РАДИОФИЗИКА, ЭЛЕКТРОНИКА, АКУСТИКА

Методики решения системы нелинейных уравнений колебаний для определения гравитационной постоянной

В. М. Шахпаронов

Московский государственный университет имени М.В. Ломоносова, физический факультет, кафедра физики колебаний. Россия, 119991, Москва, Ленинские горы, д. 1, стр. 2. E-mail: shah@phys.msu.ru

Статья поступила 24.11.2013, подписана в печать 20.12.2013.

Рассмотрены методики решения системы нелинейных уравнений колебаний. Показана перспектива расширения функциональных возможностей имеющихся методик для определения гравитационной постоянной *G* при несферичной форме взаимодействующих тел. Проанализирована работа, описанная в ДАН СССР, т. 245, № 3 за 1979 г. Зависимость значений *G* от позиций притягивающих масс можно объяснить наличием парамагнитного эффекта. Его имитация точечной массой с определением ее величины и положения привела к получению стандартного значения *G*.

Ключевые слова: уравнение колебаний, гравитационная постоянная, крутильные весы, динамический метод, дестабилизирующие факторы, магнитное взаимодействие.

УДК: 534.1. PACS: 06.20.Gr, 04.80.Cc, 07.10.Pz, 02.60.Lj.

Введение

Определение гравитационной постоянной связано с трудоемкими измерениями и последующими сложными расчетами. Обычно считается, что заключительная стадия не имеет принципиального значения и не вносит вклада в общую погрешность. Большинство авторов сосредоточивает внимание на описании измерительной установки. Методикам расчета внимания не уделяется совсем. Однако следует отметить, что получение численного значения гравитационной постоянной динамическим методом состоит из различных этапов. Все массовые и геометрические характеристики взаимодействующих тел определяются с высокой точностью. Затем фиксируются периоды и амплитуды колебаний рабочего тела крутильных весов при различных позициях притягивающих масс на линии равновесия весов. Каждое положение притягивающих масс называется позицией с соответствующим номером. Самая ближняя к весам позиция считается первой. По мере увеличения расстояния растет номер позиции. Если притягивающие массы расположены симметрично по разные стороны от оси вращения рабочего тела крутильных весов, то такая схема измерений называется двухтактной. Если измерения проводятся с единственной притягивающей массой, то она становится однотактной, при этом почти в два раза уменьшается изменение периода колебаний. Форма взаимодействующих масс считается простой, если они выполнены в виде шаров или к ним применима модель материальной точки. Многие исследователи из технологических соображений неоправданно отказывались от шаровой формы взаимодействующих тел. Однако кажущаяся простота изготовления рабочего тела весов или притягивающих масс влечет за собой неоправданное усложнение расчетов.

Существует принципиальная сложность при полной реализации динамического метода. Не следует пренебрегать нелинейностью в уравнениях динамической системы. Попытка линеаризовать процесс измерений за счет неоправданного уменьшения амплитуды колебаний (до уровня 2 мрад) влечет за собой более яркое проявление дестабилизирующих факторов [1, 2]. Отказ от учета нелинейности при амплитудах порядка 20 мрад [3, 4] существенно увеличивает погрешность, что, конечно, также недопустимо. Проблемы при расчетах должны были возникнуть и у авторов [5].

Решение системы нелинейных уравнений колебаний основано на использовании двух фундаментальных методов — численного определения периода колебаний осциллятора интегрированием дифференциальных уравнений колебаний и аналитического вычисления периода, базирующегося на хорошо отработанной теории ангармонических колебаний [6]. Первый метод, требующий значительных затрат времени на расчет периода, стал перспективным в связи с развитием вычислительной техники. Второй метод имеет существенные преимущества. Он обеспечивает значительно более быстрые расчеты и не требует никакой предварительной информации о периоде колебаний. При решении конкретных задач, в частности связанных с расчетом гравитационной постоянной, на базе этих методов разрабатываются различные методики, учитывающие специфику поставленных задач.

Расчет гравитационной постоянной при динамическом методе измерений является сложным и трудоемким процессом. Он упрощается в частном случае, когда тела имеют шаровую форму [7, 8]. Создано математическое обеспечение, позволившее осуществлять быструю и точную обработку результатов двумя независимыми методиками. Возник вопрос: можно ли расширить функциональные возможности этих методик для вычисления результатов измерений при сложной форме взаимодействующих тел? В качестве одного из примеров был выбран более простой для такого анализа эксперимент [1]. Он позволил убедиться в перспективности такого пути, основанного на предварительном вычислении моментов притяжения реальных тел.

