Диэлектрический отклик триглицинселената на частотах 0.07 Гц — 10 МГц в парафазе

А.В. Воробьев^{*a*}, Н.Д. Гаврилова, А.М. Лотонов^{*b*}

Московский государственный университет имени М.В. Ломоносова, физический факультет, кафедра физики полимеров и кристаллов. Россия, 119991, Москва, Ленинские горы, д. 1, стр. 2. E-mail: ^a vorobyev@polly.phys.msu.ru, ^b lotonov@polly.phys.msu.ru

Статья поступила 12.10.2014, подписана в печать 10.11.2014.

Методом диэлектрической спектроскопии экспериментально изучено поведение монокристалла триглицинселената в параэлектрической фазе (выше точки фазового перехода). Приводятся результаты исследования электрических свойств образца в диапазоне частот от 0.07 Гц до 10 МГц в интервале температур от 7 до 70°С. Отмечено наличие недебаевского типа спектра и линейной дисперсии, которые присутствуют также в сегнетоэлектрической фазе. Сделано предположение, что линейная дисперсия связана с многопозиционной протонной прыжковой проводимостью.

Ключевые слова: диэлектрическая дисперсия, диэлектрическая проницаемость, время релаксации, проводимость, триглицинселенат.

УДК: 537.226.4. PACS: 77.22.-d, 77.84.Jd, 77.80.Bh.

Введение

Настоящая статья посвящается исследованию электрических свойств монокристалла триглицинселената (ТГСел) $(NH_2CH_2COOH)_3H_2SeO_4$ в диапазоне частот 0.07 Гц - 10 МГц. Монокристалл ТГСел принадлежит к группе триглицинсульфата (ТГС). Этот кристалл проявляет сегнетоэлектрические свойства и претерпевает фазовый переход второго рода [1, 2]. Температура фазового перехода $T_c = 22.5 \circ C$ [1]. Предыдущие работы по дисперсии ε^* изоморфов ТГС и других сегнетоэлектриков проводились в широком диапазоне частот мГц-МГц в основном вблизи точки Кюри [3] или при комнатной температуре. Кристаллическая решетка ТГСел является моноклинной. Выше температуры Кюри кристалл принадлежит к пространственной группе $P2_1/m$, ниже — к пространственной группе $P2_1$ [4]. ТГСел имеет сегнетоэлектрические свойства в направлении моноклинной оси b. Этот сегнетоэлектрический кристалл обладает водородными связями ОН · · · О и NH···O длиной 2.6-2.9 Å. Наличие водородных связей дает соответствующие вклады в диэлектрическую проницаемость, проводимость, диэлектрический модуль. Важная роль водородной связи в кристаллах группы ТГС отмечается в ряде работ по сегнетоэлектричеству [5], где высказывается предположение о роли ОН...О связей в качестве «спусковых крючков» фазового перехода. С динамикой протонов на водородных связях в исследуемых образцах авторы статьи связывают наблюдаемые аномалии электрических свойств. Было также отмечено, что температуры аномальных свойств воды оказались близкими к точкам аномалий экспериментальных зависимостей: диэлектрической проницаемости, проводимости, времени релаксации, степенных параметров и т. д. от температуры для исследуемых образцов (формиатов иттрия, гольмия, эрбия), у которых длины водородных связей близки к длине водородной связи воды (~ 2.76 Å).

В предыдущей статье [6] изучались электрические свойства монокристалла ТГСел в сегнетоэлектрической фазе. В настоящей работе монокристалл ТГСел изучался методом диэлектрической спектроскопии в параэлектрической фазе, т. е. выше температуры Кюри. Этот метод используется для исследования релаксационных свойств веществ. Было проведено сравнение данных, полученных для монокристалла ТГСел (по результатам двух работ), с ранее полученными результатами для монокристалла триглицинсульфата (ТГС), формиатов эрбия, иттрия и гольмия [7–11], чтобы определить общую закономерность поведения веществ с водородными связями.

