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Abstract—A mathematical model for describing the temperature distribution in the near-surface layer at the
water–air interface is proposed. The model is composed based on the theory of contrast structures. Using
numerical calculations, the temperature distribution in a 10-cm wide near-boundary layer has been obtained.
The calculation results coincide well with the experimental data.
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INTRODUCTION
A layer with a thickness on the order of several cen-

timeters near a boundary plays a special part in study-
ing the temperature distribution at the water–air inter-
face. Figure 1 presents the plot of the temperature
variation in the near-surface layer on the order of
10 cm at the water–air interface according to mea-
surements in laboratory conditions [1]. In the plot one
can clearly see the presence of several intervals in
which the temperature varies in different ways.
According to the performed measurements, mono-
tonic variation in the temperature from lower to larger
values, generally speaking, does not occur; on the
contrary, near the surface, regions with an inverse
temperature distribution are observed. The clear dis-
tinction between intervals with different behaviors of
the temperature plot indicates the presence of stratifi-

cation according to the time of carrying out the exper-
iment both in the water medium and air. The aim of
this work is to develop a mathematical model that
allows one to describe the nonmonotonic temperature
variation in the transition layer at the water–air inter-
face.

The model is based on experimentally verified data
about the stepwise change in the heat-exchange coef-
ficient, both at the water–air interface and at bound-
aries of layers caused by the stratification of each of the
media. To describe sharp changes in the temperature
at the layer boundaries, we used the theory of contrast
structures. A contrast structure is a function whose
domain contains an interval with a sharp change in
values of this function. This region is called the inter-
nal transition layer. The theory of contrast structures is
often used for simulating phase transitions, in particu-
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Fig. 1. An experimental plot of the temperature variation in the near-surface water–air layer.
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lar, processes of combustion and other autowave pro-
cesses [2].

1. THEORETICAL MODEL
To describe the temperature distribution over a

segment of a straight line that is perpendicular to the
interface, we pose the following initial boundary value
problem for the heat-conductivity equation:

 (1)

Here, T is temperature in K,  is the coordinate along
the straight line that is perpendicular to the water–air
boundary (in meters),  is time in seconds (the dimen-
sional spatial and temporal variables are marked with
a tilde), c is the specific heat capacity of the medium
in J/(kg K) (for a gas, at a constant pressure), and ρ is
the medium density in kg/m3. The heat-exchange
coefficient in Ω/(m K) is denoted by K( ). As is seen
from the experimental plots (see Fig. 1), zones of the
inverse temperature distribution are located at a dis-
tance on the order of several centimeters from this
boundary; for this reason, problem (1) is solved on the
segment  ∈ [– , ] at  = 0.05 m during  seconds.
The function T0( ) specifies the initial temperature
distribution that is necessary for numerical calcula-
tions by the method of establishing a steady state. The
Neumann boundary conditions mean that the total
heat f low through the boundaries of the region is zero.

The time interval during which the measurements
are performed is long enough to establish a steady-
state temperature distribution and, at the same time,
short enough to treat the change in the environment as
insignificant and not capable of having an effect on
this distribution. Taking this condition of the experi-
ment into account, we considered the function (T, ,

) in the right-hand side of Eq. (1) in the process of
constructing the model as time-independent.

The heat exchange in different layers of a stratified
medium is affected by different factors. At a distance
of several millimeters from the water-air boundary, the
exchange is molecular; with an increase in the dis-
tance from the boundary, it becomes turbulent. The
heat-exchange coefficient that is due to molecular
interactions is lower by two orders of magnitude than
that via the turbulent interactions. As well, the turbu-
lent exchange in the air occurs more intensely than in
the water; therefore, the heat-exchange coefficient in
the air is larger by an order of magnitude than in the
water. It is also known from experimental data that
inside the transition layer a plane exists along which
the heat-exchange coefficient varies discontinuously
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by several times. This plane is accepted to be the
water–air interface. Therefore, four regions in which
the heat-exchange coefficient takes different values
exist:

 (2)

Here, 1 < m < 10,  and  are boundaries of the tran-
sition layer, and  is a point at the interface. The lines

 = , i = 0, 1, 2, are marked in Fig. 1.

Let us reduce problem (1) to the dimensionless
form. For the scales of measuring the length, tempera-
ture, and time, we take the corresponding quantities
that were mentioned in [3]. For the unit of length, we

use the length of capillary waves hσ =  ≈ 2.77 ×

10–3 m, where σ and ρw are the surface tension and
density of water, respectively, and g is the acceleration
of gravity. For the characteristic time, we select t* =

≈ 0.017 s, where vσ =  is the phase velocity of

capillary waves. The scale of the temperature variation
is chosen for reasons of convenience in the numerical

calculations. We take T* = 0.5 K. We denote u = ;

u0 = ; z = ; a = ; t = ; and t0 = .

Problem (1) written in dimensionless quantities has
the form

 (3)

Here, k(z) =  is the dimensionless coeffi-

cient of the heat conductivity.