1. Методики расчета при сферической форме взаимодействующих тел

Момент сил притяжения K_{1g} в позиции 1 между шаровыми грузами массой m_1 , укрепленными на концах коромысла, и двумя притягивающими массами M

$$K_{1g} = 2GMm_1L_1(b_{1ag} + b_{1bg})\sin\varphi_1,$$

где

$$b_{1ag} = L_5 / \left(L_5^2 + L_1^2 - 2L_5L_1 \cos \varphi_1 \right)^{3/2},$$

$$b_{1bg} = -L_5 / \left(L_5^2 + L_1^2 + 2L_5L_1 \cos \varphi_1 \right)^{3/2},$$

 L_5 , L_1 — расстояния от оси вращения до центра масс шарового груза и притягивающего шара; M — разность масс притягивающего шара и вытесненного им воздуха; φ_1 — угол отклонения коромысла от положения равновесия в позиции 1.

Момент силы притяжения коромысла K_{1k} двумя массами ${\cal M}$

$$K_{1k} = GMm_2(b_{1ak} + b_{1bk})/(L_6 \sin \varphi_1),$$

где

$$b_{1ak} = (L_1 + L_6 \cos \varphi_1) / (L_6^2 + L_1^2 + 2L_6 L_1 \cos \varphi_1)^{1/2},$$

$$b_{1bk} = -(L_1 - L_6 \cos \varphi_1) / (L_6^2 + L_1^2 - 2L_6 L_1 \cos \varphi_1)^{1/2},$$

 m_2 — масса коромысла, L_6 — длина плеча коромысла. Момент K_{1k} получен интегрированием по длине коромысла. При этом предполагалось, что коромысло представляет собой материальный отрезок, т.е. совокупность материальных точек, и его диаметр пренебрежимо мал по сравнению с его длиной, а масса коромысла сохраняется. Отметим, что формула завышает истинное значение K_{1k} , что может привести к занижению расчетных значений G. Однако возникающая погрешность имеет малую величину, поскольку $K_{1k} \ll K_{1g}$, а диаметр коромысла пренебрежимо мал по сравнению с расстояниями между взаимодействующими массами.

В методике 1 методом Рунге-Кутты определяют периоды ангармонических колебаний весов интегрированием двух дифференциальных уравнений движения в позициях 1 и 3:

$$d^{2}\varphi_{1}/dt^{2} + \omega_{0}^{2}\varphi_{1} + (K_{1g} + K_{1k})/J = 0,$$

$$d^{2}\varphi_{3}/dt^{2} + \omega_{0}^{2}\varphi_{3} + (K_{3g} + K_{3k})/J = 0,$$

где J — момент инерции рабочего тела, $\omega_0 = 2\pi/T_0$ — частота колебаний при отсутствии притягивающих масс, φ_1 и φ_3 — углы отклонения весов от положения равновесия. Численные интегрирования проводят при двух значениях $G = G_0(1 \pm k)$, где G_0 — стандартное значение G. При этом вычисляют разность обратных квадратов периодов колебаний τ_1 и τ_3 . Гравитационную постоянную G определяют по формуле

$$G = G_0(1-k) + 2G_0k(\tau_{\exp} - \tau_3)/(\tau_1 - \tau_3).$$

Методика 2 предусматривает расчеты по аналитическим формулам [8]. Моменты сил притяжения раскладывают в ряд по степеням угла отклонения весов φ . Линейные члены моментов притяжения суммируют с основными линейными членами, нелинейные дают свой вклад с весом $3\varphi_0^2/4$ и $5\varphi_0^4/8$, где φ_0 — амплитуда колебаний. Момент притяжения

$$\begin{split} K_{1i} &= (b_{4ai} + b_{4bi})G\varphi - \\ &- [b_{4ai}(b_{5ai}/2 + 1/6) + b_{4bi}(b_{5bi}/2 + 1/6)]G\varphi^3 + \\ &+ [b_{4ai}(1/120 + b_{5ai}/8 + b_{6ai}/4) + \\ &+ b_{4bi}(1/120 + b_{5bi}/8 + b_{6bi}/4)]G\varphi^5, \end{split}$$

где

$$\begin{split} b_{3ai} &= -2L_5L_i/(L_i - L_5)^2, \qquad b_{3bi} = 2L_5L_i/(L_i + L_5)^2, \\ b_{4ai} &= 2Mm_1L_5L_i(L_i - L_5)^{-3}, \quad b_{4bi} = -2Mm_1L_5L_i(L_i + L_5)^{-3}, \\ b_{5ai} &= -1.5b_{3ai}, \qquad b_{5bi} = -1.5b_{3bi}, \\ b_{6ai} &= 1.875b_{3ai}^2, \qquad b_{6bi} = 1.875b_{3bi}^2. \end{split}$$