Методика эксперимента

Измерения характеристик монокристалла ТГСел проводились на широкополосном диэлектрическом спектрометре BDS (Concept 40) фирмы Novocontrol. Установка состоит из импедансного анализатора, измерительной ячейки, системы термостатирования, системы автоматического сбора данных и сосуда Дьюара с системой испарения и подачи газообразного азота. Установка позволяет измерять комплексный импеданс Z*, комплексную диэлектрическую проницаемость $\varepsilon^* = \varepsilon' - i\varepsilon''$, где ε' — действительная часть, а ε'' — мнимая часть, проводимость σ , тангенс угла диэлектрических потерь tg $\delta = \varepsilon'' / \varepsilon'$, комплексный диэлектрический модуль $M^* = 1/\varepsilon^* = M' + iM''$, где M' - iM''действительная часть модуля, а M'' — мнимая часть модуля, и т. д. в диапазоне частот от 0.07 Гц до 20 МГц в температурном интервале от −160 до +400°С. С помощью системы термостатирования можно стабилизировать температуру с точностью 0.01°C. Образец монокристалла ТГСел (плоскопараллельная пластинка полярного среза площадью 18 мм² и толщиной 0.8 мм) в процессе эксперимента находился в парах азота и контакта с атмосферой не имел. В качестве электродов использовалось сусальное серебро. Измерения проводились на нагрев и охлаждение образца в интервале температур от +7 до +70°С (нагревание) и от 70 до 6°С (охлаждение) в диапазоне частот от 0.07 Гц до 10 МГц. На образец накладывалось переменное напряжение амплитудой 1 В.

Экспериментальные результаты

В настоящей работе приведены результаты исследования монокристалла ТГСел в параэлектрической фазе. На рис. 1 представлен график зависимостей ε' от температуры при измерении на нагрев и охлаждении на частоте 0.07 Гц. Максимум на кривых наблюдается при температуре 22.5°С. В параэлектрической фазе графики на нагрев и охлаждение показывают хорошее совпадение значений друг с другом, а в сегнетоэлектрической фазе наблюдается заметное расхождение в экспериментальных данных (температурный гистерезис). Это может быть связано с различием формирования и разрушения доменных образований при нагревании и охлаждении образца монокристалла ТГСел. Зависимости $1/\varepsilon'$ от температуры при частотах 0.07 Гц, 1.21 кГц и 1.01 МГц приведены на рис. 2, где наблюдаются линейные участки слева и справа от точки фазового перехода $T = 22.5 \,^{\circ}$ С, которые описываются законом Кюри-Вейсса ($\varepsilon' = C/(T - T_c)$), где C зависит от амплитуды электрического поля Е и его частоты f и других факторов. Для выше приведенных значений частот были вычислены значения С в сегнетоэлектрической и параэлектрической фазах: для f=0.07 Гц $C_1=1395\pm53$ К (сегнетоэлектрическая фаза), $C_2 = 4057 \pm 55~{
m K}$ (параэлектрическая фаза), для f = 1.21 кГц $C_1 = 943 \pm 51$ К, $C_2 = 3943 \pm 94$ К, для f = 1.01 МГц $C_1 = 457 \pm 31$ К, $C_2 = 3784 \pm 166$ К. Из полученных данных следует, что с ростом частоты f уменьшаются значения С1 и С2 и растет отношение C_2/C_1 .

Рис. 1. Зависимость ε' от температуры на частоте 0.07 Гц для монокристалла триглицинселената при различных температурах (режим нагрева и охлаждения)

Рис. 2. Зависимости $1/\varepsilon'$ от температуры для монокристалла триглицинселената при различных частотах (режим нагрева)

Рис. 3. Частотные зависимости ε' и ε'' для монокристалла триглицинселената при различных температурах (режим нагрева)

На рис. З показаны графики зависимостей ε'' и ε' от частоты при различных температурах. Светлые значки используются для обозначения зависимостей ε' от частоты, а темные символы применяются для обозначения зависимостей ε'' от частоты при тех же самых температурах. С повышением температуры пик мнимой части диэлектрической проницаемости смещается в сторону высоких частот, при этом амплитуда пика уменьшается. Этот процесс связан с хорошо известным из литературы явлением критического замедления в кристаллах ТГС и ТГСел [12-14]. Действительная часть ε^* с ростом температуры проявляет слабую зависимость от частоты во всем исследуемом интервале. На рис. 4 построен график зависимости логарифма времени релаксации $\ln \tau$ от обратной температуры 1/T при измерении на нагрев. Времена релаксации были получены с использованием функции Гавриляка-Негами [15]:

$$\varepsilon_*(\omega) = \varepsilon' - i\varepsilon'' = \\ = -i\left(\frac{\sigma_0}{\varepsilon_v\omega}\right)^N + \sum_{k=1}^3 \left[\frac{\Delta\varepsilon_k}{(1 + (i\omega\tau_k)^{\alpha_k})^{\beta_k}} + \varepsilon_{\infty k}\right]$$

