Зависимость потенциала зарядки диэлектриков и изолированных проводников от угла падения пучка электронов

Е. Н. Евстафьева¹, С. В. Зайцев¹, Э. И. Рау^{1,2,*a*}, А. А. Татаринцев²

¹ Московский государственный университет имени М.В. Ломоносова, физический факультет,

кафедра физической электроники. Россия, 119991, Москва, Ленинские горы, д. 1, стр. 2.

²Институт проблем технологии микроэлектроники особочистых материалов РАН.

Россия, 142432, Московская обл., г. Черноголовка, ул. Акад. Осипьяна, д. 6.

E-mail: ^a rau@phys.msu.ru

Статья поступила 08.10.2013, подписана в печать 06.11.2013.

Теоретически и экспериментально изучены кардинальные характеристики зарядки диэлектрических и незаземленных металлических мишеней при облучении электронами средних энергий (0.5–10 кэВ) в зависимости от угла падения электронного пучка. Определены зависимости коэффициентов эмиссии электронов и второй критической энергии первичных (облучающих) электронов E_{2C} от угла падения α , когда мишени не заряжаются.

Ключевые слова: зарядка диэлектриков, вторичные электроны, потенциал поверхности, потенциал, угол падения электронного пучка, эмиссия электронов.

УДК: 53.03, 385.833. PACS: 73.21-b, 71.15.Qe, 07.78.+s.

В настоящей работе рассмотрена актуальная, практически важная, но мало освещенная в научных публикациях проблема зарядки диэлектриков и «свободно плавающих» металлических мишеней при их облучении электронами под различными углами падения последних.

Указанная ситуация возникает, в частности, при зарядке внешних поверхностей космических аппаратов (KA), где электронная составляющая космического облучения доминирует [1]. При этом поверхность облучается электронами различных энергий и во всем диапазоне углов, что требует более тщательного изучения возникающих особенностей зарядки фрагментов KA. Сходные вопросы возникают и при зарядке диэлектрических компонент в ядерных реакторах, плазменных источниках и т.п.

В опубликованных по данной проблеме работах нет единого решения вопроса о значении кроссоверной энергии $E_2 = E_L(\alpha)$ в зависимости от угла α падения электронов на мишень. Так, в публикациях [2–4] предлагаются выражения, связывающие значения второй критической энергии при нормальном к поверхности падении электронов $E_{2C(0)}$ ($\alpha = 0$) и при наклонном облучении под углом α :

$$E_{2C}(\alpha) = E_{2C}(0) \cos^{-k} \alpha, \qquad (1)$$

где показатель k берется равным либо 1, либо 2 или 5/3 [5, 6]. При этой энергии образец не должен бы заряжаться, так как выполняется условие $\sigma = \delta + \eta = 1$, где σ — полный коэффициент эмиссии электронов, δ и η — коэффициенты вторичных и отраженных электронов соответственно. Но наши экспериментальные результаты (впрочем, как и опубликованные в работах [3, 4, 6, 7]) не подтверждают указанную выше зависимость. Причиной этому является, на наш взгляд, то что в опубликованных расчетах не принимается во внимание сложная зависимость коэффициента отраженных электронов η от энергии E_0 и угла α , что приводит к значительным расхождениям с экспериментальными результатами. Необходимо также принимать во внимание кардинальные различия в природе механизма зарядки диэлектриков по сравнению с металлами.

Рассмотрим выражение для коэффициентов δ и η , характеризуемые параметрами E_0 и α . Учитывая, что при наклонном падении электронного пучка с той же энергией E_0 длина пробега электронов сохраняется равной $S = R_0$, но расстояние до поверхности уменьшается на величину $R_0 \cos \alpha$. Выразим общепринятое уравнение $\delta = f(E_0)$ [8, 9] в виде

$$\delta(\alpha) = \frac{BE_0\lambda}{E_i R \cos \alpha} \left[1 - \exp(-R \cos \alpha/\lambda)\right], \qquad (2)$$

где λ — средняя глубина выхода вторичных электронов (ВЭ), E_i — энергия генерации ВЭ, B — вероятность выхода ВЭ в вакуум.