Гравитационная постоянная в этом случае выражается соотношением $G_{ij} = 4\pi^2 J (T_i^{-2} - T_i^{-2}) / (b_{1i} + b_{2i} - b_{1j} - b_{2j}),$

гле

$$\begin{split} b_{1i} &= b_{4ai} + b_{4bi} + 3e_{1i}\varphi_{0i}^2/4 + \varphi_{0i}^4 \left(3Ge_{1i}^2 \omega_0^{-2}/128 + 5e_{2i}/8 \right), \\ e_{1i} &= -b_{4ai} (b_{5ai}/2 + 1/6) - b_{4bi} (b_{5bi}/2 + 1/6), \\ e_{2i} &= b_{4ai} (1/120 + b_{5ai}/8 + b_{6ai}/4) + \\ &+ b_{4bi} (1/120 + b_{5bi}/8 + b_{6bi}/4), \end{split}$$

а член b_{2i} учитывает вклад всех участков коромысла, каждое плечо которого условно разделено на n равных отрезков массой $m_2/2n$. Отрезки коромысла рассматриваются как точечные массы. Они расположены на расстояниях $L_6(k-0.5)/n$ от оси вращения, k изменяется в пределах от 1 до n.

2. Методики расчета при несферической форме взаимодействующих тел

По мнению автора, сложность расчетов в зависимости от формы взаимодействующих тел возрастает в такой последовательности: шар, прямоугольный параллелепипед, цилиндр, цилиндр с осевым отверстием (кольцо). При этом следует принять во внимание, что изменение ориентации оси цилиндра приводит к принципиальному изменению программы для расчетов. В работах [3, 4] присутствуют все варианты форм взаимодействующих тел, за исключением шаровой, что создало проблему при проведении расчетов. Имевшиеся вычислительные средства тех лет вряд ли позволяли корректно решить возникшую задачу. Но еще более сложная ситуация возникла ранее [5], где система была проще, но зато средства вычислений практически вовсе отсутствовали. Притягивающие массы также имели цилиндрическую форму, что влекло за собой проведение сложных расчетов даже при шаровой форме грузов коромысла. Рассматриваемая задача не утратила актуальности и в наше время [9], где все взаимодействующие тела имеют цилиндрическую форму, рабочее тело весов выполнено в виде квадруполя, а притягивающие цилиндрические массы фиксируются в заданных позициях поворотом карусели на определенный угол. Измерения проводятся статическим и компенсационным методами. Значительные геометрические размеры притягивающих масс осложняют расчет моментов притяжения. При этом не только не упоминается методика решения, но и характеристики системы приведены с грубым округлением, а часть из них отсутствует.

При анализе [3, 4] рабочее тело весов и притягивающие тела расчленялись на малые ячейки. Возникло огромное количество комбинаций, вклады которых суммировались. С учетом вытесненного воздуха притягивающие тела диаметром 18.0012 см и высотой 19.9531 см имели M = 39756.452 г. Масса цилиндрических грузов коромысла длиной 1.63905 см и диаметром 1.6415 см с осевым отверстием диаметром 0.30015 см составляла 29.9198 г. Коромысло массой 24.93909 г имело круглые концы массой по 0.515 г, диаметр которых составлял 0.3 см, а длина 1.64065 см. Масса коромысла шириной 0.3906 см, высотой 0.4071 см и длиной плеч 16.92935 см составляла 23.9091 г. Центры масс грузов находились на расстоянии 17.748875 см от оси вращения.

Верхняя половина притягивающих цилиндрических тел при интегрировании расчленялась на 50, 150 и 45 частей по высоте, азимуту и радиусу соответственно. Полный момент притяжения удваивался, поскольку нижняя половина дает аналогичный момент. Грузы коромысла разделялись по высоте, азимуту и радиусу соответственно на 17, 24 и 8 частей. Каждая из восьми равных частей прямоугольного коромысла (ближняя и дальняя, верхняя и нижняя, левая и правая) делилась на 170, 2 и 2, а его круглые концы — на 17, 8 и 3 части. Рассчитывали отдельно моменты притяжения грузов, круглых концов коромысла и его основной центральной части прямоугольного сечения. Поскольку концы коромысла находятся внутри грузов, их моменты притяжения добавлены к моментам притяжения грузов. Момент притяжения коромысла составляет менее 10%. Его доля при различных позициях изменяется. Наибольший вклад коромысло вносит при максимально удаленной позиции. Общее количество комбинаций взаимодействующих ячеек составило 4.31 млрд. При частоте процессора 2 ГГц время расчета при одном значении угла отклонения φ составило 1 ч.

