ОПТИКА И СПЕКТРОСКОПИЯ. ЛАЗЕРНАЯ ФИЗИКА

Поглощение сернистым газом в терагерцовом диапазоне при температурах 300–1200 К

О.К. Войцеховская^{*a*}, О.В. Егоров^{*b*}

Томский государственный университет, радиофизический факультет, кафедра квантовой электроники и фотоники. Россия, 634050, Томск, пр. Ленина, д. 36. E-mail: ^a vok@elefot.tsu.ru, ^b egorovolegv@mail.ru

Статья поступила 03.05.2012, подписана в печать 28.11.2012.

В работе исследован вращательный спектр поглощения основного изотопа диоксида серы ${}^{32}\mathrm{S}{}^{16}\mathrm{O}_2$, соответствующий терагерцовому диапазону электромагнитных волн: 1–250 см⁻¹ (0.1–10 ТГц). В рассмотрение включены вращательные переходы внутри всех колебательных состояний, параметры гамильтониана для которых на данный момент известны из литературы: (000–000), (010–010), (100–100), (001–001), (020–020), (110–110), (011–011), (030–030), (120–120), (200–200), (002–002), (130–130), (103–103), (301–301), (101–101), (021–021), (210–210), (111–111), (201–201), (003–003), (131–131). В результате выполнен расчет коэффициента поглощения ${}^{32}\mathrm{S}{}^{16}\mathrm{O}_2$ в широком диапазоне температур (300–1200 К) и проанализирован вклад вращательной полосы каждого колебательного состояния в полный коэффициент поглощения.

Ключевые слова: вращательный спектр, диоксид серы, терагерцовый диапазон, коэффициент поглощения. УДК: 535.343.4. РАСS: 33.20.Sn.

Введение

Терагерцовый диапазон (0.1–10 ТГц) соответствует длинам волн от 3 мм до 30 мкм и частично перекрывается с субмиллиметровой областью спектра. В ТГц диапазоне спектроскопические исследования методами гетеродинирования являются основными при изучении процессов формирования звезд и планет. В этой области спектра находятся линии поглощения вращательных переходов многих молекул, дающие информацию о фундаментальных характеристиках различных соединений. Данный спектральный регион привлекателен для зондирования содержания газов, поскольку влияние эффектов рассеяния в этом диапазоне пренебрежимо мало [1].

В отличие от ИК и видимого диапазонов электромагнитных волн в ТГц области детекторы не ограничены фотонным шумом и теоретически возможна регистрация даже одиночных фотонов [2]. Сегодня неохлаждаемые тепловые детекторы прямого обнаружения используются в оптических системах с невысоким спектральным разрешением, но имеют достаточно высокую чувствительность. Болометры малого объема предельно чувствительны при охлаждении и обладают достаточным быстродействием ($\tau = 10^{-5}$ с), что может обеспечить высокую скорость передачи данных и реализовать режим счета фотонов в ТГц диапазоне. ТГц детекторы активно применяются в навигации, биологии, медицине, а также для обнаружения наркотических и взрывоопасных веществ [2].

В связи с этим исследование спектров атмосферных и примесных газов в этом диапазоне необходимо для интерпретации регистрируемых приемниками спектральных характеристик широкого круга газообразных соединений, в частности серосодержащих. Источники SO₂ могут иметь как природное, так и антропогенное происхождение (вулканы, гейзерные долины, автомобильный транспорт, металлургические предприятия, заводы по переработке нефти, тепловые электростанции). Следы данной молекулы неоднократно регистрировались и в открытом космосе. Например, исследование центра галактики в районе созвездия Стрельца В2 [3] выявили наличие линий излучения данной молекулы в субмиллиметровом диапазоне спектра. Доминирующее излучение SO₂ в спектральном диапазоне 607-725 ГГц также наблюдается в газопылевом комплексе Орион КЛ [4]. Разнообразие источников возникновения сернистого газа приводит к необходимости разработки спектроскопического обеспечения в целях диагностики содержания этого соединения в широком интервале температур, но данные по поглощению нагретого сернистого газа в литературе отсутствуют.

В настоящей работе выполнены расчеты параметров спектральных линий (ПСЛ) молекулы SO_2 в спектральной области, соответствующей чисто вращательным переходам 1-250 см⁻¹ ($10^{10}-10^{12}$ Гц), а также определены значения коэффициента поглощения в этом диапазоне при различных температурах 300-1200 К.

1. Расчет параметров спектральных линий чисто вращательного спектра

1.1. Расчет энергии колебательно-вращательных уровней

Вычислительная схема расчета ПСЛ базируется на разработанном алгоритме для молекулы типа асимметричного волчка [5]. Прототипом вычислительной процедуры для молекулы SO₂ служит алгоритм расчета ПСЛ молекулы водяного пара. Специфика данного расчета заключается в необходимости вычисления больших объемов данных, поскольку с ростом температуры увеличивается населенность уровней «горячих» переходов между возбужденными вращательными состояниями ряда колебательных уровней, роль которых при нормальной температуре (296 К) мала и традиционно не рассматривается.

