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Abstract—The problem of estimating the parameters of the model of a measurement experiment using the
results of measurements with an error is considered. The mathematical model of the measurement error is
formulated in terms of the theory of possibilities; the distribution of the possibilities on the set of error values
determines the order that indicates which error values are preferred (that more probably occur during mea-
surement) and which are less preferred. It is assumed that small error values are preferable to large ones. The
mathematical model of the experiment depends on unknown parameters. The problem is to specify the values
of these parameters by choosing their estimate for which the difference between the results of experiment and
the model prediction is the most possible; this estimate is called the estimate of maximum possibility. An
example of estimating the parameters of a Mössbauer spectrometric experiment is given.
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INTRODUCTION
In modern experimental investigations the values

of studied parameters, g, of objects or phenomena
cannot be measured directly; they are estimated from
the results of ξ measurements of quantities given by a
mathematical model as functions of g.

One example of such an experiment is measure-
ment of the electromagnetic radiation spectrum using
a spectrometer [1]. In this case the input signal, g, is
the electromagnetic radiation spectrum, g(⋅); the out-
put signal q = Ag of the spectrometer is formed accord-
ing to the relationship

 (1)

Here, aϑ(⋅,⋅) is the instrument function of the spec-
trometer; the meaning of this function is that if a
monochromatic f lux of gamma rays of unit intensity 
is supplied to the input of the spectrometer we obtain
the following spectrum at the output: , E ∈ [0,
∞). The instrument function may depend on the
unknown parameter ϑ ∈ Θ.

One of the common approaches to solving the
problem of measurement interpretation is solving the
Fredholm integral equation of the first kind (1) based
on the instrument function a(⋅, ⋅) that is defined with
given accuracy and measurements of the function q(⋅)

that is performed with the additive error ν; the error, ν,
in this case is assumed to be either bounded with
respect to the norm [2] or possess known stochastic
properties [3, 4]. It was demonstrated in [2, 5, 6], how-
ever, that such a problem may turn out to be ill-posed
in the Hadamard sense; in particular, it may turn out
to be unsolvable or have a non-unique solution, or its
solution (pseudo-solution [5] if the equation Ag = ξ is
unsolvable) may be unstable with respect to perturba-
tions of function q(⋅) or the mathematical measure-
ment models. Regularization methods have been pro-
posed for solving ill-posed problems; the basic idea of
these methods is to impose additional constraints on
the class of solutions in such a way that as a result the
solution to the regularized problem turns out to be
unique and tends to the exact solution if the measure-
ment error ν tends to zero [7–10]. In spite of the nota-
ble success in creating methods for solving such prob-
lems, the interest in them is still strong [11, 12].

In the theory of measurement–numerical systems,
unlike, regularization methods, the unknown param-
eters, g, are estimated from the requirement of maxi-
mum accuracy [13]. Formally, it is assumed in these
problems that the result, ξ, of the measurement exper-
iment is obtained according to the scheme

 (2)
where ξ is interpreted as the result of the registration of
the output signal, Ag, of measurement transformer, A,
that is distorted by noise, ν, if the signal, g, from the
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measured object is supplied to the input of this trans-
former. The most accurate estimate of either g or the
result Ug of the g transform by given operator U is of
interest. As a rule, the estimate tends to the exact value
of estimated parameters g (or Ug) if the measurement
error ν tends to zero. In example (1) the mathematical
model of the measurement transformer, A, is given by
the integral operator. If the parameters of the mathe-
matical model are known to take any value in some
domain, estimates that minimize the maximum error
are used [14, 15]. In this case, the estimates are calcu-
lated for maximally unfavorable conditions and, as a
rule, their errors are unacceptably large. The errors of
estimates can be reduced by taking additional infor-
mation on the measurement model into account.

