Объяснение некоторых противоречий в трактовке динамики зарядки диэлектрических мишеней под воздействием электронного облучения

Е. Н. Евстафьева¹, Э. И. Рау^{1,2,*a*}, А. А. Татаринцев²

¹ Московский государственный университет имени М.В. Ломоносова, физический факультет,

кафедра физической электроники. Россия, 119991, Москва, Ленинские горы, д. 1, стр. 2.

² Институт проблем технологии микроэлектроники и особочистых материалов РАН. Россия, 142432, Московская обл., г. Черноголовка, ул. Академика Осипьяна, д. 6.

E-mail: ^a rau@phys.msu.ru

Статья поступила 23.11.2012, подписана в печать 10.01.2013.

Даны объяснения противоречивых результатов в ряде исследований временных характеристик зарядки диэлектрических мишеней под воздействием электронного облучения. Разногласия вызваны различием времен наступления квазиравновесного состояния двух основных параметров зарядки: полного коэффициента вторичной электронной эмиссии и поверхностного электростатического потенциала.

Ключевые слова: зарядка диэлектриков, вторичные электроны, потенциалы, динамика зарядки. УДК: 53.03; 385.833; 537.533.9. PACS: 73.20-г; 711.15-m; 07.78.+s.

Явление зарядки диэлектрических мишеней под воздействием электронного облучения изучается уже длительное время. В последнее десятилетие эти исследования проводятся все более интенсивно и разнопланово, что связано с решением актуальных и практически важных задач в космонавтике, электронной литографии и других областях, связанных с влиянием радиационного облучения на технологические процессы, а также на функционирование приборов, подвергаемых электронному облучению.

Но как в теоретических моделях [1, 2], так и в экспериментах [3, 4] наблюдаются значительные противоречия в интерпретации результатов исследований, что связано с очень сложным механизмом зарядки диэлектриков, в котором одновременно происходит ряд самосогласующихся процессов: аккумуляция зарядов, вторичная электронная эмиссия, радиационно-стимулированные токи, релаксация носителей, образование сильных внутренних электростатических полей и т. д. Без учета любого из этих явлений картина зарядки диэлектриков не является исчерпывающей и приводит к противоречиям и даже ложным выводам [2, 5]. Так, например, в основе двухслойной модели заряженного диэлектрика [1, 6] лежит электростатическое выражение связи равновесного потенциала V_{S0} с аккумулированным зарядом Q и емкостью заряженного участка мишени С в виде

$$V_{S0} = \frac{Q}{C} = \frac{Q_t \cdot d}{\varepsilon_0 \varepsilon a^2} + \frac{Q_+ \lambda - Q_- R_0}{2\varepsilon_0 \varepsilon a^2}.$$
 (1)

Здесь $Q_t = |Q_- - Q_+|$ есть абсолютная величина полного заряда, Q_+ и Q_- выражают соответственно значения положительного заряда в приповерхностном слое λ , равного глубине выхода вторичных электронов (ВЭ), и отрицательного заряда в слое толщиной R_0 , равного глубине пробега первичных электронов, a^2 площадь облучаемого электронами участка мишени, d — толщина образца, ε_0 и ε — диэлектрические константы вакуума и диэлектрика. Но эта формула справедлива только для тонких пленок, когда $d \ll a$ и $d \simeq R_0$. Например, наши предыдущие эксперименты [4, 7, 8] показывают, что для массивных мишеней (d = 1 мм) значения равновесных потенциалов $V_{\rm S0}$ по порядку величины для таких различных диэлектриков, как полиметилметакрилат ($\varepsilon = 2.6$) и рутил ($\varepsilon = 98$), равны друг другу, хотя, согласно (1), они должны отличаться в десятки раз.

Еще более поразительны разночтения в определении времени зарядки одних и тех же диэлектрических мишеней в зависимости от дозы облучения - от единиц и сотен миллисекунд [2, 5, 9, 10] до единиц и сотен секунд [4, 7, 8, 11, 12]. В настоящем сообщении будут рассмотрены и объяснены некоторые фундаментальные противоречия во временных характеристиках зарядки диэлектрических мишеней при их облучении электронами с энергией от сотен эВ до 20 кэВ.

Методом измерения сдвига границы тормозного рентгеновского излучения на Al_2O_3 при его зарядке электронным пучком с энергией $E_0 = 10$ кэВ при плотности тока зонда 10^{-5} А·см⁻² авторы работ [2, 9] получили, что время зарядки до равновесного потенциала $V_{S0} = 7$ кВ достигает сотен миллисекунд. В то же время наши измерения V_{S0} при тех же параметрах облучения с помощью регистрации сдвигов спектров вторичных электронов, измеряемых тороидальным спектрометром РЭМ [4, 7, 8], показывают, что время зарядки больше, чем в [2, 9].