Классический подход к описанию спектров молекул типа асимметричного волчка заключается в построении эффективных колебательно-вращательных (КВ) гамильтонианов как для изолированного колебательного состояния, так и для группы взаимодействующих колебательных состояний (полиад).

Получаемый с учетом резонансов гамильтониан имеет вид блочно диагональной матрицы. Каждый из блоков в этой матрице связывает группы (полиады) близко расположенных и сильно взаимодействующих колебательных состояний:

$$H = \sum_{v,v' \in P} H_{vv'} |v\rangle \langle v'|, \qquad (1)$$

где суммирование проводится по всем колебательным состояниям, входящим в один блок, или полиаду размерности $\{P\}$. Группы колебательных состояний (v_1, v_2, v_3) , входящих в полиаду, выбираются исходя из следующего соотношения [6]:

$$2v_1 + v_2 + 2v_3 = P = 0, 1, 2, 3, \dots$$
 (2)

Диагональные операторы H_{vv} , входящие в выражение (1), есть чисто вращательные операторы для данного колебательного состояния. Недиагональные операторы $H_{vv'}$ — операторы взаимодействия, учитывающие ангармонические резонансы и резонансы Кориолиса.

Расчет уровней энергии проводится посредством численной диагонализации блочно диагональной матрицы гамильтониана. Матричные элементы диагональных и недиагональных операторов определяются в базисе функций Ванга, вследствие чего матрица разбивается на подматрицы, размерность блоков каждой такой подматрицы определяется с учетом симметрии колебательной и вращательной волновых функций [6]. Исходными данными для расчета энергий КВ уровней служат константы гамильтониана, получаемые в процессе обработки экспериментальных спектров методами минимизации.

В литературе имеется достаточное число публикаций по основному (000) и первому возбужденному (010) состояниям молекулы SO₂ [7–12]. Совершенствование спектроскопической техники дает возможность исследовать спектры молекул с большей разрешающей способностью. что повышает точность определения их спектроскопических параметров, поэтому необходимые наборы констант гамильтониана данных состояний были взяты из [12]. Поскольку колебательные состояния (000) и (010) не связаны резонансами с другими состояниями, то уровни энергии были получены путем диагонализации матрицы гамильтониана Уотсона [6] для изолированных состояний. Общий список источников параметров для соответствующих операторов представлен в табл. 1. При расчетах ограничились теми максимальными квантовыми числами (табл. 1), до которых авторам работ [12-19] удалось провести обработку экспериментального спектра.

Примеры рассчитанных энергий КВ уровней приведены в табл. 2, где также указана разность энергий уровней с приведенными в работах [12–19] данными. По величине отклонения выделяются энергии вращательных уровней колебательных состояний (001), (120) и (011), соответствующие большим величинам вращательного квантового числа *K*_c.

1.2. Интенсивности линий чисто вращательных переходов

Интенсивности линий чисто вращательных переходов рассчитывались по следующей формуле [23]:

$$S = \frac{8\pi^3 \cdot g \cdot N}{3hc \cdot Q_{vr}} \cdot \mu_0^2 \cdot v \cdot e^{-(hc/kT)E} \cdot \left(1 - e^{-(hc/kT)v}\right) \cdot L \cdot \frac{T_0}{T}, \quad (3)$$

Таблица 1

Данные по колебательным состояниям, рассматриваемым в настоящей работе

Колебательное состояние	J^{\max}	K _a ^{max}	Источник	Колебательное состояние	J ^{max}	K _a ^{max}	Источник
000	92	23	[19]	002	80	22	[16]
010	81	21		130	*	*	[10]
001	89	24		103	51	16	[17]
100	69	28	[13]	301	55	16	
020	42	16		101	61	22	
110	78	27		021	*	*	[18]
011	68	24	[14]	111	44	16	[]
030	*	*		201	53	16	
120	*	*		003	55	22	[19]
200	58	21	[15]	131	*	*	[13]
210	33	11					

* Параметры гамильтониана получены посредством варьирования констант Уотсона других состояний; J^{\max} , K_a^{\max} — максимальные значения вращательных квантовых чисел.