Рис. 4. Зависимость времени релаксации для монокристалла триглицинселената от обратной температуры (режим нагрева)

где $\varepsilon_{\infty k}$ — диэлектрическая проницаемость при бесконечной частоте, τ_k — время релаксации и $\Delta \varepsilon_k$ глубина дисперсии k-го процесса, α_k и β_k — параметры k-го процесса, которые характеризуют отклонение процесса от дебаевского, для которого $\alpha_k = \beta_k = 1$. Параметр $0 \le \alpha_k \le 1$ характеризует ширину распределения времен релаксации, β_k — асимметричность релаксационной кривой, σ_0 — проводимость на нулевой частоте, ε_v — диэлектрическая проницаемость вакуума, $0 < N \le 1$. Параметры α_k , β_k , $\Delta \varepsilon_k$, τ_k , σ_0 определялись с использованием программы WinFit. Ошибки в определении этих величин не превышали 5 %.

На графике зависимости $\ln \tau$ от 1/T можно выделить линейный участок, который был аппроксимирован законом Аррениуса $\tau = \tau_0 \exp(\Delta U/kT)$, где k — постоянная Больцмана, ΔU — энергия активации и τ_0 — предэкспоненциальный множитель (подгоночные параметры). Из полученных данных определялись энергия активации и τ_0 для этих линейных участков в двух случаях (нагрев, охлаждение): $\Delta U = (0.69 \pm 0.01)$ эВ и $\tau_0 \approx 2.5 \cdot 10^{-18}$ с для интервала температур $32-68^{\circ}$ С (нагрев) и $\Delta U = (0.75 \pm 0.03)$ эВ и $\tau_0 \approx 2 \cdot 10^{-19}$ с

для интервала температур 56–28°С (охлаждение). Такие значения энергии активации обычно встречаются в сегнетоэлектрических кристаллах с водородными связями. В сегнетоэлектрической фазе монокристалла ТГСел наблюдались три релаксационных процесса [6]. Для этих процессов были определены энергии активации ΔU и предэкспоненциальные множители τ_0 также с использованием закона Аррениуса: $\Delta U_1 = (0.56 \pm 0.02)$ эВ, $\tau_0 \approx 5.7 \cdot 10^{-13}$ с (для интервала температур от -25 до +7°С), $\Delta U_2 = (0.98 \pm 0.05)$ эВ, $\tau_0 \approx 5.3 \cdot 10^{-23}$ с (для интервала температур от 3 до 20°С), $\Delta U_3 = (0.21 \pm 0.01)$ эВ, $\tau_0 \approx 1.5 \cdot 10^{-11}$ с (для интервала температур от -25 до +20°С).

Графики зависимостей параметра α от температуры для двух режимов (нагрев, охлаждение) изображены на рис. 5. На графике в режиме нагрева наблюдается излом для температур выше 44°С и с ростом температуры значения параметра α уменьшаются, а в режиме охлаждения наблюдается локальный минимум при 46°С и $\alpha_{\rm max} - \alpha_{\rm min} = \Delta \alpha$ больше для режима охлаждения по сравнению с режимом нагрева. Значения $\alpha_{\rm max}$ и $\alpha_{\rm min}$ взяты в параэлектрической фазе, в измеряемом температурном интервале. На рис. 6 приведены зависимости β от температуры в режиме нагрева и охлаж-

Рис. 5. Зависимость параметра *α* от температуры для монокристалла триглицинселената (режим нагрева и охлаждения)

Таблица 1

Данные особых точек воды и некоторых параметров диэлектрического отклика для триглицинселената и кристаллогидрата формиата гольмия