Если взять, согласно [11], выражение для глубины пробега

$$R [HM] = \frac{76}{\rho} E_0^{1.67} [K \ni B], \qquad (3)$$

и, согласно [8, 9], $(BE_i^{-1}) = 5 \text{ кэB}^{-1}$, тогда (2) принимает вид (при обозначении $E_0 = \rho/76$)

$$\delta(\alpha, E_0) = \frac{0.066\lambda\rho}{E_0^{0.67}\cos\alpha} \left[1 - \exp(-A_0^{-1}E_0^{1.67}\cos\alpha/\lambda) \right].$$
(4)

Более простое выражение для $\delta(\alpha)$ приводится в работе [11]:

$$\delta(\alpha) = \delta(0) \exp\left[K(1 - \cos \alpha)\right], \tag{5}$$

но при этом параметр *K*, зависящий от материала мишени и энергии *E*₀, определяется только экспериментально или подгонкой.

Входящие в (2) и (4) значения средней глубины λ выхода ВЭ для металлов рассчитывались по следующей формуле [12]:

$$\lambda = \frac{2.1A}{Z^{0.6}\rho} [\text{HM}], \tag{6}$$

где A, Z, ρ — атомный вес, номер и плотность (г/см³) материала мишени.

Так, для исследованных нами металлов имеем следующие значения: $\lambda(Au) = 1.58$ нм, $\lambda(Cu) = 2$ нм, $\lambda(Al) = 4.5$ нм. Необходимо отметить, что приведенные значения λ близки по величине рассчитанным по (3) глубинам пробегов первичных электронов $R_0(E_m)$, при которых наблюдается максимальное значение δ_m : для Au $R_0(E_m = 0.6 \text{ кэB}) = 1.68$ нм, для Cu $R_0(E_m = 0.45 \text{ кэB}) = 2.25$ нм, для Al $R_0(E_m = 0.35 \text{ кэB}) = 4.9$ нм. Из приведенного анализа следует важный вывод о том, что $R_0(E_m) \approx \lambda$, а не $(2-3)\lambda$, как это утверждалось в предыдущих работах [8, 9].

Учтем теперь вклад коэффициента отраженных электронов (ОЭ) η в полный коэффициент эмиссии электронов σ . Коэффициент $\eta(E_0, \alpha)$ представим выражением [13]

$$\eta(E_0, \alpha) = \eta_0 \exp\left[\ln\left(\eta_0^{-1}\right) \left(1 - \cos\alpha\right)\right],\tag{7}$$

где $\eta_0 = C(Z)E_0^m$, $m = 0.138 - 0.921Z^{-1/2}$, $C(Z) = 0.191 - 0.224(\ln Z) + 0.129(\ln^2 Z) - 0.015(\ln^3 Z)$ [14].

Типичные графики зависимости $\sigma = \delta + \eta$ как функции E_0 и α для металлов, рассчитанные по (4) и (7), представлены на рис. 1, *а*. Для электростатического равновесия, при котором образец не заряжается, требуется, чтобы выполнялся закон сохранения зарядов и токов, т.е. выполнялось требование $\delta = 1 - \eta$, поэтому на основании соотношений (4) и (7) запишем

$$\frac{BA_0\lambda}{E_i E_0^{2/3} \cos \alpha} \left[1 - \exp\left(-A_0^{-1} E_0^{5/3} \cos \alpha / \lambda \right) \right] = \\ = 1 - \eta_0 \left[\exp\left(\ln\left(\eta_0^{-1}\right) \right) (1 - \cos \alpha) \right].$$
(8)

Рассчитанные по (8) зависимости второй критической энергии облучающих электронов для металлов $E_0(\alpha) = E_{2C}(\alpha)$ при $\sigma = 1$ приводятся на рис. 2, *а* совместно с экспериментальными результатами. Эксперименты проводились следующим образом. В каждом измерении с помощью тороидального спектрометра, инсталлированного в РЭМ [15], фиксировались спектры ВЭ, причем для каждого угла α подбиралась такая энергии $E_0 = E_{2C}$, чтобы образцы не заряжались, т. е. спектры ВЭ не сдвигались по энергетической оси. Чтобы перекрыть по возможности больший диапазон углов при измерениях использовались два спектрометра с углами входа электронов 25 и 45° относительно оптической оси микроскопа. Погрешность измерений составляла 10–15%.