Таблица 2

Энергии КВ уровней рассматриваемых состояний в сравнении с данными альтернативных источников*

Вращательные	Энергия КВ		BROWLOTO TI ULIO			D		
квантовые числа J, K _a , K _c	уровня — настоящая работа, см ^{—1}	δ·10 ⁻³ , см ⁻¹	квантовые числа <i>J</i> , <i>K</i> _a , <i>K</i> _c	Энергия КВ уровня — настоящая работа, см ⁻¹	$\delta \cdot 10^{-3},$ cm ⁻¹	Вращательные квантовые числа J, K _a , K _c	Энергия КВ уровня — настоящая работа, см ⁻¹	$\delta \cdot 10^{-3},$ cm ⁻¹
$v_1 v_2 v_3 = 010$ [20]			v_1v_2	$v_3 = 011 [14]$		$v_1 v_2 v_3 = 103$ [17]		
69 6 64	2126.9230	1.2	48 15 34	3008.9141	14.1	41 6 35	5769.0663	0.1
59 16 44	2090.5264	1	51 4 47	2764.1252	1.9	43 6 37	5823.4812	0
46 23 23	2110.3719	1.4	52 12 41	3000.3092	12.5	46 2 45	5826.7338	0.1
60 0 60	1606.5423	0.3	63 4 59	3199.8766	6.8	48 2 47	5883.2392	1.1
60 9 51	1831.5001	0.3	47 5 42	2648.9731	1	51 0 51	5944.3127	0.2
v_1v_2	$v_3 = 100$ [20]		v_1v_2	$v_3 = 030 [14]$		v_1v_2	$v_3 = 301 [17]$	
39 21 19	2387.4746	0.3	28 15 13	2217.4551	1.5	42 10 33	5487.4677	0.6
66 14 52	2890.6879	2.3	29 15 15	2235.9646	1.1	43 7 36	5430.2117	2.4
62 15 47	2775.0386	2.7	30 15 15	2255.1000	0.8	48 2 47	5468.9933	0.7
58 16 42	2672.9748	1.1	31 15 17	2274.9129	1.3	53 0 53	5590.6508	0.9
28 23 5	2293.1205	0				35 12 23	5389.5344	0.3
$v_1 v_2 v_3 = 001$ [20]			$v_1 v_2$	$v_3 = 120 [14]$		$v_1 v_2 v_3 = 101$ [20]		
87 10 77	3985.8945	10.2	42 12 30	3010.0553	34.6	61 0 61	3616.4202	0.5
83 15 68	3958.6746	14	60 1 59	3297.2107	19.1	60 22 39	4461.8355	0.1
77 20 57	3938.6715	41.3	49 4 46	2985.2926	11.2	30 16 15	3222.3591	0.1
63 6 57	2729.8657	1.5	40 12 28	2957.2857	31.7	49 20 29	3941.1455	0.3
67 2 65	2784.8786	1.3	25 10 16	2564.8905	8.8	54 22 33	4242.9737	0.1
$v_1 v_2$	$v_3 = 020$ [20]		$v_1 v_2$	$v_3 = 200 \ [21]$		$v_1 v_2$	$v_3 = 111 \ [20]$	
34 17 17	1924.0144	0	26 20 6	3190.4156	19.1	39 13 26	3794.2808	0.3
31 18 14	1921.3706	0	46 5 41	3033.5974	5.9	33 20 13	4044.2245	0.2
42 11 31	1826.7112	0	13 13 1	2640.5216	0.9	44 1 44	3597.8311	0.7
37 10 28	1661.8584	0	26 10 16	2688.3983	0.3	44 16 29	4074.8411	0.7
52 8 44	2031.7735	0.1	46 11 35	3186.4416	2.6	40 10 31	3702.0325	0.1
$v_1v_2v_3 = 110$ [14]			$v_1 v_2$	$v_3 = 002 \ [20]$		$v_1 v_2 v_3 = 003$ [20]		
44 10 34	2470.1919	0.1	45 18 28	3903.7871	0.1	59 19 40	5760.7428	0.2
54 16 38	3052.8875	0.1	48 17 31	3936.3897	0	58 20 39	5785.8999	0.3
59 5 55	2835.9731	0	58 8 50	3911.3607	0	56 21 36	5778.5743	0.4
50 20 30	3163.8008	0.1	60 1 59	3828.8405	0	51 10 41	5057.9780	0.0
35 26 10	3211.9404	0.5	62 5 57	4016.7353	0	55 0 55	4962.5759	0.0

* Альтернативный источник указан в квадратных скобках; $\delta = |E_{[...]} - E_{this work}|$.

где $\mu_0 = 1.6331 D$ [22] — величина постоянного дипольного момента; g — статистический вес нижнего уровня; N — число поглощающих частиц в единице объема вещества ($2.6867774 \cdot 10^{19} \text{ см}^{-3}$); Q_{vr} — КВ статистическая сумма, равная произведению колебательной и вращательной статсумм, $Q_{vr} = Q_v \cdot Q_r$; v — центр линии; E — энергия нижнего уровня; L — сила линии; T — температура; $T_0 = 273.16$ K; h, c, k — мировые константы.