В табл. 1 при стандартном значении $G_0 = 6.673$ · $\cdot 10^{-11} \ \mathrm{H} \cdot \mathrm{m}^2 / \mathrm{kr}^2$ даны моменты притяжения рабочего тела весов K₁, грузов коромысла K₂ и коромысла K₃ в диапазоне φ от 0.1 до 18 мрад при размещении центров масс притягивающих цилиндров на расстояниях $L_1 = 28.99845$, $L_2 = 30.99860$, $L_3 = 33.99805$, $L_4 = 38.99795$ см. При уменьшении ячеек притягивающих масс в два раза моменты возрастают примерно на $4 \cdot 10^{-6}$, при этом время расчетов возрастает в 8 раз. Напротив, при уменьшении ячеек рабочего тела в два раза моменты притяжения уменьшаются на $8 \cdot 10^{-6}$, при этом также в 8 раз увеличивается время расчетов. При внесении поправок моменты притяжения снизятся примерно на 4 · 10⁻⁶. Определить моменты притяжения при одновременном уменьшении всех взаимодействующих ячеек в два раза практически невозможно. Однако это и не требуется, так как достигнутая погрешность, не превышающая уровня 1 · 10⁻⁵, вполне достаточна.

В правой части табл. 1 приведены также моменты притяжения модельного тела K_{1m} , модельных грузов коромысла K_{2m} и модельного коромысла K_{3m} . При малом угле отклонения 0.1 мрад момент K_{1m} строго совпадает с K_1 за счет увеличения расстояний от оси вращения весов до центра масс притягивающих шаровых тел. При $L_{1m} = 29.970037$, $L_{2m} = 31.810130$,

 $L_{3m} = 34.632626, L_{4m} = 39.453571$ см обеспечено их несущественное отклонение от моментов притяжения реального тела в большом диапазоне углов φ . Даже при $\varphi = 18$ мрад отклонение модельных значений от реальных не превышает величины $4 \cdot 10^{-5}$. Для более точного совпадения реальных и модельных моментов притяжения последние были умножены на член $1 + k_i \varphi^2$, где i — номер позиции, на которой установлены притягивающие массы. Эти коэффициенты составили ряд: $k_1 = 0.127435$, $k_2 = 0.101084$, $k_3 = 0.059105$, $k_4 = 0.025324$. Они были введены в программу, что снизило погрешность расчета G_{ij} до $1 \cdot 10^{-6}$.

При расчетах сохранено значение момента инерции J = 21483.64 г·см². Измерения проводились по двухтактной четырехпозиционной схеме. Рассматривалось шесть серий измерений. В периоды колебаний внесена поправка на перемещение каретки. Значения гравитационной постоянной G_{ii}, полученные с использованием модельной системы, оказались явно завышенными. Четко просматривалась закономерность уменьшения полученных значений G при удалении притягивающих тел от оси вращения. Она может быть обусловлена как погрешностью измерения расстояния между осью вращения и центрами притягивающих тел при их положении в ближней к весам позиции, так и наличием дополнительного магнитного взаимодействия с рабочим телом весов. При анализе первой гипотезы найдем, что указанное расстояние уменьшится на 359 мкм, а гравитационная постоянная, усредненная по трем комбинациям, G_{12} , G_{13} , G_{14} , получит существенно заниженное значение $6.6214\cdot 10^{-11}$ Н·м²/кг². Полученный результат неприемлем. Он убедительно свидетельствует о наличии другого более весомого дестабилизирующего фактора.

Теперь внесем компенсацию в результаты измерений, обусловленную только наличием магнитного взаимодействия. Если приписать полученный эффект коромыслу, то дополнительные массы будут расположены ближе к оси вращения весов на 8.9 см. Их вес q составит величину 0.00091 от массы притягивающего тела. В этом случае получим $G_{12} = 6.6728 \cdot 10^{-11}$, а $G_{13} = 6.6727 \cdot 10^{-11} \text{ H} \cdot \text{м}^2/\text{кг}^2$. Этот результат близок к стандартному. Коррекция периодов колебаний при положении притягивающих масс в третьей и четвертой позициях позволила уравнять все возможные комбинации G_{ii} .

Результаты расчетов G при исходных параметрах приведены в 8-м столбце табл. 2. После учета магнитного взаимодействия результаты приведены в 9-м столбце. В 10-м столбце даны окончательные результаты, полученные после коррекции периодов колебаний. Усредненные по всем сериям измерений данные приведены в табл. З. Периоды колебаний весов имели значения $T_1 = 2024.550$, $T_2 = 2101.916$, $T_3 = 2175.681$, $T_4 = 2239.594$ с. Полезную информацию дают также усредненные периоды, приведенные к единой амплитуде. В качестве такой естественно выбрать нулевую. Измерения при малой и тем более нулевой амплитуде провести невозможно. Такое преобразование осуществляет специальная программа. В итоге получим следующие усредненные значения периодов: $T_{10} = 2024.2651$, $T_{20} = 2101.7465, T_{30} = 2175.5966, T_{40} = 2239.5610$ c.