Для выяснения причин указанных разногласий нами проведены сравнительные эксперименты по одновременному измерению потенциала V_S методами электронной и рентгеновской спектроскопии. Эксперименты проводились на растровом электронном микроскопе (РЭМ), снабженным рентгеновским микроанализатором и электронным спектрометром [13].

Результаты измерений поверхностного потенциала V_S , тока эмиссии электронов I_σ , тока смещения I_d и аккумулированного заряда Q в диэлектрике Al_2O_3 в зависимости от времени облучения приводятся на рис. 1. Эксперименты проводились при следующих условиях: $a \times a = 100 \times 100$ мкм, $I_0 = 1$ нА.

Рис. 1. Временные характеристики параметров зарядки Al_2O_3 -керамики — тока ВЭ I_σ , тока смещения I_d , аккумулируемого заряда Q и поверхностного потенциала V_S для двух значений энергии E_0 : 0.2 кэВ (a) и 10 кэВ (б)

Основные выводы из результатов измерений следующие. Во-первых, время полной зарядки $V_S(t)$ лежит не в миллисекундном диапазоне, а равно десяткам секунд, что подтверждается зависимостью Q(t). Однако характеристика тока эмиссии $I_{\sigma}(t)$ является более кратковременной, чем $V_S(t)$ и Q(t), поэтому по времени достижения квазиравновесного значения $I_{\sigma} = I_0 = 1$ нА нельзя судить (как это делается в [2, 9]) о времени наступления равновесного состояния — полной зарядки диэлектрической мишени. Время достижения равенства $I_{\sigma}/I_0 = 1$ характеризует только первую, быструю составляющую времени зарядки (до 1 с). Затем наступает вторая, долговременная стадия зарядки (от единиц до сотен секунд), характеризующаяся перераспределением зарядов +Q и -Q.

Более детальный анализ временных зависимостей параметров зарядки, представленных на рис. 1, показывает, что, действительно, равновесный потенциал зарядки V_{S0} устанавливается за более продолжительное время, чем равновесное значение тока вторичной эмиссии I_{σ} , при котором $\sigma = 1$, в то время как значение Q(t), полученное интегрированием по времени зависимости тока смещения I_d , качественно следует за значением $V_S(t)$.

Именно временное рассогласование характеристик $I_{\sigma}(t)$ и $V_S(t)$ явилось скрытой причиной неправильного определения времени зарядки диэлектрических мишеней в работах [2, 9] и некоторых других, где равновесный потенциал фиксировался по сдвигу границы тормозного рентгеновского излучения, а время установления его равновесия приписывалось времени достижения значения коэффициента электронной эмиссии $\sigma = 1$, но это предположение не всегда очевидно и не подтверждается экспериментами (см. рис. 1). Чтобы внести ясность в возникающее противоречие, рассмотрим зависимость коэффициента полной эмиссии электронов σ от энергии облучающих электронов E_0 .

В общем случае $\sigma = \delta + \eta$, где η — коэффициент отраженных электронов ($\eta(E_0) = \text{const}$), а коэффициент ВЭ обычно выражается следующим соотношением [6, 14]:

$$\delta = \left[\frac{AE_0}{E_i}\right] \alpha^{-1} [1 - \exp(-\alpha)], \qquad (2)$$

18 ВМУ. Физика. Астрономия. № 2

где A — вероятность выхода ВЭ из глубины s от поверхности в вакуум, E_i — энергия генерации ВЭ в диэлектрике, $\alpha = R_0/s$. Значение глубины пробега первичного электрона R_0 задается энергией E_0 : $R_0 = kE_0^n$, где k — константа материала мишени, а показатель n лежит в интервале 1.3 < n < 2.0. Так, для рассматриваемого здесь диэлектрика Al_2O_3 имеем R_0 [нм] = $28E_0^{1.55}$ [кэВ], максимальная глубина выхода ВЭ s = 10 нм, $E_i = 27$ эВ.

Зависимость $\sigma(E) = \delta(E) + \eta$ представлена на рис. 2, где принято $\eta = 0.2$. Там же приводится качественная временная зависимость δ от значения текущей энергии облучающих электронов $E(t) = E_0 - qV_S(t)$.

Рис. 2. Качественное представление эмиссионной характеристики $\sigma(E)$ диэлектрика с указанием временной диаграммы этой характеристики

По ранним устоявшимся представлениям, если облучение осуществляется с энергией $E_0 > E_2$, то $\sigma < 1$, диэлектрик заряжается отрицательно, если с энергией в интервале $E_1 < E_0 < E_2$, то $\sigma > 1$, зарядка положительна. В точках двух критических энергий E_1 и E_2 имеем $\sigma = 1$ и полагалось, что диэлектрическая мишень не заряжается. Но современные теоретические модели [1, 3] и эксперименты [4, 7] показали, что и при $E_0 < E_2$ возможна отрицательная зарядка диэлектрической мишени.

