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Abstract—As the scientific community accepts the modern global climate changes, statistical analysis of a
time series of hydrometeorological parameters becomes topical. A time series of air temperature was decom-
posed in this work; the decomposition allows one to distinguish regular, seasonal, and random components
and to assess their statistical significance and adequacy to observation results. On the basis of a linear-regres-
sion model, a statistically significant increase in the annual average air temperature in the region under study
was determined, both for the entire observation period and for separate months of the year.
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INTRODUCTION
Studies of global physical processes in the atmo-

sphere are based on data that are received from exper-
iments on the measurement of environmental param-
eters. Estimation of trends in hydrometeorological
parameters has become especially urgent in recent
years due to climate changes, which are mainly shown
in an increase in the global average air temperature [1].
However, climate changes are of a regional nature;
therefore, representative estimation of the trends on
the regional scale can be based exclusively on local
observation data or data from a network of weather
stations. The aim of this work is to ascertain and make
a statistical estimate of the trends in the air tempera-
ture that were found on the basis of long-term obser-
vation data in a certain region, viz., the southwest of
the Valdai Hills. Data from specially protected natural
reservations (natural reserves and national parks) pro-
vide unique information about changes in the natural
environment and climate [2–8].

1. A STATISTICAL ANALYSIS 
OF A TEMPERATURE TIME SERIES

A time series of the air temperature was statistically
analyzed on the basis of weather-station data. The air
temperature was recorded every 3 hours with following

averaging to daily average values and is expressed in
degrees Celsius (°C); the instrument error is 0.1°C.

Data from any weather station are an array of vari-
able values that are measured in a strictly constant
time period, i.e., they are a time (dynamic) series.
Therefore, the air-temperature time series is consid-
ered further as an ordered sequence, N, of daily aver-
age temperature values, X1, X1, … , XN at time points, t1,
t1, … , tN, where N is the number of series levels (days).

A statistical analysis of time series assumes that the
initial data includes determinate and random compo-
nents. The determinate component usually consists of
a trend that determines the main tendency of the time
series and some regular oscillations about the trend,
viz., cycles and periodic seasonal oscillations [9–11].
To represent a time series in the form of some compo-
sition of its components, these components are to be
sequentially distinguished, that is, an initial time series
is to be decomposed. A visual analysis of the data in
Fig. 1 shows that the temperature time series includes
regular (seasonal and trend) and irregular (random)
components.

Since the amplitude of seasonal oscillations did not
show a tendency toward an increase in the studied
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period (from 1971 to 2011), it is reasonable to con-
struct an additive model of the time series [11]:

 (1)
where St is the constant seasonal component, ut is the
trend that determines the main tendency of the time
series, and εt is the irregular component, t = 1, 2, … ,N,
where N is the number of series levels. The 30-year
average temperature value at the given time point t is
considered as its climate norm at each time point t [1].
Therefore, we assume the seasonal component, St, to
be constant during 40 years of temperature and precip-
itation observations, since it is impossible to reveal sig-
nificant variations in the seasonal time frames for this
period.

We propose to carry out the analysis of the dynam-
ics of the temperature time series using smoothing
with the simple moving average method and the fol-
lowing construction of a regression model of the time
series [12, 13]. The simple moving-average method
[12, 14] allows the transformation of an initial series of
temperatures or precipitation Xt, t = 1, … , N (1) into a
series of moving averages  of the studied parameter:

 (2)

where K is the smoothing interval equal to the seasonal
period, K = 365. The arithmetic average is calculated
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serially for K first values, then for K values beginning
from the second one, and so on. Thus, the smoothing
interval “slides” along the time series with a unit step
and the resulted average value, , relates to the mid-
dle of the chosen interval [12, 15]. The moving average
series is shorter than the initial series by a seasonal
period, K, since the first and last K/2 terms of the ini-
tial series are excluded. The smoothing procedure pro-
vides results that are more resistant to abnormal val-
ues.

After smoothing the initial temperature series, one
can pass to the classical seasonal decomposition of the
studied time series. Averaging the difference between
the levels of the initial and smoothed series over the
entire observation period, we find the seasonal com-
ponent [12]:

 (3)

where J is the number of the seasonal periods (years),
t = 1, 2, …, N, J = 41, and K = 365.