In this study, a priori data on the measurement
model are formulated in the framework of the version
of the theory of possibilities that was developed in [16].
In this study, the measure of possibilities, P(⋅), is con-
structed on algebra, ^, of all subsets of the space of
elementary events, Ω, in such a way that for each A ∈
^ the value of P(A) determines the relative preference,
the chance that event A takes place: if P(A) > P(B),
event A occurs with higher probability than event B.
The following statements are meaningful in the theory
of possibilities: “A is more possible (less possible) than
B,” “A and B are equally possible,” therefore, mea-
sures of possibilities P(⋅) and P'(⋅) are equivalent if a
strictly monotonically increasing function γ(⋅) exists:
51 → 51 such that for any A ∈ ^ the following equal-
ity is satisfied: P(A) = γ(P'(A)). The fundamental idea
in this version of the theory of possibilities is the fuzzy
element ν of normalized space 5 which, by analogy
with a random element in probability theory, is given
by the distribution of possibilities πν(⋅): πν(x) = p0 is
the possibility of equality ν = x. If πν(x) = 0, equality
ν = x is impossible, if πν(x) = 1, equality ν = x is quite
possible, and if πν(x) > πν(y), equality ν = y is less pos-
sible than ν = x.

In this study, it is assumed that large measurement
errors are less possible than small ones. This statement
is formalized by defining the distribution πν(⋅) mono-
tonically decreasing with increasing error ν norm. The
estimate of the maximum possibility of parameters of
measurement model (2) in the simplest case is found
from the following considerations. Let  be some esti-
mate of the input signal, g, then  = ξ – A  is the mea-
surement error that explains the difference of mea-
surement result ξ from A , its possibility is πν(ξ – A ).
The estimate , which is chosen from the condition

= (ξ – A ), is called the estimate of the

maximum possibility. It is also assumed in this study
that model A of the measurement device depends on

g�
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g� g�
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the unknown parameter ϑ ∈ Θ, where Θ is the given
bounded set and a priori constraints on the values of
input signal g are imposed.

Below, we obtain the estimate ( , ) of the maxi-
mum possibility. We compare the estimate of the max-
imum possibility and the estimate that minimizes the
maximum error under the condition that the error ν in
(2) can take any value from a given bounded set. The
efficiency of the estimate of the maximum possibility
is demonstrated by solving the estimation problem for
a Mössbauer spectrum measured with a spectrometer
with an instrument function that depends on two sca-
lar parameters from known intervals.

1. A MODEL OF THE MEASUREMENT 
AND FORMULATION OF THE ESTIMATION 

PROBLEM FOR MODEL PARAMETERS

1.1. Reducing the Model of the Measurement 
of an + 2(X) Element to a Finite-Dimensional Model 

of Measurement

In practice, the result of measurement is usually a
finite set of numbers. Thus, in the example that was
considered in the Introduction, the spectrum q(⋅) in
(1) is a continuous function of radiation energy E ∈ [0,
∞) and its values at points E1, …, En are recorded in
the experiment. The result of the spectrum measure-
ment are the numbers ξ1, …, ξn, which are interpreted
as spectrum values distorted by the noise at the output
of the spectrometer for given energy values.

Let us write the result of the measurement ξi, i =
1, …, n as

 (3)

assuming that g(⋅) ∈ +2(X) is defined by its represen-
tative continuous on X, and aϑ(⋅, ⋅) ∈ +2(X × X) is
defined by its representative continuous on X × X.
Then, denoting  = (aϑ, i, g), where

(⋅, ⋅) is the scalar product in +2(X), we rewrite (3) as

 (4)

Here, the following notation is used: aϑ, i = aϑ(⋅) =
aϑ(xi, ⋅) ∈ +2(X) and aϑ, i, i = 1, …, n, depending on the
parameter ϑ, whose value is a priori unknown, while
the set Θ of its possible values is given.

Let us denote by +ϑ] ⊂ +2(X) the linear shell of
elements aϑ, i ∈ +2(X), i = 1, …, n, and by Pϑ the
orthogonal projector in +2(X) onto +ϑ. Then, (I – Pϑ)
is the orthogonal projector onto the orthogonal com-
plement +ϑ. Let us also denote by 5n the arithmetic
linear space whose elements are sets of n numbers

ϑ̂ ĝ
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(coordinates),  = (ξ1, …,ξn),  = (ν1, …,νn),  =
(f1, …, fn).