Так как не существует аналитического выражения для вращательной энергии молекулы типа асимметричного волчка, то невозможно получить строгое асимптотическое разложение для Q_r . Однако при близких значениях вращательных постоянных B и C можно воспользоваться выражением Q_r для случая симметричного волчка с вращательными постоянными A и \sqrt{BC} (C и \sqrt{AB} , если по величине близки постоянные A и B) [23]:

$$Q_{r} = e^{\sqrt{BC}hc/(4kT)} \cdot \sqrt{\frac{\pi}{ABC}} \cdot \left(\frac{kT}{hc}\right)^{3} \times \left[1 + \frac{1}{12} \cdot \left(1 - \frac{\sqrt{BC}}{A}\right) \cdot \frac{\sqrt{BC}hc}{kT} + \dots\right].$$
 (4)

Из литературных источников известно [16], что при расчетах колебательных уровней энергии SO₂ можно пренебречь влиянием недиагональных членов в матрице колебательного оператора, так как эффект резонансного взаимодействия состояний в данной молекуле мал. Поэтому для расчета энергий колебательных уровней можно воспользоваться известным разложением

$$G(v_1, v_2, v_3) = \sum_{i} \omega_i \left(v_i + \frac{1}{2} \right) + \sum_{i} \sum_{k \ge i} \chi_{ik} \left(v_i + \frac{1}{2} \right) \left(v_k + \frac{1}{2} \right) + \dots, \quad (5)$$

в котором ω_i и χ_{ik} — гармонические и ангармонические постоянные.

Выражение для колебательной части КВ статистической суммы следующее [23]:

$$Q_{\nu} = \sum_{v_1, v_2, v_3} e^{-G(v_1, v_2, v_3)hc/kT}.$$
 (6)

В табл. З приведены результаты расчета вращательной и КВ статистических сумм при разных температурах. Вращательные постоянные A, B и C для основного состояния (000) взяты из работы [12], а значения величин ω_i и χ_{ik} — из [16]; суммирование в (6) проводилось до значений колебательных квантовых чисел $(v_1, v_2, v_3) = 3$.

С повышением температуры разница в значениях статистических сумм растет (табл. 3), так как постоянные A, B, C из разных источников, как правило, не совпадают. Но тем не менее максимальное относительное отклонение в результатах двух расчетов не превышает 3%.

Информация о параметрах вращательных линий для основного состояния (000) молекулы SO₂ при температурах 296 и 300 К содержится в базах данных (БД) «HITRAN» [20] и JPL [25] соответственно. В значения интенсивностей линий в БД JPL не включена колебательная статистическая сумма, так как Q_v приближенно равна единице при нормальных температурах ($Q_v \approx 1$, $Q_{vr} \approx Q_r$). В то же время при более высоких температурах, когда величина в знаменателе показателя экспоненты становится сравнимой со значением числителя (6), необходимо учитывать вклад Q_v . В табл. 4 приведены для примера значения центров и интенсивностей линий чисто вращательной полосы основного состояния (000), полученные в этой работе, в сравнении с данными, содержащимися в БД JPL (при расчетах Q_v полагалась равной 1). Из табл. 4 следует, что наибольшее расхождение наблюдается для переходов между высокими уровнями энергии (J > 50) и противоположными значениями разностей $\Delta K_a = K'_a - K''_a < 0$ (или > 0) и $\Delta K_c = K'_c - K''_c > 0$ (или < 0).

Вращательная сила линии L, входящая в выражение для интенсивности (3), представляет собой матричный элемент направляющих косинусов в базисе волновых функций симметричного волчка. В зависимости от типа ветви (P, Q или R), сила линии определена следующим образом:

R-ветвь (J' = J + 1):

$$S_{R} = \sum_{k} g_{k\tau}^{[v]}(J) \left\{ g_{k-1\tau'}^{[v']}(J') \sqrt{(J-k+2)(J-k+1)} + g_{k+1\tau'}^{[v']}(J') \sqrt{(J+k+2)(J+k+1)} \right\}, \quad L = \frac{S_{R}^{2}}{4(J+1)};$$
(7)

Q-ветвь (J' = J):

$$S_Q = \sum_{k} g_{k\tau}^{[v]}(J) \left\{ -g_{k-1\tau'}^{[v']}(J')\sqrt{(J+k)(J-k+1)} + g_{k+1\tau}^{[v']}(J')\sqrt{(J-k)(J+k+1)} \right\}, \quad L = \frac{S_Q^2(2J+1)}{4J(J+1)}; \quad (8)$$

P-ветвь (J' = J - 1):

$$S_{P} = \sum_{k} g_{k\tau}^{[\upsilon]}(J) \left\{ g_{k-1\tau'}^{[\upsilon']}(J') \sqrt{(J+k)(J+k-1)} + g_{k+1\tau'}^{[\upsilon']}(J') \sqrt{(J-k)(J-k-1)} \right\}, \quad L = \frac{S_{P}^{2}}{4J}.$$
 (9)

В формулах (7)-(9) J, k — квантовые числа полного углового момента и его проекции соответственно; $g_{k\tau}^{[v]}(J)$ и $g_{k\pm 1\tau'}^{[v']}(J')$ — коэффициенты разложения вращательной функции асимметричного волчка в базисе собственных функций жесткого волчка.