2. REGRESSION ANALYSIS OF THE MAIN 
TREND IN THE DEVELOPMENT 

OF THE TEMPERATURE TIME SERIES. 
ESTIMATION OF THE STATISTICAL 

SIGNIFICANCE AND ADEQUACY 
OF THE CONSTRUCTED REGRESSION 

MODEL

After substituting seasonal component St (3) from
initial time series (1), t = 1, 2, …, N, the linear regres-
sion equation can be derived, which characterizes the
time dependence of the series levels yt = Xt – St:

 (4)

where β0 and β1 are the parameters of the linear regres-
sion equation, εt is the random component, and t = 1,
2, …, N.

Let us note that if the decomposition of time series
(1) is successful and the linear model is adequate to
observation results, then the random parameter εt is
normally distributed (εt ~ N(0, σ2), and εt, t = 1, 2, …,
N values are noncorrelated). It should be also taken
into account that the construction of the linear-
regression model is reasonable only in the case of a
sufficiently strong correlation between the series lev-
els, yt = Xt – St, and the time, t, which is estimated by
the empirical Pearson’s linear-correlation coefficient
ru [12, 15, 16]:

 (5)
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Fig. 1. A plot of the time series of air temperature in °C
(1971–1975).
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where Qt = , Qy = ,

, , Qty = ,

The closer ru ∈ [–1; 1] is to unity, the more pro-
nounced the linear dependence of yt on t is. In prac-
tice, construction of regression model (4) is reason-
able at |ru| > 0.3.

To solve the main problems of the linear regression
analysis of the time series yt = Xt – St, it is necessary to
assess the parameters β0 and β1 in Eq. (4) and verify
their statistical significance and the adequacy of the
constructed regression model to the observation
results. Parameters  and , which are found by the
least-squares method (LSM) [11, 14–17], are usually
considered as assessments of the parameters of linear
regression (4), since LSM estimates are unbiased,
have a minimal variance in the class of unbiased linear
assessments, and coincide with assessments of the
maximum likelihood under the above-mentioned
properties of the random component εt. In this case,
the function y =  + t defines the empirical (sam-
ple) regression of the time series, which allows calcu-
lation of the regression values of the series levels :

 (6)
Linear-regression model (4) is considered insignif-

icant if β1 = 0, since there is no linear dependence of
the series levels yi on time t in Eq. (4) in this case.
Therefore, to analyze the significance of linear-regres-
sion model (4), it is necessary to verify the null
hypothesis H0 : β1 = 0 at the alternative H1 : β1 ≠ 0 at
the significance level α [17–20]. For this, the sample
test statistics, Fs, for verification of the null hypothesis
are defined:

 (7)

where S2 =  is the residual variance and

,  are the values of the series levels that

are calculated from regression equation (6), t = 1,
2, …, N If the hypothesis β1 = 0 is true, then the sam-
ple statistics Fs have the Fisher distribution [11]: Fs ~
F(1, N – 1). Therefore, the hypothesis H0 is accepted
at the specified significance level α, if Fs < F1 – α(1, N –
2), where F1 – α(1, N – 2) is the reciprocal Fisher dis-
tribution of the order (1 – α), and regression model
(4) is insignificant. If Fs > F1 – α(1, N – 2), the hypoth-
esis H0 : β1 = 0 is rejected, and the regression model is
considered statistically significant.
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Again, the null hypothesis,  : β1 = 0, is verified
at the alternative  : β1 ≠ 0 at the significance level
α'. The sample test statistics are considered:

 (8)

where  is the variance of the assessment , the
hypothesis  is accepted at the significance level α, if
|ts| < , where  is the reciprocal

Student’s distribution of the order  [11, 18]. In

the opposite case,  is rejected at the significance
level α', and the alternative  : β1 ≠ 0 is accepted. If
both the null hypothesis H0 and  are rejected after
the verification, then the linear-regression equation is
considered to be statistically significant in both
parameters.

The determination coefficient, R2, is an important
characteristic of the linear-regression model. It shows
the contribution of trend (6) in the variance, Dy, of the
initial process:

 (9)

since according to the main dispersion analysis iden-

tity .
Let Qe be the residual sum of squares

 (10)

If the regression model of the series is linear, as in

our case, then  = |r|, where r is the empirical
assessment of the empirical Pearson’s linear-correla-
tion coefficient (5).