Proposition 1. For any ϑ ∈ Θ the result of measure-
ment (4) is independent of the component (I – Pϑ)g. The
value of the component Pϑg ∈ +ϑ at any point x ∈ X can

be defined as a linear combination Pϑg(x) = 

of values  of continuous functions aϑ, i(⋅), i = 1, …,
n. Coefficients f1, …, fn are the coordinates of vector  ∈
5n that are measured in the experiment according to the
linear scheme

 (5)

where  = (ξ1, …,ξn), ν = (ν1, …,νn), {Bϑ}ik = (aϑ, i, aϑ,

k), i, k = 1, …, n. The vector  whose coordinates are the
values of Pϑg(⋅) at points x1, …, xN ∈ X, is connected with
the vector  by the linear relationship

 (6)

where Uϑji = aϑ, i(xj), i = 1, …, n, j = 1, …, N.

Proof. Let Pϑ be the orthogonal projector in +2(X)
onto +ϑ. Then, coefficients f1, …, fn exist such that

 (7)

Since (aϑ, i, g) = (aϑ, i, Pϑg + (I – Pϑ)g) = (aϑ, i, Pϑg),
substituting the expression (aϑ, i, Pϑg) into (4) instead
of (aϑ, i, g) and taking (7) into account we obtain (5).
Substituting the values of x = x1, …, xN into (7)we
obtain (6).

The meaning of Proposition 1 is that in the frame-
work of the defined measurement models in the
absence of a priori knowledge of (I – Pϑ), only the
component Pϑg of element g can be estimated from
measurements (4), while the values of this component
at points x1, …, xN can be estimated from the finite-
dimensional measurement scheme (5), (6).

Let us assume that in (4) aϑ, i ∈ +2(X), i = 1, …, n
are linearly independent; then the dimensionality of
the linear shell +ϑ is equal to n. Let us define a priori
constraints on the coordinates (u1, …, uN) of vector 
in the form of linear inequalities

 (8)
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The solution to the system of inequalities (8) deter-
mines the set ^ that defines a priori constraints on
coordinates f1, …, fn of vector .

1.2. A Possibilistic Model of the Measurement Error
It was already mentioned in the Introduction that it

is natural to assume that in each measurement experi-
ment (3) small values of |νi| are more possible than
large ones. To formalize this proposition we assume
that ν1, …, νn are fuzzy elements of 51 with the given

possibility distribution (⋅): 51 → [0, 1]. The joint
possibility distribution of fuzzy elements ν1, …, νn is

determined by the formula (z1, …, zn) =

, which formally expresses the
independent character of the fuzzy elements ν1, …, νn
[16].

If  = 0 for |z| > εi, the absolute value of the
measurement error νi in (4) cannot exceed εi, i = 1, …,
n. For errors that are bounded with respect to the
absolute value, small values of |νi| are more possible

than large ones if the possibility distribution (⋅) is
given by the relationship

 (9)

where π0(⋅) strictly monotonically decreases on the
interval [0, 1], π(0) = 1.

Since the coordinates of the vector  are indepen-
dent, their joint possibility distribution with account
for (9) is given by the formula  =

 = .

1.3. The Maximum Possibility Estimate

Let some estimate , , …,  of the values of
parameter ϑ and coefficients f1, …, fn in (5) be chosen;
then assuming that , , …,  is the true value of
these parameters, we obtain that measurement (5) is

made with the error νi = . The pos-

sibility of such error values is determined by the value

of function (⋅) at point  = . According to
the possibilistic measurement model error (9), this
value is

 (10)
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It is natural to choose the values of the estimated
parameters ϑ ∈ Θ and  ∈ ^ in such a way that possi-
bility (10) of the corresponding measurement error

=  is at its maximum.

Definition. Estimates ϑ*, , …,  of the maxi-
mum possibility are the values of the variables ϑ, f1, …,
fn that provide the maximum of functional (10) for ϑ ∈
Θ and f1, …, fn satisfying (8).

Note that if ϑ*,  are the estimates of the maxi-
mum reliability of parameters ϑ, , then

 (11)

have the same possibility as ϑ*,  and thus are esti-
mates of the maximum possibility of the values of the
sought vector .