Равновесное значение потенциала V_{S0} достигается при этом не при энергии E_2 , а при $E_{2C} < E_2$, причем время t установления равновесной зарядки можно

условно разделить на две составляющие: кратковременную t_1 и долговременную t_2 . За время t_1 (порядка долей и единиц секунд) значение σ достигает единицы, но отрицательная зарядка продолжается и потенциал $V_S = (E_0 - E'_{2C})/q$ растет (см. рис. 1).

Этот дополнительный рост потенциала происходит более медленно, за время t_2 , равное от единиц до сотен секунд (рис. 2). В результате величина $\sigma(E(t))$ идет к значению $\sigma = 1$ в точке E_{2C} , следуя не по линии, обозначенной штрихом на рис. 2, и не по сплошной расчетной линии до точки с энергией E_2 , а по характеристике, приведенной сплошной линией со стрелками. Таким образом, при начальной энергии облучения E_0 при t = 0 имеем $\sigma \simeq 0.5$, затем σ быстро растет до значения $\sigma = 1$ уже при энергии E'_{2C} , но при этом потенциал зарядки V_S все еще значительно меньше V_{S0} (см. рис. 1).

После достижения приближенного равенства $\sigma \leq 1$ в точке E'_{2C} продолжается накопление отрицательного заряда Q, что вызывает дальнейшее уменьшение энергии падающих электронов E вплоть до равновесного значения E_{2C} , при котором фиксируется равновесный потенциал $V_{S0} = (E_0 - E_{2C})/q$. Возможное объяснение этого парадоксального явления состоит в следующем. При начальной энергии облучающих электронов быстро меняющейся от E_0 до E'_{2C} возникает зарядка поверхности величиной в единицы кВ (рис. 1). При этом между тонким положительно заряженным приповерхностным слоем (вследствие эмиссии ВЭ) толщиной $s \ll R_0$ и более протяженным отрицательным слоем толщиной R_0 возникает сильное электростатическое поле [3]:

$$F_{\rm in} = \frac{V_- - V_+}{R_0} = I_R \cdot \rho \cdot a^{-2}, \tag{3}$$

где V_- и V_+ — потенциалы отрицательно и положительно заряженных слоев диэлектрика, ρ — удельное сопротивление в облучаемой области, определяемое электронно-индуцированной проводимостью диэлектрика. Генерируемое приповерхностное поле $F_{\rm in}$ в свою очередь вызывает два сопутствующих эффекта. Во-первых, понижается работа выхода для ВЭ, т.е. значение электронного сродства χ для диэлектриков, что повышает вероятность выхода ВЭ на величину от 5 до 10% (при уменьшении χ на доли эВ [1, 2]). Но более весо́м второй фактор влияния $F_{\rm in}$ на величину δ , заключающийся в том, что под воздействием внутреннего поля значительно увеличивается эффективная глубина выхода s для ВЭ [2, 3]:

$$s(F_{\rm in}) = s_0 \exp(\beta \cdot F_{\rm in}), \qquad (4)$$

где s_0 — средняя глубина выхода ВЭ в отсутствие поля, $\beta \simeq 10^{-7}$ (B/см)⁻¹ — параметр затухания поля в материале Al₂O₃. Оценки по формулам (З) и (4) дают более чем двукратное увеличение значения δ под воздействием $F_{\rm in}$, что эквивалентно известному эффекту Малтера — усиления вторичной эмиссии диэлектриков при наличии сильного электростатического поля [15].

Дальнейшему нарастанию $\delta = f(E)$ препятствует закон сохранения токов $I_0 = I_d + I_\sigma$ и противоборствующий эффект рекомбинации ВЭ в области все нарастающего положительного заряда. В этом ионизированном за счет эмиссии ВЭ Q_+ -слое создаются новые центры захвата электронов, что модифицирует δ .

На возможность образования экситонов и поляронов (так называемый поляронный эффект), образующихся

при транспорте низкоэнергетических ВЭ через толщу облака положительного заряда большой плотности, указывается в работах [3, 5]. Коэффициент δ сдерживает по этой причине свой рост из-за включения в процесс эмиссии эффекта прилипания внутренних ВЭ на вновь порождаемые центры захвата. Одновременно при приближении к состоянию равновесия все большее действие оказывает уравновешивающий механизм радиационно-стимулированного тока между заряженными слоями диэлектрика, нивелирующий дальнейшее накопление зарядов в каждом слое. Одновременно происходит довольно медленная (единицы и десятки секунд) Максвелловская релаксация отрицательного заряда в необлученные участки диэлектрической мишени. При положительной зарядке образца (при $E < E_2$) в действие вступает еще один сдерживающий механизм эмиссии — воздействие на ВЭ возвратного электрического поля над поверхностью [1-3, 5], что способствует быстрому установлению равновесного значения $\sigma = 1$, но более медленному по времени равновесного значения $V_{\rm S} = V_{\rm S0}$ (см. рис. 1, *a*).