Моменты притяжения рабочего тела весов K_1 , его грузов K_2 и коромысла K_3 при разных
углах отклонения φ в реальной и модельной (K_{1m}, K_{2m}, K_{3m}) системах на четырех позициях
при $L_1=28.99845,L_2=30.99860,L_3=33.99805,L_4=38.99795$ см;
$L_{1} = 29.970037$, $L_{2} = 31.810130$, $L_{2} = 34.632626$, $L_{4} = 39.453571$ cm

φ , мрад	10 ¹³ <i>K</i> ₁ , Нм	10 ¹³ <i>K</i> ₂ , Нм	10 ¹⁴ <i>K</i> ₃ , Нм	10 ¹³ <i>K</i> _{1<i>m</i>} , Нм	10 ¹³ <i>К</i> _{2<i>m</i>} , Нм	10 ¹⁴ <i>K</i> _{3<i>m</i>} , Нм
0.1	4.919227	4.618053	3.011740	4.919225	4.627916	2.913093
0.1	3.424897	3.199991	2.249841	3.424895	3.205031	2.198642
0.1	2.144736	1.991620	1.531164	2.144734	1.993614	1.511198
0.1	1.134540	1.045114	0.894252	1.134538	1.045599	0.889394
1.0	49.19201	46.18028	30.11731	49.19199	46.27890	29.13084
1.0	34.24882	31.99899	22.49836	34.24880	32.05017	21.98637
1.0	21.44729	19.91613	15.31161	21.44727	19.93607	15.11195
1.0	11.34537	10.45112	8.942511	11.34535	10.45596	8.893921
3.0	147.5697	138.5348	90.34983	147.5695	138.8305	87.39045
3.0	102.7429	95.99354	67.49373	102.7428	96.14699	65.95778
3.0	64.34013	59.74672	45.93408	64.34004	59.80653	45.33510
3.0	34.03544	31.35272	26.82719	34.03539	31.36724	26.68142
6.0	295.0971	277.0285	180.6854	295.0956	277.6189	174.7669
6.0	205.4618	191.9640	134.9784	205.4610	192.2703	131.9066
6.0	128.6686	119.4823	91.86309	128.6682	119.6017	90.66515
6.0	68.06637	62.70117	53.65206	68.06623	62.73018	53.36052
9.0	442.5395	415.4403	270.9924	442.5349	416.3233	262.1154
9.0	308.1327	287.8882	202.4449	308.1301	288.3463	197.8375
9.0	192.9736	179.1954	137.7820	192.9726	179.3741	135.9851
9.0	102.0883	94.04110	80.47229	102.0880	94.08450	80.03498
12.0	589.8548	552.3729	361.2565	589.8439	554.9017	349.4219
12.0	410.7316	383.7431	269.8843	410.7255	384.3514	263.7414
12.0	257.2436	238.8750	183.6856	257.2413	239.1123	181.2899
12.0	136.0967	125.3682	107.2856	136.0961	125.4259	106.7025
15.0	737.0007	691.8544	451.4636	736.9796	693.3124	436.6725
15.0	513.2345	479.5058	337.2873	513.2228	480.2619	329.6096
15.0	321.4668	298.5099	229.5691	321.4625	298.8051	226.5746
15.0	170.0871	156.6782	134.0896	170.0861	156.7501	133.3607
18.0	883.9352	829.7752	541.5995	883.8988	831.5135	523.8533
18.0	615.6177	575.1532	404.6452	615.5977	576.0544	395.4330
18.0	385.6316	358.0889	275.4272	385.6244	358.4410	271.8341
18.0	204.0550	187.9668	160.8820	204.0535	188.0527	160.0074

Второй индекс обозначает приведение экспериментальных данных к нулевой амплитуде. После коррекции период T_{30} возрос на 2 мс, а период T_{40} — на 118 мс. Период T_{50} при отсутствии притягивающих масс составил 2318.855 с, что на 63 мс ниже экспериментального значения 2318.921 с. В итоге получено значение $6.6728(10) \cdot 10^{-11} \text{ H} \cdot \text{m}^2/\text{кr}^2$.