Proposition 2. Let aϑ, i(⋅): X → 51, i = 1, …, n be
continuous functions in measurement scheme (4) whose
square is integrable on X and νi, i = 1, …, n be indepen-
dent fuzzy elements with possibility distribution (9).
Then, the estimates of the maximum possibility of the
values of parameter ϑ and orthogonal projection Pϑg(⋅) of
function g(⋅) on linear shell +ϑ of functions aϑ, i(⋅): X →
51, i = 1, …, n at points {x1, …, xN} ∈ X under condition

(8) are  = ϑ*, Pϑ (xj) =  = ,

j = 1, …, N, where ϑ*, , i = 1, …, n is the solution to
the problem

 (12)

If the minimum of the functional in (12) is larger than
unity, the mathematical measurement model (4) does not
conform with its result.

Proof. The problem of the maximization of the
possibility (10) under conditions (8) is equivalent to
problem (12) due to the monotonous character of
function π0(⋅). If the value of the minimum in (12) is
larger than unity, the possibility of such an estimate is
equal to zero, which means that the model and the
result of measurement (4) are inconsistent.

If problem (12) has more than one unique solution,
each of them is the estimate of maximum possibility of

parameters (ϑ, ) and each of the values  = Uϑ*
is the sought estimate of the maximum possibility of
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ϑ̂ ĝ * ( )jP g xϑ *,

1

* ( )
n

k k j

k

f a xϑ
=
∑

*
if

ϑ
ϑ = =

ϑ
=

ϑ
⎧ ⎧ ⎫⎪ ⎪ ⎪= ξ − ϑ ∈ Θ⎨ ⎨ ⎬ε⎪ ⎪ ⎪⎩ ⎩ ⎭

⎫⎪≤ ≤ =⎬
⎪⎭

∑

∑

1

1

, ,..., 1,...,
1

,min ,max

1

* *( *, ,..., )

1arg min max ,

, 1, ..., .

n

n
n

i ik k
f f i n i k

n

j ik k j

k

f f

B f

u U f u j N

f
�

*u� *f
�

vector . In order to limit the set of estimates of the
vector , additional concepts are required.

For a fixed ϑ finding the minimum in problem (12)
with respect to f1, …, fn is reduced to a linear program-
ming problem [13, 18]. Minimization with respect to
ϑ ∈ Θ is performed numerically. Note that if the min-
imum of the functional in (12) is larger than unity, the
possibility of such an estimate is equal to zero, which
indicates that the applied mathematical model is inad-
equate.

1.4. Minimax Estimates of the Coordinates 
of the Vector 

The disadvantage of the estimates that are pro-
posed above is that the error of estimating ui = Pϑg(xi),
i = 1, …, N, is not minimal, since these estimates are
obtained from the principle of the maximum possibil-
ity, rather than the principle of minimization of the
maximum error. In this regard, the problem is of inter-
est in which the estimate  = ϑ* of parameter ϑ of the
measurement transformer model is chosen from the
principle of the minimization of the maximum error of
the estimate. In this case it is assumed that errors νi,
i = 1, …, n in (4) satisfy the constraints

 (13)

and there is no preference of small errors over large
errors.

For formulating and solving the problem of mini-
max estimation we note that for fixed ϑ = ϑ* the
sought value uj = Pϑg(xj) can be written as the scalar
product

 (14)

where  = . Finding the minimum and
maximum values of this scalar product under linear
constraints (8), (13) written in the form

 (15)

as the solutions to the corresponding linear program-
ming problems, we obtain the interval in which the
sought value uj lies; then the minimax estimate of uj is
the middle of this interval, and its error is one half of
its length. The minimum and maximum values are the
solutions to the minimum and maximum problems for
linear functional (14) under linear constraints (15).
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Let us formulate these results in the form of the fol-
lowing proposition.

Proposition 3. The quantity (zi, max + zi, min)/2 mini-
mizes the maximum error of the value of orthogonal pro-
jection Pϑg(⋅) of function g(⋅) on +(ϑ) at point xi ∈ X with
error (zi, max + zi, min)/2, where zi, max and zi, max are the
maximum and minimum values of the linear functional
( , ) defined in (14) with constraints (15), i = 1, …, N.
If the system of inequalities (15) is inconsistent, the
mathematical measurement models in (4) are inade-
quate.