To estimate the adequacy of the linear-regression
model, the residuals et, t = 1, 2, …, N, in Eq. (10)
should be analyzed. If model (6) is adequate, then Qe

(10) has the Pearson’s distribution: Qe ~ σ2  [17].
Since the number of observations, N, is quite large in
the time series of meteorological parameters, N = JK,
J = 41, K =365, then the residuals et, t = 1, 2, …, N are
distributed almost normally. Hence, to estimate the
adequacy of model (6), the hypothesis of a normal dis-
tribution of the residuals, et, is to be verified on the
basis of the Pearson’s test for goodness of fit [9, 11]. In
statistical packets, the results of verification of the
hypothesis of the normal distribution of the sample
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data that are under study are shown in a special plot,
viz., the so-called probability paper. This method is
based on the fact that the empirical distribution func-
tion, , which is constructed from the sample data,
converges to the theoretical distribution function,
F(x), of a random variable observed at N → ∞, –∞ <
x < ∞. The plot of the function F–1(F(x)), where F–1(⋅)
is a function that is inverse to F(⋅), is a straight line. If
the residuals, et, are normally distributed, N(0, σ2),
then the values of the function F–1( ), where 
is the sample distribution function of the residuals et,
are located near the straight line on the probability
paper. Let us assume that the sample data obey the
normal distribution law. If a function that is inverse to
the distribution function of a normal random variable
is selected as F–1(⋅), then the plot of F–1( ) is close
to a straight line.

3. DECOMPOSITION OF THE TEMPERATURE 
TIME SERIES. THE RESULTS 

OF THE CALCULATION EXPERIMENT

3.1. The Trend Component 
of the Temperature Time Series

Statistical analysis of the time series of air tempera-
ture was carried out in this work using the STATIS-
TICA software package. A fragment of the time series
of the air temperature is shown in Fig. 1a. Time series

ˆ( )F x

ˆ( )F x ˆ( )F x

ˆ( )F x

(1) of the air temperature for 1971–2011 was smoothed
using a simple moving-average method (2) with a
smoothing interval of 1 year (Fig. 2, blue curve). The
linear time dependence of the smoothed temperature
series levels  allowed the empirical Pearson’s cor-
relation coefficient ru (5) to be estimated as 0.52,
which indicates a linear correlation dependence of the
smoothed daily average air temperature, , on time.

Linear-regression equation (4), (6) was plotted
(Fig. 2, the straight line), where the levels of the
smoothed series, , are used as the yt values. The fol-
lowing estimates of the linear-regression model were
found from the regression analysis of the temperature
series: β0 = –0.272 and β1 = 0.000137 Verification of
the null hypothesis, H1: β1 = 0, of the insignificance of
the linear-regression model at the alternative, H1 :
β1 ≠ 0, at the significance level α = 0.01 showed a van-
ishing minimum significance level, p, during observa-
tion of . The value p = P(F(1, N – 1) > Fs) is called
the p level, where F(1, N – 1) is a random parameter
with the Fisher distribution and Fs is the sample Fisher
statistics. Since α > p, the H0 : β1 = 0 hypothesis should

be rejected. Verifying the null hypothesis,  : β1 = 0,
at the alternative,  : β1 ≠ 0, at the significance level
α' = 0.01 on the basis of sample test statistics, ts (8), we
find that the minimum significance level p also is close
to zero during observations of . Thus, the  : β1 =
0 hypothesis should be rejected and both parameters
of the linear regression should be considered signifi-
cant.

The determination coefficient,  = 0.27,
(9) shows the significant (>25%) contribution of trend
(6) in the variance, D , of the levels of the smoothed
series. Hence, linear-regression model (4) is statisti-
cally significant at a significance level lower than 0.01;
the conclusion can be drawn that a general tendency
toward an increase in the air temperature occurred for
this period.

To estimate the adequacy of the linear-regression
model that was constructed of the smoothed tempera-
ture series , residuals et, t = 1, 2, …, N (10) were esti-
mated. The verification of the hypothesis of the nor-
mal distribution of the residuals et with the use of the
Pearson’s test for goodness of fit (Fig. 3, left) shows
that the histogram of the residuals is close to the fre-
quency curve of the normal distribution. The close-
ness of the empirical distribution of the residuals, et, to
the theoretical normal distribution is also shown in the
probability paper (Fig. 3, right): the values of the
F‒1( ) function are near a straight line.
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Fig. 2. A moving average, , of the air-temperature time
series for 1971–2011 with a smoothing interval of 1 year,
linear regression plot (straight line), and 0.9-confidence
band of the regression equation (dashed lines).
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3.2. The Seasonal Component of the Temperature Series