Таблица З

	Статистическая сумма								
Температура, К	Q,	r	Q _{vr}						
	Настоящая работа Каталог JPL [24]		Настоящая работа	БД «HITRAN» [20]					
75	738.750	739.016	738.243	739.486					
150	2 086.698	2 090.601	2 099.994	2 104.553					
225	3831.794	3841.714	3974.572	3 989.730					
300	5 897.036	5918.720	6 304.526	6 491.580					
600	16675.267	_	25 800.880	26 194.064					
900	30 631.929	_	71 909.422	73634.376					
1200	47 159.021	_	166 217.692	171 396.720					

Результаты расчета статистических сумм для разных температур молекулы SO₂

Таблица 4

Центр лин	иии, см ⁻¹		Идентификация					Интенсивн		
Настоящая работа	БД JPL	J'	K'_a	K_c'	J‴	$K_a^{\prime\prime}$	K_c''	S	$S_{ m JPL}$	δ, %
5.36460	5.36464	10	0	10	9	1	9	$3.511\cdot 10^{-3}$	$3.495\cdot10^{-3}$	0.4
6.03200	6.03101	55	13	43	56	12	44	$1.501 \cdot 10^{-5}$	$1.498 \cdot 10^{-5}$	0.2
8.47110	8.47108	15	6	10	16	5	11	$1.436 \cdot 10^{-3}$	$1.430 \cdot 10^{-3}$	0.4
10.28490	10.27821	69	17	53	70	16	54	$1.403 \cdot 10^{-6}$	$1.401 \cdot 10^{-6}$	0.1
12.10870	12.10866	67	7	61	68	4	64	$1.974 \cdot 10^{-6}$	$2.023\cdot 10^{-6}$	2.4
15.48700	15.48697	33	5	29	33	4	30	$1.502 \cdot 10^{-2}$	$1.496 \cdot 10^{-2}$	0.4
20.45000	20.45002	8	5	3	7	4	4	$3.406 \cdot 10^{-2}$	$3.392\cdot10^{-2}$	0.4
22.11350	22.11365	68	8	60	67	9	59	$5.010 \cdot 10^{-5}$	$4.998\cdot 10^{-5}$	0.2
49.02320	49.02272	16	12	4	15	11	5	$1.435 \cdot 10^{-1}$	$1.429 \cdot 10^{-1}$	0.4
63.28500	63.28083	18	16	2	17	15	3	$1.198 \cdot 10^{-1}$	$1.193 \cdot 10^{-1}$	0.4
70.48580	70.44509	29	22	8	29	21	9	$5.006 \cdot 10^{-3}$	$4.987 \cdot 10^{-3}$	0.4
84.88600	84.86537	32	20	12	31	19	13	$3.191 \cdot 10^{-2}$	$3.179 \cdot 10^{-2}$	0.4
93.11930	93.11867	56	11	45	56	8	48	$8.370 \cdot 10^{-5}$	$7.901 \cdot 10^{-5}$	6
106.47190	106.47100	26	12	14	26	9	17	$3.887 \cdot 10^{-5}$	$3.798 \cdot 10^{-5}$	2
137.20030	137.20021	48	8	40	47	3	45	$1.058 \cdot 10^{-5}$	$1.038 \cdot 10^{-5}$	2
140.53290	140.53182	56	12	44	55	9	47	$7.869 \cdot 10^{-5}$	$7.574 \cdot 10^{-5}$	4

Примеры результатов расчета центров линий и их интенсивностей^{*} для основного состояния молекулы SO₂ в сравнении со значениями БД JPL [25] при *T* = 300 K

Размерность интенсивности см⁻²·атм⁻¹; $\delta = |S - S_{JPL}| / S_{JPL} \cdot 100 \%$.

2. Коэффициент поглощения SO_2 в спектральном интервале 1–250 см $^{-1}$

Вычисление интенсивностей вращательных линий рассматриваемых состояний осуществлялось по формуле (3), при расчетах использовалась КВ статистическая сумма (Q_{vr}). Аналогично БД «НІТЕМР» (входящей в комплекс [20]) температурный множитель T_0/T не учитывался, что соответствует приведению результатов к единицам STP (стандартной температуре 273.16 К и давлению 1 атм). Формула для коэффициента поглощения по модели S/d следующая:

$$K(\Delta\nu) = \frac{\sum_{i} S_{i}}{\Delta\nu},\tag{10}$$

где суммирование идет по линиям, попадающим в спектральный интервал $\Delta \nu$, равный 10 см⁻¹, причем учитывались линии, превышающие минимальную интенсивность $S_{\min} = 10^{-10}$ см⁻² атм⁻¹.