2. AN ESTIMATE OF THE MAXIMUM 
POSSIBILITY OF THE PARAMETERS 

OF A MÖSSBAUER SPECTROMETRIC 
EXPERIMENT

The method that was proposed above was applied
for interpreting the results of a Mössbauer spectromet-
ric experiment in which the absorption spectrum g(⋅)
is measured according to scheme [1]

 (16)

Here, w(v) = (1 – α)wL(v, Γ) + αwG(v, Γ) is the instru-
ment function of a Mössbauer spectrometer with the
signal g(v) supplied to the input, v ∈ 51 is the Dop-
pler velocity, functions wL(⋅, Γ) and wG(⋅, Γ) are
defined by the following relationships: wL(v, Γ) =

, wG(v, Γ) = , v ∈ (–∞,

∞), parameters α and Γ are unknown, while the inter-
vals of their variation are known: α ∈ [0, 1], Γ ∈ [Γmin,
Γmax]. Measurements are performed for n = 400 values
of the Doppler velocity near zero, from –1.879 mm/s
to 2.109 mm/s with a uniform step. The constant C in
(16) is the intensity of the incident radiation; its value
belongs to the given interval [Cmin, Cmax].

The input spectrum is nonnegative for all v ∈ 51
and g(v) → 0 for |v| → ∞. The latter relationship
makes it possible to replace the infinite integration
limits in (16) by finite ones with an error that is com-
parable with the measurement error,

 (17)

Let us seek the estimate of the projection of the
input spectrum at the same points, v1, …, vn, in which
measurements (16) were performed. Then, assuming
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that in (5) ϑ = (α, Γ) ∈ R2, aϑ, i(v) = w(v – vi), v ∈
(‒∞, ∞), i = 1, …, n, we rewrite (5) with account for
(17) in the explicit form,

 (18)

approximating the scalar product in +2(–∞, ∞) with
an accuracy that is comparable with the measurement
error by the sum

and taking the fact into account that for such a
replacement, (5) is written as

we obtain instead of (16)

 (19)

or, in a shorter notation,  = C  – U  + , where  =
(1, 1, … ,1) ∈ 5n, uj is the sought value of the input
spectrum estimate at point vj, j = 1, …, n, U ∈ 5n →
5n is the finite-dimensional operator defined by the
symmetric matrix Uij = w(vj – vi), i, j = 1, …, n. Now,
relationship (17) can be rewritten as

 (20)

Here,  is a block matrix with the size (n + 1) ×
n, its first block  is a column that consists of n unities,
and the second block is the matrix U with the opposite
sign.

Thus, the scheme of measurements is reduced to
the finite-dimensional scheme

 (21)
in which operator A is given by the matrix A =

( ), and vector  =  ∈ 5n+1; the matrix ele-

ments of operator A depend on the two-dimensional
parameter ϑ = (α, Γ), α ∈ [0, 1], Γ ∈ [Γmin, Γmax]. The
following constraints are imposed on the coordinates
of the vector :  ≡ C ∈ [Cmin, Cmax],  ≡ uk – 1 ≥ 0,
k = 2, …, n + 1.

Thus, the problem of estimating the input spec-
trum is reduced to the problem that was considered in
the previous section by replacing matrix B in (5) by
A = ( ) and matrix U in (6) by the identity
matrix.
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The data of Mössbauer spectroscopy that were
kindly provided by V. D. Sedykh, a senior researcher
of the Institute of Solid State Physics, RAS, were
used for spectrum estimation. The plot of the mea-
sured spectrum at points v1, …, vn is shown in
Fig. 1, n = 400.

At the first stage, the estimates of the parameters
(α, Γ, u1, …, un) were obtained. For this purpose, min-
imax problem (12) was solved. Taking the notation

used in this section into account, the problem is
rewritten as follows:

 (22)

For fixed α, Γ, minimization problem (22) with
respect to  is reduced to a linear programming prob-
lem [13, 18]. Let us denote its solution by (α, Γ);
function Φ(α, Γ, (α, Γ)) is minimized with respect
to α, Γ numerically.