The most important step of the decomposition of
the time series is distinguishing the seasonal compo-
nent St (3). The seasonal component of the air-tem-
perature series Xt (1) is shown in Fig. 4 (left). The cor-
responding part of the initial time series Xt for 1985 is
shown in Fig. 4 (right) for comparison. The zero point
at the horizontal axis corresponds to January 1, 1985.
The dispersion analysis of the seasonal component, St,

has shown that it contributes much more in the vari-
ance of the initial time series, Xt, than the linear trend

component: the determination coefficient  = 0.78

for the seasonal component to  = 0.27 for the linear
trend component. Thus, as is expected, the seasonal
component is the most significant component in the
air-temperature time series. In practice, the seasonal
component is variable; therefore, it contributes differ-

2
sR

2
uR

Fig. 3. A histogram of the residuals, et, of the moving averages, , of the temperature series (left). The closeness of the empirical
distribution of the residuals, et, of the temperature series to the theoretical normal distribution (right).
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ently to temperature time series for different years,
e.g.,  = 0.60 in 1985,  = 0.91 in 1993, and  =
0.73 in 2003. For the same reason, the Pearson’s cor-
relation coefficient ry is lower when constructing the
linear-regression model of temperature series yt = Xt –
St (4) without the constant seasonal component, St,
than the Pearson’s correlation coefficient, ru, of the
regression equation for the moving average series :
ry = 0.12 and ru = 0.52.

Despite the low value of the correlation coefficient,
ry, the linear-regression model of the series, yt = Xt –
St, is significant at the significance level α ≥ 10–16;
hence, a general tendency toward an increase in the
daily average air temperature for the studied period is
confirmed.

3.3. Analysis of the Linear Regression Model 
of the Air Temperature Time Series for Different Months

Another aim of this work is the study of the air-
temperature dynamics in different months of the year
separately. Let us consider 12 air temperature time
series, Xt1, Xt2, …, Xt12, where Xti, i = 1, …, 12, is the
temperature time series for the ith month that is found

from the initial series Xt, Xti = , where  is
the fragment of the series Xt, which includes the tem-
perature values of the ith month of the jth year. The
table shows the results of the regression analysis of the
temperature time series for different months of the
year.

The regression model of the smoothed series, Xti,
i = 1, … , 12, allows the following conclusion: the
linear-regression model is significant for the series

2
sR 2

sR 2
sR

ˆ
tX

=

=∑
41

1

j j
tij

X j
tiX

, i = 1, 4, 7, 8, 9, 10, i.e., for January, April, July,
August, September, and October. For these months,
the H0 : β1 = 0 hypothesis is rejected at the significance
level α = 0.01 and the linear Pearson’s correlation
coefficient exceeds 0.33, which indicates the begin-
ning of a tendency toward an increase in the air tem-
perature for 40 years in these months of the year. Ana-
lyzing the temperature time series, we can see the
strongest warming in January (see the table).

CONCLUSIONS

A time series of the daily average air temperature
has been decomposed using analytical smoothing with
the simple moving-average method; linear-regression
models of the smoothed time series for the time period
1971–2011 were constructed; the seasonal and irregu-
lar components were distinguished.

The linear trend of the temperature increase was
distinguished; its significance (at a level of no more
than 0.01) and adequacy to observation data were
ascertained. Dispersion analysis shows that the sea-
sonal component contributes much more to the vari-
ance of the initial time series than the linear-trend
component and is more significant in the air tempera-
ture time series. This linear trend of the temperature
series 0.50°C/10 years agrees with ROSHYDROMET
data (0.48°C/10 years, European part of Russia,
1976–2006).

The linear-regression models for the temperature
series were constructed for individual months. Their
significance and contributions in the variance of the
initial temperature time series were analyzed. A trend
toward an increase in the air temperature for 40 years
has been revealed for the 1st, 4th, 7th, 8th, 9th, and
10th months of the year.

ˆ
tiX

The significance of the linear trend of the temperature for different months

Temperature increase Model significance,
α < 0.01

Determination 
coefficient Correlation coefficient 10-year trend, °C

All months significant 0.27 0.52 0.5
January significant 0.15 0.39 1.13
February insignificant
March significant 0.04 0.21 0.36
April significant 0.17 0.41 0.67
May significant 0.02 0.16 0.27
June significant 0.05 0.22 0.34
July significant 0.23 0.48 0.74
August significant 0.28 0.53 0.69
September significant 0.11 0.33 0.51
October significant 0.11 0.33 0.54
November insignificant
December insignificant
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The analysis of the temperature time series and the
linear-regression model indicate a statistically signifi-
cant increase in the air temperature by 1.6°C for
40 years in the region at a measurement error of 0.1°C.
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