Основной вывод изложенных исследований заключается в том, что хотя процессы зарядки диэлектрических мишеней являются и самосогласующимися и взаимозависимыми, но доминирующим (ведущим) эффектом является накопление отрицательного заряда и соответственно рост потенциала зарядки, определяющего спад энергии облучающих электронов, а вот уже в качестве ведомого, подстраивающегося процесса является изменение коэффициента вторичной электронной эмиссии в зависимости от потенциала поверхности. По этой причине происходит задержка по времени наступления равновесия двух фундаментальных параметров зарядки: тока эмиссии (кратковременный процесс) и потенциала зарядки (долговременный процесс).

Список литературы

- 1. Cazaux J. // J. Appl. Phys. 1999. 85. P. 11.
- Touzin M., Goeuriot D., Guerret-Piecourt C. et al. // J. Appl. Phys. 2006. 99. P. 114110.
- Melchinger A., Hofmann S. // J. Appl. Phys. 1995. 78. P. 6244.
- 4. *Рау Э.И., Евстафьева Е.Н., Андрианов М.В. //* Физ. тверд. тела. 2008. **50**. С. 599.
- Ganachaud J.P., Mokrani A. // Surface Sci. 1995. 334. P. 329.
- 6. Cazaux J. // Appl. Surface Science. 2010. 275. P. 1002.
- 7. Rau E.I., Fakhfakh S., Andrianov M.V. et al. // Nucl. Instrum. Methods in Phys. Res. B. 2008. **266**. P. 719.
- 8. Евстафьева Е.Н., Плиес Э., Рау Э.И. и др. // Изв. РАН. Сер. физ. 2010. **74**. С. 1020.
- Askri B., Renoud R., Ganachaud J.P. // Eur. Phys. J. Appl. Phys. 2005. 32. P. 29.
- Liebault J., Vallayer J., Goeuriot D., Treheux D. // J. Eur. Ceramic Soc. 2001. 21. P. 389.
- Ong C.K., Song Z. D., Gong H. // J. Phys. Condens. Matter. 1997. 9. P. 9289.
- Boughariou A., Blaise G., Braga D., Kallel A. // J. Appl. Phys. 2004. 95. P. 4117.
- Rau E.I., Evstafjeva E.N., Tatarintsev A.A. // Proc. 15-th European Microscopy Congress. Manchester, 2012.
 P. 103.
- 14. Lin Y., Joy D.C. // Surf. Interface Anal. 2005. 275. P. 4117.
- 15. Бройнштейн И.М., Фрайман Б.С. Вторичная электронная микроскопия. М., 1969.

РАДИОФИЗИКА, ЭЛЕКТРОНИКА, АКУСТИКА

An explanation of some contradictions in the interpretation of the dynamics of dielectric targets charging under electron irradiation

E. N. Evstaf'eva¹, E. I. Rau^{1,2,a}, A. A. Tatarintsev²

¹Department of Physical Electronics, Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow 119991, Russia. ²Institute of Microelectronics Technolog and High Purity Materials, Russian Academy of Sciences, Chernogolovka, Moscow Region 142432, Russia. E-mail: ^arau@phys.msu.ru.

Contradictions in the results of some experiments of dielectrics charging dynamics under electron beam irradiation were explained. The disagreements are caused by differences in time of onset of the quasi-equilibrium state of the two main parameters of the charge: the total secondary electron emission yield and surface electrostatic potentials.

Keywords: charging of dielectrics, secondary electrons, potentials, charge dynamics. PACS: 73.20-r; 711.15-m; 07.78.+s. *Received 23 November 2012*.

English version: Moscow University Physics Bulletin 2(2013).

Сведения об авторах

- 1. Евстафьева Екатерина Николаевна канд. физ.-мат. наук, мл. науч. сотрудник; тел.: (495) 939-38-95, e-mail: ekaterina@vega.phys.msu.ru.
- 2. Рау Эдуард Иванович докт. физ.-мат. наук, вед. науч. сотрудник, профессор; тел.: (495) 939-38-95, e-mail: rau@phys.msu.ru.
- 3. Татаринцев Андрей Андреевич мл. науч. сотрудник; тел.: (495) 939-38-95, e-mail: tatarintsev@iptm.ru.