Для металлических образцов, как и в работе [3], одновременно контролировался ток утечки на подложку $I_L = I_0 - I_{\sigma}$. Очевидно, что в равновесном состоянии (образец не заряжается) $\sigma = 1$, $I_L(\alpha) = 0$ при $E_0 = E_{2C}(\alpha)$. Этот метод дает более точные результаты (погрешность до 5%) и позволяет расширить диапазон угловых измерений $E_{2C}(\alpha)$ до 60–80°, но он не пригоден для массивных диэлектриков, где, как правило, $I_L = 0$ при всех E_0 и α .

Приведенные на рис. 2, a характеристики зависимости второй критической энергии $E_2(\sigma = 1)$ для металлов как функции угла α падения облучающих первичных электронов довольно хорошо аппроксимируются закономерностью

$$E_2(\alpha) = E_2(0) \cos^{-n} \alpha,$$
 (9)
где $n = 2.45(Z/A)^{1/2}$ [16].

Рис. 1. Зависимости полного коэффициента эмиссии электронов σ от энергии первичного пучка E_0 при углах облучения $\alpha = 0$ и 60° для металлов (a) и диэлектриков (δ)

Рис. 2. Характеристика значения второй критической энергии электронов E_{2C} как функции от угла облучения α для металлов (а) и диэлектриков (б)

Ввиду специфики зарядки диэлектриков из-за образования противоположно заряженных слоев в приповерхностной области уравнения (4) и (8) уже не соответствует данным экспериментов. В уравнениях (3) и (4) вместо показателя n = 5/3 для диэлектриков предложено брать n = 9/5 [4], а значение (BE_i^{-1}) в среднем в 2.5–3 раза больше, чем для металлов, вследствие уменьшения работы выхода (электронного сродства). С учетом этих факторов, уравнение (4) приобретает вид

$$\delta(\alpha, E_0) = \frac{0.165\lambda\rho}{E_0^{4/5}\cos\alpha} \left[1 - \exp\left(-A_0^{-1}E_0^{9/5}\cos\alpha/\lambda\right) \right].$$
(10)

Характеристики зависимости $\sigma = \delta + \eta$ для двух исследованных диэлектриков приведены на рис. 1, δ . Результаты показывают, что глубина пробега R_m , соответствующая энергии E_m , где коэффициент δ максимален, равна в первом приближении глубине выхода ВЭ λ (как и для металлов). Так для тефлона имеем $R_m = \lambda \approx 6$ нм, а для Al₂O₃-керамики $R_m = \lambda \approx 9$ нм. Из рис. 1 видно, что с увеличением угла α коэффициент эмиссии электронов σ возрастает, а равновесная точка $\sigma = 1$ прогрессивно сдвигается вправо по оси энергий E_0 , т.е. значение $E_0(\sigma = 1)$ увеличивается. Этот эффект иногда используется в практике сканирующей электронной микроскопии для просмотра диэлектрических мишеней при более высоком ускоряющем напряжении РЭМ.

Потенциал зарядки диэлектрической мишени V_S , определяемый положительными зарядами с поверхностной плотностью Q_+ в толщине λ и отрицательными зарядами с плотностью Q_- в слое толщиной R, определяется оценочным выражением [17]

$$V_{S} = \frac{\Delta Qh}{\varepsilon_{0}\varepsilon_{r}} - \frac{Q_{+}\lambda + Q_{-}R}{2\varepsilon_{0}\varepsilon_{r}},$$
(11)

где $\Delta Q = |Q_+ + Q_-|$, ε_0 и ε_r — диэлектрические постоянные вакуума и материала диэлектрика. Относительные размеры заряженных слоев в диэлектрике и глубин пробега электронов схематически показаны на рис. 3.

