 11 May 2012.

English version: Moscow University Physics Bulletin 5(2012).

Сведения об авторах

1. Свешников Константин Алексеевич — докт. физ.-мат. наук, профессор; тел.: (495) 939-26-96, e-mail: costa@bog.msu.ru.

2. Хомовский Дмитрий Игоревич — аспирант; тел.: (495) 939-26-96, e-mail: khomovskij@physics.msu.ru.