Авторы [3] движение крутильных весов в поле притягивающих масс описывали дифференциальным

уравнением

$J(d^{2}\varphi/dt^{2}) + H(d\varphi/dt) + (D + G \cdot \partial W/\partial \varphi)\varphi + \alpha \varphi^{2} + \beta \varphi^{3} = 0,$

в котором φ — угловое отклонение весов от положения равновесия; J — момент инерции; H — коэффициент вязкого трения; D — эквивалентная жесткость крутильного осциллятора, обусловленная жесткостью подвеса и стационарными градиентами гравитационного поля в лаборатории; G — гравитационная постоянная; $G \cdot (dW/d\varphi)$ — жесткость, обусловленная гравитацион-

Таблица 2

Nº	n _i	n _i	<i>T_i</i> , c	<i>T_i</i> , c	φ_{0i} , мрад	φ_{0i} , мрад	$10^{11}G_{ij}, \mathrm{H}\cdot\mathrm{m}^2/\mathrm{kg}^2$		кг ²
1	1	2	2024.574	2101.934	16.72	16.11	6.68798	6.67182	6.67182
1	1	3	2024.574	2175.668	16.72	15.63	6.68233	6.67052	6.67111
1	1	4	2024.574	2239.543	16.72	14.66	6.67663	6.66704	6.67170
1	2	3	2101.934	2175.668	16.11	15.63	6.67573	6.66900	6.67029
1	2	4	2101.934	2239.543	16.11	14.66	6.66923	6.66392	6.67162
1	3	4	2175.668	2239.543	15.63	14.66	6.66098	6.65748	6.67331
2	1	2	2024.710	2102.180	18.16	17.61	6.69751	6.68135	6.68135
2	1	3	2024.710	2175.785	18.16	16.90	6.68210	6.67030	6.67030
2	1	4	2024.710	2239.657	18.16	16.23	6.67631	6.66673	6.67206
2	2	3	2102.180	2175.785	17.61	16.90	6.66411	6.65739	6.65739
2	2	4	2102.180	2239.657	17.61	16.23	6.66249	6.65719	6.66599
2	3	4	2175.785	2239.657	16.90	16.23	6.66043	6.65693	6.67688
3	1	2	2024.438	2101.723	15.83	15.42	6.68168	6.66551	6.66551
3	1	3	2024.438	2175.590	15.83	15.07	6.68477	6.67295	6.67295
3	1	4	2024.438	2239.685	15.83	14.22	6.68435	6.67475	6.67475
3	2	3	2101.723	2175.590	15.42	15.07	6.68838	6.68163	6.68163
3	2	4	2101.723	2239.685	15.42	14.22	6.68610	6.68078	6.68078
3	3	4	2175.590	2239.685	15.07	14.22	6.68321	6.67969	6.67969
4	1	2	2024.333	2101.758	15.95	15.99	6.69359	6.67740	6.67740
4	1	3	2024.333	2175.681	15.95	15.07	6.69374	6.68190	6.68190
4	1	4	2024.333	2239.482	15.95	14.63	6.68283	6.67322	6.67855
4	2	3	2101.758	2175.681	15.99	15.07	6.69391	6.68716	6.68716
4	2	4	2101.758	2239.482	15.99	14.63	6.67580	6.67049	6.67929
4	3	4	2175.681	2239.482	15.07	14.63	6.65287	6.64937	6.66933
5	1	2	2024.763	2101.969	18.25	17.62	6.67571	6.65960	6.65960
5	1	3	2024.763	2175.681	18.25	16.81	6.67556	6.66378	6.66378
5	1	4	2024.763	2239.624	18.25	16.20	6.67364	6.66406	6.66406
5	2	3	2101.969	2175.681	17.62	16.81	6.67539	6.66866	6.66866
5	2	4	2101.969	2239.624	17.62	16.20	6.67229	6.66698	6.66698
5	3	4	2175.681	2239.624	16.81	16.20	6.66836	6.66486	6.66486
6	1	2	2024.479	2101.934	17.65	17.33	6.69742	6.68125	6.68125
6	1	3	2024.479	2175.682	17.65	16.77	6.68858	6.67677	6.67677
6	1	4	2024.479	2239.572	17.65	16.06	6.68177	6.67218	6.67564
6	2	3	2101.934	2175.682	17.33	16.77	6.67827	6.67153	6.67153
6	2	4	2101.934	2239.572	17.33	16.06	6.67156	6.66626	6.67198
6	3	4	2175.682	2239.572	16.77	16.06	6.66307	6.65957	6.67254

Гравитационная постоянная в шести сериях измерений

ным полем пробных масс; α и β — коэффициенты, описывающие нелинейность колебаний в неоднородном гравитационном поле. Колебания крутильных весов регистрировались двумя независимыми системами. Одна система измеряла период крутильных колебаний как интервал времени между прохождениями положения равновесия. Вторая система регистрации содержала сканирующее зеркало и позволяла измерять в циф-

ровом виде мгновенные значения угловой координаты колеблющегося коромысла с темпом один раз за период сканирования (20 с).