Значение $E_{2C}(\sigma = 1)$ определяет энергию первичных электронов, где $V_S = 0$, поэтому, исходя из (9), имеем для этой ситуации в общем случае

$$Q_{+}\lambda + Q_{-}R\cos\alpha = 0. \tag{12}$$

Подставляя сюда значение $R = f(E_0)$, получаем $Q_+\lambda = Q_-\left(\frac{76 \times E_0^{1.8}}{\rho}\right)\cos \alpha$, из чего окончательно следует, что для диэлектриков соблюдается следующая качественная закономерность:

Рис. 3. Схематическое представление пробегов электронов в диэлектрической среде в двухслойной модели приповерхностных зарядов

Но соотношение (13) недостаточно хорошо удовлетворяет экспериментальным данным, так как зависимость $E_{2C}(\alpha)$ не определяется универсальным законом $\cos^{-4/5} \alpha$, а является индивидуальным для каждого материала. Вероятной причиной этого рассогласования может быть то обстоятельство, что для материалов с малым ρ и большой глубиной выхода ВЭ λ , сравнимой с глубиной пробега R при $E_0 = E_m$, необходимо учитывать вклад в δ отраженных электронов, меняющих баланс между значениями δ и $(1 - \eta)$. Существенно изменяются эмиссионные характеристики и за счет различий в работах выхода для ВЭ (значение электронного сродства χ), энергиях E_i генерации ВЭ, а также соотношений λ/R при равновесном значении энергии E_{2C} . Наши экспериментальные результаты для всех диэлектриков достаточно хорошо удовлетворяют следующему эмпирическому выражению:

$$\frac{E_{2C}(\alpha)}{E_{2C}(\alpha=0)} = \exp\left[\left(\ln\left(\frac{R_{2C}}{2\lambda}\right)\right)(1-\cos\alpha)\right],\qquad(14)$$

где значение R_{2C} определяется (при нормальном падении электронов, т.е. $\alpha = 0$) по формуле (3) при равновесной энергии E_{2C} для заряженного диэлектрика. Как видно из рис. 2., б имеется хорошее согласие расчетных и экспериментальных данных для Al₂O₃-керамики (дегуссит) и полимерного диэлектрика CF₂ (тефлон), которые значительно различаются значением соотношения R_{2C}/λ. Значения параметров для всех расчетов взяты из опубликованных данных [3, 4, 8, 10, 12, 17] и из наших экспериментальных результатов и приведены в таблице. Следует отметить некоторое расхождение в значениях E_{2C} для тефлона между нашими (*E*_{2C} = 1.2 кэВ) и приведенными в работах [18, 19] $E_2 = 1.5$ кэВ и $E_{2C} = 2$ кэВ. Возможно, что различие в результатах обусловлено различными состояниями поверхности образцов и условиями экспериментов.

Мишень	1	2	3	4	5	6	7	8	9
	ho, г/см ³	δ_m/η_0	λ , нм	Ет, кэВ	<i>R</i> _{<i>m</i>} , нм	<i>E</i> _{2C} , кэВ	<i>R</i> _{2<i>C</i>} , нм	<i>E</i> ₂ , кэВ	<i>R</i> ₂ , нм
Au	19.3	1.5/0.45	$1.1 \div 1.45$	$0.5 \div 0.6$	1.68	6.3	85	6.3	85
Cu	8.9	1.25/0.3	$1.8 \div 2.4$	$0.45\div0.5$	2.25	2.1	30	2.1	30
Al_2O_3	3.9	5.0/0.2	$8 \div 15$	$0.65 \div 0.75$	9.0	1.5	38.3	8.0	628
CF_2	2.2	3.0/0.15	$5 \div 7.5$	$0.35 \div 0.4$	6.0	1.2	46.8	3.2	241