Проведение расчета энергий КВ уровней для большого числа состояний позволило определить коэффициент поглощения SO_2 для более высоких температур (рисунок). Как и следовало ожидать, с повышением температуры возрастают интенсивности КВ линий, соответствующие «горячим» переходам высоковозбужденных состояний. Коэффициент поглощения на крыльях секвенции вращательных полос увеличивается, а в центре секвенции уменьшается, максимум при этом смещается в сторону больших значений волновых чисел (табл. 5).

Спектральная зависимость коэффициента поглощения молекулы SO $_2$ (STP) при различных температурах: кривая $1-300\,$ K; кривая $2-600\,$ K; кривая $3-900\,$ K; кривая $4-1200\,$ K

В настоящей работе также был проведен анализ вкладов каждой полосы в общий коэффициент поглощения в интервале рассматриваемых температур (табл. 6). Из данных табл. 6 следует, что при комнатной температуре наибольший вклад (90% при T = 300 K) в величину коэффициента поглощения (КП) дают вращательные переходы внутри основного состояния (000). Для больших температур величина интенсивностей линий переходов (000–000) уменьшается, но возрастают

Таблица 5

Значения коэффициента поглощения SO₂ (STP) в интервале 1–250 см⁻¹ при разных температурах, К

Центр,	Коэффициент поглощения, см $^{-1} \cdot$ атм $^{-1}$					Коэффициент поглощения, см $^{-1} \cdot$ атм $^{-1}$			
cm^{-1}	300	600	900	1200	см ⁻¹	300	600	900	1200
6	$7.70 \cdot 10^{-2}$	$2.27 \cdot 10^{-2}$	$1.03 \cdot 10^{-2}$	$5.4\cdot10^{-3}$	126	$4.38 \cdot 10^{-3}$	0.13	0.27	0.28
16	0.52	0.19	$9.46 \cdot 10^{-2}$	$5.21 \cdot 10^{-2}$	136	$1.31 \cdot 10^{-3}$	$6.54\cdot 10^{-2}$	0.16	0.19
26	0.94	0.46	0.26	0.16	146	$5.57\cdot 10^{-4}$	$3.09\cdot 10^{-2}$	$9.76 \cdot 10^{-2}$	0.12
36	1.16	0.66	0.42	0.27	156	$2.96\cdot 10^{-4}$	$1.27\cdot 10^{-2}$	$5.42 \cdot 10^{-2}$	$7.81 \cdot 10^{-2}$
46	1.23	0.77	0.52	0.35	166	$1.91 \cdot 10^{-4}$	$5.22\cdot 10^{-3}$	$3.03\cdot 10^{-2}$	$5.27\cdot 10^{-2}$
56	1.12	0.83	0.55	0.36	176	$1.24\cdot 10^{-4}$	$2.54\cdot 10^{-3}$	$1.61 \cdot 10^{-2}$	$3.36\cdot 10^{-2}$
66	0.88	0.92	0.66	0.44	186	$8.28\cdot 10^{-5}$	$1.50\cdot 10^{-3}$	$8.68 \cdot 10^{-3}$	$2.03\cdot 10^{-2}$
76	0.52	0.81	0.66	0.47	196	$5.55\cdot 10^{-5}$	$1.28\cdot 10^{-3}$	$4.05 \cdot 10^{-3}$	$7.73 \cdot 10^{-3}$
86	0.28	0.72	0.68	0.52	206	$3.44\cdot 10^{-5}$	$7.58\cdot 10^{-4}$	$2.44 \cdot 10^{-3}$	$3.49\cdot 10^{-3}$
96	0.12	0.54	0.61	0.50	216	$2.36\cdot 10^{-5}$	$2.15\cdot 10^{-3}$	$2.74 \cdot 10^{-3}$	$3.49\cdot 10^{-3}$
106	$4.71 \cdot 10^{-2}$	0.38	0.51	0.45	226	$1.38\cdot 10^{-5}$	$5.68\cdot 10^{-4}$	$2.16 \cdot 10^{-3}$	$3.11 \cdot 10^{-3}$
116	$1.53 \cdot 10^{-2}$	0.24	0.40	0.38	236	$9.33\cdot 10^{-6}$	$7.08\cdot 10^{-4}$	$2.61 \cdot 10^{-3}$	$3.54\cdot 10^{-3}$

Таблица б

Оценка вклада каждой из исследуемых вращательных полос в общий коэффициент поглощения