Из дискретной регистограммы колебаний $\varphi_n(t_n)$ методом аппроксимирующих сплайнов находились для каждого момента времени t_n значения сглаженной функции $\varphi_c(t_n)$, а также ее производных по времени. Подстановка этих значений в уравнение колебаний

								•
n _i	nj	<i>T_i</i> , c	<i>T_j</i> , c	<i>T_{i0}</i> , c	<i>T_{j0}</i> , c	$10^{11}G_{ij}, \operatorname{H·m}^2/\mathrm{kg}^2$		
1	2	2024.550	2101.916	2024.2651	2101.7465	6.6890	6.6728	_
1	3	2024.550	2175.681	2024.2651	2175.5966	6.6845	6.6727	_
1	4	2024.550	2239.594	2024.2651	2239.5610	6.6793	6.6697	6.6745
2	3	2101.916	2175.681	2101.7465	2175.5966	6.6793	6.6726	_
2	4	2101.916	2239.594	2101.7465	2239.5610	6.6729	6.6676	_
3	4	2175.681	2239.594	2175.5966	2239.5610	6.6648	6.6613	

Усредненные по шести сериям измерений периоды колебаний и значения G_{ii}^{**}

* 7-й столбец — результаты расчета G_{ij} без внесения поправок; 8-й столбец — после внесения поправки на магнитное взаимодействие, 9-й столбец — результат авторов работы [3].

приводит к системе условных алгебраических уравнений относительно коэффициентов J, $D + G \cdot \partial W / \partial \varphi$, α , β , которые находятся затем методом наименьших квадратов. Зная величину $\partial W / \partial \varphi$ для ближнего и дальнего положения притягивающих пробных масс (она находится шестикратным интегрированием по объемам пробных масс), находим значение G.

Классический вариант динамического метода, заключающийся в измерении периодов и амплитуд колебаний, трансформирован в [3] в прецизионные измерения углового отклонения φ , его первой и второй производной. Это обусловлено тем, что авторы не использовали теорию нелинейных колебаний вследствие отсутствия аналитической формулы момента притяжения. Дополнительные измерения φ и ее производных привели к усложнению систем индикации и понижению точности расчетов. Они не обнаружили основного дестабилизирующего фактора, обусловленного дополнительным магнитным взаимодействием. Предлагаемая нами методика, базирующаяся на приведенных в диссертации Е. А. Монахова периодах и амплитудах, позволяет выяснить истинную картину в данном эксперименте, определить значение гравитационной постоянной во всех комбинациях позиций и обнаружить дестабилизирующий фактор. Сравнение результатов расчета по методике [3] и нашей удалось осуществить только на величине G₁₄. У нас она на 719 ppm выше. Это является следствием многих причин. Третья гармоника момента притяжения не учитывалась. Авторы статьи пренебрегли нелинейными членами, существенно сократив число расчетов моментов притяжения. Жесткость, обусловленная гравитационным полем пробных масс, является функцией угла отклонения весов (рис. 1). Авторы [3] полагали, что она не изменяется, а ее незначительным уменьшением с ростом угла отклонения следует пренебречь. По нашим расчетам, нелинейность жесткости при амплитуде 18 мрад в первой позиции достигала 1800 ррт, во второй — 1500 ррт, в третьей — 1200 ррт, а в дальней четвертой — 800 ррт. Перемещающаяся вместе с притягивающими массами каретка увеличивала моменты притяжения в первой позиции на 6537 ррт, во второй на 8631 ррт, в третьей на 9316 ррт. Периоды и амплитуды колебаний были тщательно измерены, но в расчетах так и не использовались. Это привело к значительному усложнению расчетов, исключению части имеющихся данных, утере

Таблица З

Рис. 1. Отклонение от линейной зависимости момента притяжения тела крутильных весов $K(\varphi)$ в единицах ppm в позициях 1, 2, 3, 4

Рис. 2. Усредненные по всем экспериментам значения G_{12} , G_{13} , G_{14} , G_{23} , G_{24} , G_{34} без поправки (верхняя кривая) и с поправкой на магнитное взаимодействие

информации о наличии дестабилизирующего фактора, получению ложного результата. Полученное значение *G* не согласуется с проведенными измерениями. Реальная картина в эксперименте при усреднении по шести сериям измерений показана на рис. 2. Верхняя кривая показывает наличие парамагнитного эффекта. Обычно это приводит к полному краху эксперимента. В данном конкретном случае его удалось благополучно избежать, скомпенсировав дестабилизирующий фактор (нижняя кривая).