В таблице в первой колонке приведены значения удельной плотности ρ исследованных образцов, во второй — максимальные значения коэффициента вторичной эмиссии электронов δ_m , взятые при соответствующей энергии первичных электронов Е_m (четвертая колонка), и коэффициента отраженных электронов η_0 . В третьей колонке даются значения средней глубины λ выхода ВЭ, взятые из опубликованных усредненных данных или рассчитанных по формуле (6). В пятой колонке даны значения глубины пробега электронов R_m при энергии $E_0 = E_m$, в шестой — экспериментальные значения равновесной энергии Е_{2C}, в седьмой — соответствующие глубины пробегов $R_{2C} = f(E_{2C})$. Наконец, в восьмой колонке приводятся значения равновесной энергии E_2 металлов и незаряженных диэлектриков $(\sigma = 1)$ и в девятой — соответствующие глубины пробегов R_2 .

На рис. 4 приводятся для большей наглядности нормированные характеристики $E_{2C}(\alpha)/E_{2C}(0)$ для исследованных образцов. Из экспериментальных (обозначены метками) и расчетных (сплошные линии) результатов следует, что скорость нарастания равновесной энергии E_{2C} как функции угла α падения пучка электронов для металлов выше, чем для диэлектриков, причем тем больше, чем меньше плотность и атомный номер материала мишени. В случае диэлектриков функция $E_{2C}(\alpha)$ для оксидов меньше, чем для полимерных материалов.

Рис. 4. Нормированные значения (теоретические и экспериментальные) второй критической энергии облучающих электронов в зависимости от угла облучения для типичных металлов и диэлектриков

Из приведенных выше результатов можно сделать следующие выводы.

1. Зависимость E_{2C} от угла падения α выражена более сильно для металлов, чем для диэлектриков, причем тем сильней, чем меньше атомный номер материала мишени. Значения $E_{2C}(\alpha)$ определяется не только значением $\cos \alpha$, но и характеристическими параметрами материала диэлектрика: глубиной выхода ВЭ λ и глубиной пробега первичных электронов R, а тем самым от атомного номера Z и плотности ρ , а также плотности ловушек N_t . 2. Отношение R_{2C}/R_m для металлов много больше, чем для заряженных диэлектриков.

3. Максимальная глубина выхода ВЭ λ_m близка к глубине пробега R_m вопреки утверждениям, что $R_m = (3-5)\lambda$ [3, 8, 10].

Более вероятно, что это справедливо, если под λ подразумевать не глубину выхода ВЭ, а их среднюю длину пробега между упругими и неупругими столкновениями (рассеянием) в мишени.

4. Из анализа соотношения (14) следует ожидать, что при $R_{2C}/2\lambda = 1$ равновесная $E_{2C}(\lambda) = E_{2C}(0)$, т.е. не зависит от угла падения α . Более того, при $R_{2C}/2\lambda < 1$ энергия $E_{2C}(\lambda)$ не нарастает с увеличением α , а несколько уменьшается вследствие положительной зарядки образца.

5. Величина $R_{2C}(\alpha = 0)$ в несколько раз превосходит $R_m(\alpha = 0) \approx \lambda$ (более чем в два раза), а значение длины пробега $S_2 = R_2(\alpha)$ и соответственно глубина пробега $R_2/cos\alpha$ (см. рис. 3) прогрессивно увеличивается с ростом α . Такая закономерность объясняется тем обстоятельством, что плотность зарядов Q_- всегда меньше плотности Q_+ в соотношении $Q_+/Q_- = R_{2C}/\lambda$, а также различием в характере зависимостей коэффициентов δ и η от угла падения α и энергии E_0 .

6. Значение второй критической энергии E_2 для незаряженного диэлектрика (и соответственно глубина R_2) в разы больше, чем для заряженного образца $(E_{2C} \ u \ R_{2C})$.

Работа выполнена при финансовой поддержке Минобрнауки РФ.