Полоса	Относительный вклад*, %									
$v_1v_2v_3 - v_1v_2v_3$	300 K	600 K	900 K	1200 K						
000-000	90.9	64.6	46.6	37.3						
001-001	0.13	2.36	4.64	5.73						
002-002	$1.99 \cdot 10^{-4}$	$9 \cdot 10^{-2}$	0.51	1.04						
003-003	$2.26 \cdot 10^{-7}$	$3.55 \cdot 10^{-3}$	$5.69\cdot 10^{-2}$	0.20						
010-010	7.7	19	20.8	20.5						
011-011	$1.13 \cdot 10^{-2}$	0.68	1.91	2.77						
020-020	0.66	5.42	8.24	9						
021-021	$9.82 \cdot 10^{-4}$	0.20	0.84	1.47						
030-030	$5.59 \cdot 10^{-2}$	1.56	3.40	4.36						
100-100	0.36	3.95	6.56	7.46						
101-101	$5.58 \cdot 10^{-4}$	0.15	0.67	1.22						
103-103	0.0	$1.65 \cdot 10^{-4}$	$4.81 \cdot 10^{-3}$	$2.11 \cdot 10^{-2}$						
110-110	$3.12 \cdot 10^{-2}$	1.14	2.7	3.61						
111-111	$4.68 \cdot 10^{-5}$	$3.46 \cdot 10^{-2}$	0.2	0.40						
120-120	$2.66 \cdot 10^{-3}$	0.29	0.91	1.33						
130-130	$2.34 \cdot 10^{-4}$	0.10	0.57	1.18						
131-131	$2.95 \cdot 10^{-7}$	$4.07 \cdot 10^{-3}$	$6.47\cdot 10^{-2}$	0.22						
200-200	$1.48 \cdot 10^{-3}$	0.21	0.72	1.10						
201-201	$2.27 \cdot 10^{-6}$	$7.64 \cdot 10^{-3}$	$7.23 \cdot 10^{-2}$	$1.84 \cdot 10^{-2}$						
210-210	$1.31 \cdot 10^{-4}$	$7.29 \cdot 10^{-2}$	0.42	0.88						
301-301	0.0	$4.57 \cdot 10^{-4}$	$9.62 \cdot 10^{-3}$	$3.59 \cdot 10^{-2}$						

 $\sum_{i=1}^{n} (S_i/S_T) \cdot 100\%, S_T$ — интегральная интенсивность при данной температуре T,

 $\sum_{i}^{n} S_{i}$ — суммарная интенсивность вращательных переходов внутри конкретной полосы; n — количество линий в полосе.

интенсивности, образованные вращательными переходами других состояний. В частности, вклад переходов полосы (010-010) в общий коэффициент поглощения повышается от 7.7% при температуре 300 К до 20.8% при 900 К. С другой стороны, вращательные переходы внутри состояний (103), (201) и (301) практически не дают вклада в КП в данном спектральном интервале (1-250 см⁻¹). Стоит заметить, что при расчетах не были учтены переходы внутри колебательного состояния (031), так как на данный момент в литературе отсутствуют константы гамильтониана для этого состояния. По величине колебательной энергии $(2901.342 \text{ см}^{-1})$ состояние (031) расположено между (210) (2807.181 см⁻¹) и (111) (3010.332 см⁻¹) состояниями (оценка величины колебательной энергии осуществлена путем расчета по (5), с набором параметров из работы [16]). Учитывая небольшой вклад вращательных переходов (210-210) и (111-111) в общий коэффициент поглощения (табл. 6), можно сделать вывод, что вклад переходов (031-031) будет также невелик.

Заключение

В настоящей работе подготовлены базы данных по параметрам колебательно-вращательных линий молекулы диоксида серы для различных температур (300-1200 К), которые являются входными данными при расчете спектральных характеристик газа методом прямого расчета (line by line) как для квазимонохроматических, так и широкополосных спектральных участков ТГц диапазона. Однако плотность КВ линий на единицу спектра диоксида серы очень велика, и даже расчеты с разрешением 10-4 см-1 не выявляют коэффициента поглощения отдельных линий. Наблюдающиеся максимумы расположены на постаменте коэффициента сплошного поглощения SO₂, что затрудняет применение метода дифференциального поглощения при определении концентрации сернистого газа. Таким образом, полученные значения ПСЛ могут быть полезны в обработке данных пассивных и активных способов зондирования газовых объемов.

Работа выполнена при финансовой поддержке ФЦП Минобрнауки РФ (соглашения № 14.132.21.1586, 14.B37.21.0074 и ГК № 14.514.11.4050).