According to data in [4], the quantity D in expres-
sion (2) for the heat-exchange coefficient should take
the value of 0.6 W/(m K); then, for the dimensionless
coefficient of heat conductivity in the region of molec-
ular heat exchange from water, we obtain k(z0 – 0) ×
3.1 × 10–4.
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2. CHOOSING THE INHOMOGENEITY 
IN THE RIGHT-HAND SIDE PROCEEDING 

FROM THE THEORY OF CONTRAST 
STRUCTURES

This model was developed to describing laboratory
experiments that are carried out during a time interval
that is sufficiently short to make the effects of such fac-
tors as solar radiation, intense evaporation, intermix-
ing, or waviness of the water surface on a considered
object negligible. The model is based on the assump-
tion that the entire water–air transition layer is an
active medium, i.e., a medium that is far from the state
of thermodynamic equilibrium [2]. The main property
of an active medium is the ability to remain in one of
the possible states that is determined by specified
external factors for a long period of time and to switch
from one such state to another state under the influ-
ence of an intense external action. The medium tem-
perature in the boundary water–air layer can have two
states under given external physical conditions: the
temperature in the water, uw, and the temperature in
the air, ua. The role of the external action that switches
the medium state from the temperature uw to the tem-
perature ua is played by the interface between the two
media. In Eq. (3), according to the calculations that
were presented in the previous section, there is a small
parameter at the highest derivative with respect to the
coordinate, i.e., the equation is singularly perturbed.
To construct a model that describes the stationary
transition layer, we draw on the investigations that
were performed in a cycle of works that were devoted
to studying singularly perturbed boundary problems
that admit solutions in the form of contrasting struc-
tures [5–9]. When modeling the temperature distribu-
tion at the water–air boundary, the solution with an
internal transition layer whose localization area does
not vary during the considered time interval is of inter-
est, i.e., in fact, this is the solution of the stationary
problem for a second-order differential equation

according to (3). In [9], the existence of a solution in
this form was shown for the boundary problem for an
ordinary differential equation of the second order in
the case where the inhomogeneity in its right-hand
side is a piecewise-continuous function. Relying on
the results of this work, we chose the function f(u, z) in
the right-hand side of Eq. (3) in the form

Here, ua and uw are the known values of the tempera-
ture in the air and water, respectively. In laboratory
conditions, these quantities are on the order of 300 K.
Small-magnitude (on the order of several Kelvin)
summands δA and δW are different from zero only on
intervals of nonmonotonic variation in temperature;
the intervals are clearly seen in the experimental plots.
In particular, the quantity δA is different from zero at
z2 < z < z4 (see Fig. 1); the quantity δW in the layer z3 <
z < z1. The piecewise-continuous summand in the
right-hand side of the heat-conductivity equation can
be interpreted as a heat source that provides the exis-
tence of a transition layer whose position does not vary
in time.

3. NUMERICAL CALCULATION

Problem (3) was solved numerically on the segment

z ∈ , where  = 0.05 m and hσ = 2.7 × 10–3 m.

On this segment, a uniform grid of N = 10 000 steps
was introduced. The solution involved a six-point
implicit scheme that is also called “the scheme with a
half-sum” [10]. The temporal iterations were executed
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Fig. 2. A plot of the temperature distribution in a 10-cm wide near-boundary layer at the water–air interface in the case where
the temperature of the water is lower than the temperature of air. The dots are the experimental measurements; the solid line is
the result of the numerical calculation according to the proposed model.
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with a step of τ = 0.001 up to completion. The initial
distribution was chosen in the form

4. THE RESULTS 
OF THE NUMERICAL EXPERIMENTS

Figure 2 presents two plots of the temperature dis-
tribution in a 10-cm wide transition layer near the
interface in the case where the air temperature is
higher than the temperature of the water. The dots
denote the results of experimental measurements [1];
the solid line denotes the result of the numerical solu-
tion of problem (3). The dimensionless heat-exchange
coefficient was chosen as a piecewise-continuous
function of the following form:
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Here, the designations zi = , i = 0, 1, 2, are intro-

duced. The parameters of the model are presented in
Table 1.

Figure 3 presents plots of the temperature distribu-
tion in the transition layer in the case where the air
temperature is lower than the temperature of the water.
Here, the following expression for the dimensionless
heat-exchange coefficient is used:

The parameters of the model are presented in
Table 2.

As is seen from the plots, the numerical calcula-
tions that were obtained based on the proposed model
coincide well with the experimental data.

CONCLUSIONS
In this work, a mathematical model that describes

the temperature distribution in the near-boundary
layer at the water–air interface was proposed. The
model was constructed using the theory of contrast
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Table 1. The parameters of the model in the case where the temperature of the water is lower than the temperature of the ai

ua(K) δA(K) uw(K) δW(K) (m) (m) (m) (m) (m)

300.4 –0.2 297.9 1.4 0 –0.003 0.004 –0.03 0.032
0z� 1z� 2z� 3z� 4z�

Table 2. The parameters of the model in the case where the temperature of the water is higher than the temperature of the air

ua(K) δA(K) uw(K) δW(K) (m) (m) (m) (m) (m)

299 –1.5 300.1 –3 –0.0145 –0.02 –0.005 –0.028 0.005
0z� 1z� 2z� 3z� 4z�

Fig. 3. The plot of the temperature distribution in a 10 cm wide near-boundary layer at the water–air interface in the case where
the temperature of the water is higher than the temperature of air. The dots are the experimental measurements; the solid line is
the result of the numerical calculation according to the proposed model.
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structures. Based on this theory, the model boundary
problem is formulated such that its solution has an
internal transition layer whose position does not vary
in time. Using this model makes it possible to deter-
mine the relationships between heat-exchange coeffi-
cients in different layers of a stratified medium, as well
as the width of each of the layers and the quantity of
heat that is released or absorbed in regions with an
inverse temperature distribution. One should also note
that this model can be modified. In particular, using
this model one can describe temperature distributions
that vary in time, e.g., daily or seasonal oscillations in
near-surface layers of basins.
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