Список литературы

- 1. Модель космоса / Под ред. М.И. Панасюка. М., 2007.
- 2. Joy D. S. // Scanning. 1989. 11. P. 1.
- Bauer H.E., Sieler H. // Scanning Electron Microsc. 1984. III. P. 1081.
- Reimer L., Golla U., Bongeler R. et al. // Optik. 1992. 92, № 1. S. 14.
- Seah M.P., Spenser S.J. // J. Electr. Spectrosc. Rel. Phenomena. 2000. 109. P. 291.
- Sugiyama N., Ikeda S., Ushikawa Y. // J. Electr. Microscopy. 1986. 35. P. 9.
- 7. Ishibashi Y., Kodama T., Oiwa H., Uchikawa H. // Scanning. 1992. 14, N 4. P. 219.
- 8. Seiler H. // J. Appl. Phys. 1983. 54. P. R1.
- 9. Joy D.S. // J. Microscopy. 1987. 147, N 1. P. 51.
- Lin Y., Joy D.S. // Surface and Interface Analysis. 2005.
 37. P. 895.
- 11. Yon Y.C.G, Thong J.T.L., Phang J.C.H. // J. Appl. Phys. 1998. 84. P. 4543.
- 12. Бронштейн И.М., Фрайман Б.С. Вторичная электронная эмиссия. М., 1969.
- Neubert G., Rogaschewski S. // Phys. Stat. Sol. (a). 1980.
 59. P. 35.
- Hunger H., Kuchler L. // Phys. Stat. Sol. (a). 1979. 56.
 P. 45.
- 15. Гостев А.В., Дицман С.А., Лукьянов Ф.А. и др. // Приборы и техн. эксперимента. 2010. **3**. С. 1.
- 16. Рау Э.И., Дицман С.А., Зайцев С.В. и др. // Изв. РАН. Сер. физ. 2013. **77**. Р. 1034.
- Rettig R., Kassens M., Reimer L. // Scanning. 1994. 16. P. 221.
- 18. Cazaux J. // J. Appl. Phys. 1999. 85. P. 1137.
- Palov A., Fuji H., Hiro S. // Japan. J. Appl. Phys. 1998.
 37. P. 6170.

Charging potential of dielectrics and insulated conductors as a function of the angle of incidence of an electron beam

E. N. Evstaf'eva 1 , S. I. Zaitsev 1 , E. I. Rau 1,2,a , A. A. Tatarintsev 2

¹Department of Physical Electronics, Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow 119991, Russia. ²Institute of Microelectronic Technology and Ultrahigh-Purity Materials, Russian Academy of Sciences, Chernogolovka, Moscow Region 142432, Russia. E-mail: ^a rau@phys.msu.ru.

The cardinal characteristics of the charging of dielectric and ungrounded metal targets within radiation by mediumenergy electrons (0.5-10 keV) have been studied theoretically and experimentally as a function of the angle of incidence of the electron beam. The coefficients of electron emissions and the second critical energy of primary (radiating) electrons, E_{2C} , have been determined as a function of the angle of incidence α when the targets are not being charged.

Keywords: charging of dielectrics, secondary electrons, surface potential, potential, angle of incidence of electron beam, electron emission. PACS: 73.21-b, 71.15.Qe, 07.78.+s. Received 10 October 2013.

English version: Moscow University Physics Bulletin 1(2014).

Сведения об авторах

- 1. Евстафьева Екатерина Николаевна канд. физ.-мат. наук, мл. науч. сотрудник; тел.: (495) 939-38-95, e-mail: ekaterina@phys.msu.ru. 2. Зайцев Сергей Владимирович канд. физ.-мат. наук, ст. науч. сотрудник; тел.: (495) 939-38-95, e-mail: zai336@mail.ru.
- 3. Рау Эдуард Иванович доктор физ.-мат. наук, профессор, вед. науч. сотрудник; тел.: (495) 939-38-95, e-mail: rau@phys.msu.ru.
- 4. Татаринцев Андрей Андреевич аспирант, ст. науч. сотрудник; тел.: (495) 939-38-95, e-mail: th-under@yandex.ru.