Список литературы

- 1. Hansen H.J. // Proc. IEEE. 2007. 95. № . 8. P. 1691.
- 2. Войцеховский А.В., Несмелов С.Н., Кульчицкий Н.А. и др. // Нано- и микросистемная техника. 2012. № 2. С. 28.
- Sutton E.C., Jaminet P.A., Danchi W.C., Blake G.A. // Astrophys. J. Suppl. Ser. 2001. 77. P. 255.
- Schilke P., Benford D.J., Hunter T.R. et al. // Astrophys. J. Suppl. Ser. 2001.132. P. 281.
- 5. Войцеховская О.К., Макушкин Ю.С., Трифонова Н.Н., Черепанов В.Н. Программа расчета центров и интенсивностей колебательно-вращательных линий молекул типа асимметричного волчка. ГОСФАП, 1980. № . ПО04348. С. 33.
- 6. Kwan Y.Y. // J. Mol. Spectrosc. 1978. 71. P. 260.
- Helminger P.A., De Lucia F.C. // J. Mol. Spectrosc. 1985.
 111. P. 66.
 Alabasen F.A., Duubba S.F., Hunshin V.V., Badnes S.V. //
- Alekseev E.A., Dyubko S.F., Ilyushin V.V., Podnos S.V. // J. Mol. Spectrosc. 1996. 176. P. 316.
- Lovas F.J. // J. Phys. Chem. Reference Data. 1985. 14. P. 395.
- Coudert L., Maki A., Olson W.B. // J. Mol. Spectrosc. 1987. 124. P. 437.
- Lafferty W.J., Fraser G.T., Pine A.S. et al. // J. Mol. Spectrosc. 1992. 154. P. 51.
- Holder Müller S.P., Brünken S. // J. Mol. Spectrosc. 2005.
 232. P. 213.
- Flaud J.-M., Perrin A., Salah L.M. et al. // J. Mol. Spectrosc. 1993. 160. P. 272.
- Úlenikov O.N., Gromova O.V., Bekhtereva E.S. et al. // J. Quantum Spectrosc. & Radiative Transfer. 2011. 112. P. 486.
- Lafferty W.J., Flaud J.-M., Guelachvili G. // J. Mol. Spectrosc. 1998. 188. P. 106.
- Lafferty W.J., Pine A.S., Flaud J.-M., Camy-Peyret C. // J. Mol. Spectrosc. 1993. 157. P. 499.
- Ulenikov O.N., Bekhtereva E.S., Alanko S. et al. // J. Mol. Spectrosc. 2009. 257. P. 137.
- Lafferty W.J., Pine A.S., Hilpert G. et al. // J. Mol. Spectrosc. 1996. 176. P. 280.
- Flaud J.-M., Lafferty W.J. // J. Mol. Spectrosc. 1993. 161. P. 396.
- 20. http://www.cfa.harvard.edu/hitran.
- Guelachvili G., Naumenko O.V., Ulenikov O.N. // J. Mol. Spectrosc. 1987. 125. P. 128.
- 22. Patel D., Margolese D., Dyke T.R. //J. Chem. Phys. 1979. **70**. № 2740.
- 23. Герцбере Г. Колебательные и вращательные спектры многоатомных молекул. М., 1949.
- Picket H.M., Cohen E.A., Drouin B.J., Pearson J.C. Submillimeter, millimeter, and microwave spectral line catalog NASA/JPL. Online version: http://spec.jpl.nasa.gov/ftp/pub/catalog/doc/catdoc.pdf.
- 25. http://spec.jpl.nasa.gov/ftp/pub/catalog/catdir.html.

Absorption of sulfur dioxide in the terahertz range at temperatures of 300-1200 K

O. K. Voitsekhovskaya^{*a*}, **O. B. Egorov**^{*b*}

Department of Radiophysics, Faculty of Quantum Electronics and Photonics, Tomsk State University, Tomsk 634050, Russia. E-mail: ^a vok@elefot.tsu.ru, ^b egorovolegv@mail.ru.

We present the rotational absorption spectrum of the main isotope of sulfur dioxide $({}^{32}S^{16}O_2)$ corresponding to the terahertz range of electromagnetic waves: $1-250 \text{ cm}^{-1}$ (0.1–10 THz). The rotational transitions within all vibrational states for which the parameters of the Hamiltonian are known from the literature: (000–000), (010–010), (100–100), (001–001), (020–020), (110–110), (011–011), (030–030), (120–120), (200–200), (002–002), (130–130), (103–103), (301–301), (101–101), (021–021), (210–210), (111–111), (201–201),

(003-003), (131-131) were included into calculation process. As a result the absorption coefficient in a wide temperature range (300 -1200 K) with an estimate of contribution of each investigated bands to the total value was determined.

Keywords: rotational spectrum, sulfur dioxide, terahertz range, absorption coefficient. PACS: 33.20.Sn. Received 3 May 2012.

English version: Moscow University Physics Bulletin 2(2013).

Сведения об авторах

1. Войцеховская Ольга Кузьминична — докт. физ.-мат. наук, профессор; тел.: (3822) 41-27-72, e-mail: vok@elefot.tsu.ru. 2. Егоров Олег Викторович — студент; e-mail: egorovolegv@mail.ru.