Вещество	T, °C					
	~ 19	~ 36	~ 50	~ 76		
вода Н ₂ О	аномалия сдвиговой вязкости	min. удельной теплоем- кости	min. изотермической сжимаемости	тах. скорости звука		
триглицинселенат	22.5 — сегнетоэлек- трический фазовый переход, тах. на графике зависимо- сти $\ln(\sigma'T)$ от $1/T$	«полочка» параметра α , локальный тах. пара- метра β , тіп. $\Delta \varepsilon''$	«полочка» параметра $lpha$	уменьшение параметра $lpha,$ рост величины $\Delta arepsilon''$		
кристаллогидрат формиата гольмия	локальный max. па- раметра α	max. $\Delta \varepsilon''$	тах. на графике зависимости $\ln(\sigma'T)$ от $1/T$ на частоте 0.1 Гц	локальный min. пара- метра α		

Рис. 6. Зависимость параметра β от температуры для монокристалла триглицинселената (режим нагрева и охлаждения)

дения. В режиме нагрева выше 44°C *β* изменяется хаотически, а в режиме охлаждения поведение β более упорядоченное. Можно предположить, что наблюдаемое поведение параметров α и β связано с температурными точками аномалий воды (~ 36°С — минимум удельной теплоемкости воды, ~ 50°С — минимум коэффициента изотермической сжимаемости) [16]. Это, возможно, имеет связь с наличием в образце монокристалла ТГ-Сел водородных связей. В табл. 1 приведены температуры особых точек воды Н2О и некоторых параметров диэлектрического отклика двух исследованных образцов (кристаллогидрата формиата гольмия и монокристалла ТГСел), содержащих водородные связи ОН...О длиной $2.6 \div 2.9$ Å (ОН···· О связь воды имеет длину ~ 2.76 Å). В пределах точности наших измерений видно, что параметры α (ширина спектра релаксации) и β (степень асимметрии) (параметры недебаевской релаксации) реагируют на изменения динамики носителей заряда так же, как ε' и ε'' на низких частотах. Авторы статьи допускают, что вблизи температур ~ 20, 37, 50, 76°С происходит перераспределение протонов по уровням в двухминимумном потенциале, и на это откликается сетка водородных связей и вслед за ней вся сложноорганизованная «решетка» кристалла или вещества.

На рис. 7 приведены зависимости M'' от частоты при различных температурах, указанных на графике. С повышением температуры пик M'' смещается в сторону высоких частот. Нормированные по частоте и амплитуде зависимости M''/M''_{max} от f/f_{max} для различных температур приведены на рис. 8. На этом же рисунке показана зависимость, описывающая дебаевскую релаксацию. Из полученных данных можно отметить, что пик на экспериментальных кривых более широкий при сравнении с дебаевским пиком (недебаевский тип релаксации). Это явление можно объяснить недебаевскими процессами релаксации и проводимости, которые активировались в исследуемом образце при изменении температуры и частоты.

Рис. 7. Частотные зависимости М" для монокристалла триглицинселената при различных температурах (режим нагрева)

Рис. 8. Нормированные по частоте и амплитуде зависимости M''(f) для монокристалла триглицинселената при различных температурах (режим нагрева)

Диаграммы Коула-Коула при различных температурах показаны на рис. 9. На графике можно отметить наличие релаксационной области и участок линейной дисперсии. Стоить сказать, что линейная дисперсия также наблюдалась в сегнетоэлектрической фазе монокристалла ТГСел, а также в ранее изученных нами образцах: формиатов редкоземельных элементов (гольмия, иттрия, эрбия), монокристалла триглицинсульфата [6–11].

На основе экспериментальных данных был построен график зависимости $\Delta \varepsilon'' = \varepsilon''(0.07 \ \Gamma \mu) - \varepsilon''(0.098 \ \Gamma \mu)$ от температуры в режиме нагрева (от 24 до 70°С), а также зависимость $\Delta \varepsilon'' = \varepsilon''(0.07 \ \Gamma \mu) - \varepsilon''(0.105 \ \Gamma \mu)$ от температуры в режиме охлаждения (от 70 до 24°С) (рис. 10). На этом графике сначала $\Delta \varepsilon''$ падает с ростом температуры (вблизи точки фазового перехода), достигая минимума при температуре T = 36°С (при нагреве) и 38°С (при

Рис. 9. Диаграммы Коула-Коула для монокристалла триглицинселената (зависимость $\varepsilon''(\varepsilon')$) при различных температурах (режим нагрева)

охлаждении), а затем значение $\Delta \varepsilon''$ растет, но с меньшей по модулю скоростью, чем была при падении (в области T_c). Высокие значения проводимости и ε'' в непосредственной близости от температуры фазового перехода в изоморфах ТГС обычно связывают с высокой подвижностью доменных границ [3], что предполагает

включение в процесс релаксации относительно тяжелых ионов амино- и глициновых групп [5].