The plot of function Φ(α, Γ, (α, Γ)) for α ∈ [0,
0.4], Γ ∈ [0.14, 0.19] is shown in Fig. 2. It can be seen
that for Γ ≥ 0.14 Φ(α, Γ, (α, Γ)) grows sharply with
increasing Γ and is practically independent of (α, Γ)
for Γ < 0.14. For α ≥ 0.2, Γ ≥ 0.17 the minimum of the
function Φ(α, Γ, (α, Γ) is reached at the boundary
of the domain of admissible values, at α* = 0.2, Γ* =
0.17. For these values, the estimate of the constant C is
5 867 450. The plot of the instrument function that
corresponds to the parameters (α* = 0.2, Γ* = 0.14) is
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Fig. 1. The result of a Mössbauer spectrum for Doppler
velocities from –1.879 mm/s to 2.109 mm/s with a step of
0.001 mm/s. The number of photons is shown along the
vertical axis.
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Fig. 2. Functional Φ(α, Γ, (α, Γ)) minimized in (22) as a function of (α, Γ).
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shown in Fig. 3 and the plot of the estimate of the
input spectrum, the vector  is shown in Fig. 4.

To study the information value of the experiment
we obtained the minimax estimate of the values of the
spectrum projection for the same wavelengths. The
constraints on the noise εi in (15) were chosen propor-
tional to , I = 1, …, n. The intervals [zi, min, zi, max],
i = 1, …, n, of the variation of the spectrum coordi-
nates (arb. u.) are shown in Fig. 5. It follows from Sec-
tion 1.4 that in order to construct these estimates it is
necessary to calculate the minimum and maximum
values of each coordinate ui of vector , i = 1, …, n.
Their arithmetic average yields the minimax estimate
of the corresponding coordinate, while their half-dif-
ference yields the estimate error. The minimum values

*u

iξ

u�

of each coordinate ui in the analyzed experiment
turned out to be practically zero for each i = 1, …, n;
they are shown by the points on the abscissa axis. The
maximum values of the coordinates ui, i = 1, …, n, are
shown in Fig. 5 as the upper base of a curvilinear trap-
ezoid. The minimax estimate is given by the “median”
of this trapezoid. It can be seen from Fig. 5 that the
measurement contains insufficient information for the
reliable detection of six absorption lines. Taking the
additional information that large measurement errors
are less possible than small ones into account yields
the much better result that is shown in Fig. 4.

Such a strong difference between the results of
minimax estimation and estimation of the maximum
possibility in the general formulation was discussed in
[14]; it was demonstrated there that minimax esti-
mates can correspond to a situation in which realiza-
tion of the measurement error has the maximum
admissible norm. This situation is a low-probability
case for a researcher, since experiments, as a rule, are
formulated in such a way that measurement errors are
as small as possible. It can be seen from comparison of
Figs. 4 and 5 that taking this circumstance into
account substantially improves the result of solving the
problem of interpretation of measurements. More-
over, the constraint of the nonnegativeness of the
coordinates of the input spectrum plays an important
role in the considered problem; it can be seen from the
result (Fig. 4) that a large number of coordinates of the
estimate are zero, i.e., they lie at the boundary of the
admissible domain, which testifies to the efficiency of
these constraints.

Fig. 3. The instrument function of a Mössbauer spectrom-
eter, step 0.01 mm/s.
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Fig. 4. The estimate of the input spectrum using the method of maximum possibility, arb. u.
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CONCLUSIONS

The estimates of the maximum possibility of
parameter values of measurement models with a finite
number of linear functionals of a studied function
were constructed and methods for their calculation
were given. The estimate possibility was determined by
the fuzzy model of the measurement error of function-
als, in which it was assumed that large errors were less
possible than small ones. The efficiency of the method
was illustrated by estimating the parameters of a Möss-
bauer spectrometer and the measured spectrum for
the given set of wavelengths. The obtained estimates of
the spectrum values were compared with minimax
estimates that were constructed under the assumption
that the error of the measurement of linear functionals
was bounded and arbitrary within a given interval. It
was demonstrated that the assumption of high possi-
bility of small measurement error values made it pos-
sible to obtain adequate idea of the measured spec-
trum, while the minimax estimates indicate that with-
out this assumption the information that is contained
in measurements was insufficient to obtain adequate
spectrum estimates.
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