Заключение

Исследования показали, что частный случай, когда взаимодействующие тела имеют простейшую геометрическую форму, имеет практическое значение. Появилась реальная возможность точного расчета проведенных ранее экспериментов, где использовались притягивающие тела сложной формы, прежде всего цилиндрической. После проведения предварительных вычислений моментов притяжения осуществляется переход к упрощенной модельной системе, имеющей полное математическое и программное обеспечение. На расчеты моментов притяжения при наличии тел сложной формы затрачивается довольно солидное время. Моменты притяжения в модельной системе рассчитываются быстро и точно. Многие ранние эксперименты, в которых использовалась сложная форма взаимодействующих тел, теперь могут быть обработаны со значительно меньшими трудностями с получением более точных и достоверных результатов. При этом обнаруживаются характерные дестабилизирующие факторы, сопровождающие процесс измерения G. В данном конкретном случае удалось не только обнаружить их, но и внести коррекцию в результаты измерений. Имевшее место дополнительное магнитное взаимодействие имитируют небольшие дополнительные массы, расположенные вблизи поверхности притягивающих тел. При малой величине этих масс они оказывают заметное влияние. Дополнительные массы расположены ближе к оси весов, чем центры притягивающих тел. Эти массы завышают общий момент тем сильнее, чем ближе расположены притягивающие массы к весам. Поэтому они компенсируют уменьшение G_{ii} при удалении притягивающих тел от весов. Введение дополнительных масс привело к качественному улучшению полученных результатов рассмотренного эксперимента. Наличие дестабилизирующего фактора в виде дополнительного магнитного взаимодействия лишь несущественно увеличило реальную погрешность полученного результата. Такой благополучный результат обусловлен тем, что магнитное взаимодействие оказалось значительно слабее гравитационного, а их отношение в проведенных экспериментах сохранялось постоянным.

Автор выражает надежду, что настоящая работа вызовет интерес как у широкого круга читателей, так и у исследователей, проводящих в настоящее время измерения с усложненной формой взаимодействующих тел, и побудит их поделиться своим опытом при решении столь сложных задач. Было бы очень полезно привести примеры моментов притяжения при различных углах отклонения. Наиболее ценную информацию следует ожидать от авторов [9]. Она позволит дополнительно убедиться в достоверности всех представленных в настоящей работе расчетов. А пока такую полезную информацию мы уже получили от авторов работы [3], за что выражаем им большую благодарность.

Список литературы

- Tu L.C., Li Q., Wang Q.L. et al. // Phys. Rev. D. 2010. 82, N 2. P. 022001-36.
- Shao C.G., Tu L.C., Yang S.Q., Luo J. // Gravitation and Cosmology. 2011. 17, N 2. P. 147.
- 3. *Сагитов М.У., Милюков В.К., Монахов Е.А.* и др. // Доклады АН СССР. 1979. **245**, № 3. С. 567.
- Монахов Е.А. Дифференциальный метод измерения гравитационной постоянной, уточнение масс и средней плотности Земли, Луны и планет: Дисс. ... канд. физ.-мат. наук. М., 1979.
- Heyl P.R., Chrzanowski P. // Nat. Bur. Stand. (U.S.) J. of Res. 1942. 29. P. 1.
- 6. *Кузнецов А.И., Караеиоз О. В., Измайлов В.П. //* Измерительная техника. 2005. № 9. С. 11.
- 7. *Карагиоз О.В., Измайлов В.П.* // Измерительная техника. 1996. № 10. С. 3.
- Измайлов В.П., Карагиоз О.В., Шахпаронов В.М. // Измерительная техника. 2004. № 10. С. 7.
- Quinn T.J., Parks H.V., Speake C.C., Davis R.S. // Phys. Rev. Lett. 2013. 111, N 10. P. 101102-5.

Methods for solving the system of nonlinear oscillation equations that determine the gravitational constant

V. M. Shakhparonov

Department of Physics of Oscillations, Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow 119991, Russia.

E-mail: shah@phys.msu.ru.

Methods for solving a system of nonlinear oscillation equations are discussed. The perspective for functional enhancement of existing methods for determining the gravitational constant, G, at an aspheric configuration of interacting bodies was demonstrated. A paper that was presented in *DAN SSSR*, **245**, N 3 (1979) is analyzed. The dependence of the *G* value on the position of attracting masses may be explained by the paramagnetic effect. Its mass point imitation, which defines its value and position, resulted in the standard *G* value.

Keywords: oscillation equation, gravitational constant, torsion balance, dynamic method, destabilizing factors, magnetic properties.

PACS: 06.20.Gr, 04.80.Cc, 07.10.Pz, 02.60.Lj.

Received 24 November 2013.

English version: Moscow University Physics Bulletin 2(2014).

Сведения об авторе

Шахпаронов Владмимир Михайлович — вед. электроник; тел.: (495) 939-21-46, e-mail: shah@phys.msu.ru.