На частотах ~ 0.1 Гц в конденсированных средах может возникнуть немарковская релаксация за счет повышенной вязкости для транспорта ряда ионов (H⁺, OH⁻, и др. кислородно-водородные группировки), а также из-за вовлечения в проводимость других носителей заряда, вклад которых суммируется (закон растянутой экспоненты Кольрауша-Вильсона) [17–20]. Явление линейной дисперсии и поведение $\Delta \varepsilon''(T)$ в исследуемых образцах, возможно, связаны с процессами немарковской релаксации (эффект памяти), которые наиболее ярко проявляются на частотах ниже ~ 1 кГц.

Рис. 11. Зависимость проводимости от частоты для монокристалла триглицинселената при различных температурах (режим нагрева)

Зависимости действительной части проводимости σ' от частоты при различных температурах приведены на рис. 11. Графики зависимости $\ln \sigma'$ от частоты $\ln f$ были аппроксимированы тремя линейными участками для различных температур. Тангенсы углов наклона этих участков (s_1, s_2, s_3) представлены в табл. 2, s_1 был определен в интервале частот от 0.07 до 42 Гц, s_2 в интервале частот от 82 Гц до 35 кГц, s_3 — в интервале частот от 35 кГц до 5.44 МГц. Из приведенных выше данных видно, что с ростом температуры параметры s_1 и s_2 уменьшаются, а s_3 растет. Ввиду того что зависимость проводимости от частоты имеет вид $\sigma' = A\omega^s (\omega = 2\pi f)$, можно сказать, что проводимость носит прыжковый характер, который определяется протонами, находящимися в локализованных состояни-

Таблица 2

Значения s₁, s₂, s₃ при различных температурах

	T, °C						
S	~ 28	~ 32	~ 40	~ 48	$\sim~60$		
s_1	0.47 ± 0.01	0.45 ± 0.01	0.42 ± 0.01	0.399 ± 0.005	0.364 ± 0.005		
<i>s</i> ₂	1.42 ± 0.04	1.37 ± 0.04	1.21 ± 0.05	$1.06 \hspace{0.1 cm} \pm \hspace{0.1 cm} 0.05$	$0.86\ \pm 0.04$		
<i>s</i> ₃	0.92 ± 0.02	0.98 ± 0.03	1.12 ± 0.04	$1.27 \hspace{0.1 in} \pm 0.04$	$1.45\ \pm 0.04$		

ях [21]. Согласно работе [21], такие значения параметров $\Delta U \approx 0.5$ –0.9 эВ и $s \approx 0.8 \pm 0.2$ соответствуют протонной многопозиционной проводимости.

Заключение

При исследовании электрических свойств монокристалла ТГСел в интервале температур от 28 до 70°С (в парафазе) в диапазоне частот от 0.07 Гц до 10 МГц было установлено наличие одного релаксационного пика. Также в этой фазе наблюдаются недебаевский тип спектра и линейная дисперсия, которая наблюдалась и в сегнетоэлектрической фазе. Можно предположить, что линейная дисперсия связана с многопозиционной протонной прыжковой проводимостью. Температурное поведение параметров α и β предположительно связано с аномальными температурными точками воды.

Список литературы

- Matthias B., Miller G., Remeika I. // Phys. Rev. 1956. 104.
 P. 849.
- Hoshino S., Mitsui T., Iona F., Pepinsky R. // Phys. Rev. 1957. 107. P. 1255.
- 3. *Галиярова Н.М. //* Изв РАН. Сер. физич. 1997. **61**, № 2. С. 386.
- 4. Wood B., Holden A. // Acta Cryst. 1957. 10. P. 145.
- 5. Сонин А.С., Струков Б.А. Введение в сегнетоэлектричество. М., 1970.
- Воробьев А.В., Гаврилова Н.Д., Лотонов А.М. // Вестн. Моск. ун-та. Физ. Астрон. 2014. № 2. С. 73 (Vorobyev A.V., Gavrilova N.D., Lotonov A.M. // Moscow University Phys. Bull. 2014. 69, N 2. P. 175).

- 7. Гаврилова Н.Д., Лотонов А.М., Давыдова А.А. // Вестн. Моск. ун-та. Физ. Астрон. 2013. № 1. С. 45 (Gavrilova N.D., Lotonov A.M., Davydova A.A. // Moscow University Phys. Bull. 2013. **68**, N 1. P. 45).
- Гаврилова Н.Д., Давыдова А.А. // Вестн. Моск. ун-та. Физ. Астрон. 2013. № 2. С. 50 (Gavrilova N.D., Davydova А.А. // Moscow University Phys. Bull. 2013. 68, N 2. P. 143).
- Лотонов А.М., Новик В.К., Гаврилова Н.Д. // Вестн. Моск. ун-та. Физ. Астрон. 2006. № 5. С. 27.
- Новик В.К., Гаврилова Н.Д. // Вестн. Моск. ун-та. Физ. Астрон. 2011. № 3. С. 52 (Gavrilova N.D., Novk V.K. // Moscow University Phys. Bull. 2013. 66, N 3. P. 260).
- 11. *Новик В.К., Лотонов А.М., Гаврилова Н.Д. //* Физ. тверд. тела. 2009. **51**. № 7. С. 1338.
- Unruh H.-G., Wahl H.-J. // Phys. Status Solidi (a). 1972.
 P. 119.
- 13. Luther G. // Phys. Status Solidi (a).1973. 20. P. 227.
- 14. Luther G. // Phys. Status Solidi (a).1973. 20. P. K25.
- 15. Havriliak S., Negami S. // Polymer. 1967. 8. P. 161.
- 16. Александров А.А, Григорьев Б.А. Таблицы теплофизических свойств воды и водяного пара. М., 1999.
- 17. *Гриднев С.А.* // Соросовский образовательный журн. 1998. № 8. С. 95.
- Черноуцан Е.И. // Соросовский образовательный журн. 2001. 7. № 3 С. 103.
- Шильнков А.В., Галиярова Н.М., Горин С.В. и др. // Изв. РАН. Сер. физ. 1992. 56, № 10. С. 157.
- 20. Галиярова Н.М. // Изв РАН. Сер. физ. 2004. **68**. № 7. С. 985.
- 21. Брыксин В.В., Дьяконов М.Н., Муждаба В.М., Ханин С.Д. // ФТТ. 1981. **23**. Р. 1516.

The dielectric response of triglycine selenate at frequencies of 0.07 Hz-10 MHz in paraphase

A. V. Vorobyev^a, N. D. Gavrilova, A. M. Lotonov^b

Department of Physics of Polymers and Crystals, Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow 119991, Russia.

E-mail: ^a vorobyev@polly.phys.msu.ru, ^b lotonov@polly.phys.msu.ru.

The behavior of a triglycine selenate single crystal in the paraelectric phase, i.e., at temperatures above the phase-transition point, was studied using dielectric spectroscopy. The results of studying the electric properties of a specimen in a frequency range of 0.07 Hz-10 MHz and a temperature range of $7-70^{\circ}\text{C}$ are presented. A non-Debye type of spectrum and linear dispersion were found, which are also present in the ferroelectric phase. It is assumed that the linear dispersion is related to multisite proton-hopping conductivity.

Keywords: dielectric dispersion, dielectric permittivity, relaxation time, conductivity, triglycine selenate. PACS: 77.22.-d, 77.84.Jd, 77.80.Bh.

Received 12 October 2014.

English version: Moscow University Physics Bulletin 1(2015).

Сведения об авторах

- 1. Воробьев Андрей Владимирович аспирант; e-mail: vorobyev@polly.phys.msu.ru.
- 2. Гаврилова Надежда Дмитриевна докт. физ.- мат. наук, профессор, вед. науч. сотрудник; тел.: (495) 939-44-08, e-mail: novikmp@orc.ru.
- 3. Лотонов Александр Михайлович канд. физ.- мат. наук, ст. науч. сотрудник; тел.: (495) 939-44-08, e-mail: lotonov@polly.phys.msu.ru.