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Abstract—This paper describes current transport through а long Josephson junction with an alternating crit-
ical–current density. This alternating density can be achieved in experiments bу incorporating a magnetic
layer to the weak link in а special manner. The prospects for the practical use of such structures are related to
the possibility of obtaining bistable Josephson elements on their basis. Joint analysis of both current–phase
relations and dynamic characteristics made it possible to optimize the operation mode for a fast supercon-
ducting memory cell based on bistable contact and to assess the energy dissipation for the read and write oper-
ations.
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INTRODUCTION
Josephson structures with magnetic layers (F) in

the weak link region are the main candidates for the
role of the key elements of fast energy-effective mem-
ory that is compatible with chains of superconductive
(S) electronics [1–9]. Among multiple concepts of the
performance of the mentioned key elements the pro-
posals that require the use of distributed magnetic
contacts with a spatially inhomogeneous density of the
critical–current stand out. The use in the weak bond
of (1) a magnetic layer with variable thickness (Fig. 1a)
[10] or (2) a normal “sublayer” (N) that occupies only
a part of the total contact area (Fig. 1b) [11] or (3) a bi-
layer normal metal/ferromagnet (N/F) with an NF
boundary that is oriented along the direction of the
passage of the non-dissipative current (Fig. 1c) [12]
provides the alternating-sign density of the critical–
current under certain conditions. For certain relation-
ships between two strongly different current channels
and for quite large, i.e., comparable with the Joseph-
son length, λj, sizes, the system as an integer behaves as
a so-called φ junction, i.e., as a Josephson element,
whose phase in the ground state in the absence of the
transport current passing through it is ±φ (0 < φ < π)
[13]. Two stable states of such an element (corre-
sponding to a Josephson phase of +φ and –φ) can be
used as the 0 and 1 elements of memory; the presence
of two values of the critical–current (transition to the
resistive state accompanied by the voltage pulse on the

contact here depends on the “choice” of one of the
stable states by the system) makes it possible to per-
form the read operation; the application of the mag-
netic field makes it possible to transfer the φ junction
from one stable state to another by performing the
write operation [14]. Here it is necessary to emphasize
that the write operation can be performed with the use
of relatively weak (to several oersted) fields during the
characteristic Josephson time measured in picosec-
onds.

The simplest model for the qualitative description
of the dynamic characteristics of a φ junction is an
asymmetric two-contact interferometer with different
signs of the critical current of Josephson junctions and
rather high connecting inductance [15]. Important
successes on the path to a more complete theoretical
picture of the physical phenomena in the system were
achieved during the analysis of equations of the sine-
Gordon type with a stepwise change of the critical–
current density [16]. However, one definite drawback
of these expressions for the form of the current–phase
relation (CPR) is the assumption of the smallness of
the variation of the Josephson phase of the structure in
the direction that is perpendicular to the direction of
the passage non-dissipative current during the deriva-
tion. In this work we propose an improved variant of
models that were created on the basis of a parallel
chain of Josephson junctions (Fig. 1d): some of the
junctions are conventional 0 contacts, while some are
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π contacts with a negative critical–current that have
found great use in modern superconductive electron-
ics [17], which makes it possible to take the quasicon-
tinuous variation of the Josephson phase along the
spatially inhomogeneous structure into account. The
write and read operations were optimized on the basis
of the modified model of the magnetic Josephson
junction with a spatially inhomogeneous region of the
weak link.

1. SIMULATION OF THE DYNAMICS 
OF A DISTRIBUTED JOSEPHSON JUNCTION

We use the “resistively shunted junction model” for
the description of the concentrated Josephson ele-
ments assuming that the total current through the
junction consists of three components: (1) the current
that passes without energy dissipation; (2) the resistive
component of the current; and (3) a capacitive term
that occurs due to the formation of an effective capac-
itor by superconducting electrodes (S) [18]:

 (1)

where Ic is the critical current, i.e., the maximum non-
dissipative current that can pass through the contact,
RN is the normal resistance of the junction, C is the
capacity of the contact, ℏ is the Planck constant, e0 is
the electron charge, and t is time. The form of the
non-dissipative current term, Ic sinφ reflects the elec-
troneutrality of the system as a whole and the 2π peri-
odicity of the phase of the order parameter (the sta-
tionary Josephson effect). The voltage on the Joseph-
son junction is proportional to the time derivative of

the Josephson V =  phase (the non-stationary
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V/RN and third C  term in (1) follows.

We simulate the distributed contact as a parallel
chain of Josephson junctions that are united by a small
inductance L(λ–1 ≡ l = 2πLIc/Φ0), Φ0 is the magnetic
flux quantum). Then for elements of the distributed
contact we write a system of discrete sine-Gordon
equations:

 (2)

where jc , N and Nπ are the total number

of elements and the number of π contacts, respec-
tively, φe is the external dimensionless f lux, and α is
the dimensionless decay in the system. The number of
contacts may be associated with the sizes of the real
system using the relationship l = (d/(N – 1))2, where
d is the linear size of the junction expressed in Joseph-
son lengths λj and the unit current density is accepted
as the critical–current density in the 0 region jc,0.

To build the CPR of the distributed contact, it is
necessary for each value of the power–supply current,
i, that does not exceed the critical current of the struc-
ture to find the value of the established average phase

ψ = , where ϕk is the established phase on

the k-th junction that was obtained from system of
equations (2) using the well-known Runge–Kutta
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Fig.1. (a), (b), (c) Schematic images of long Josephson structures that contain superconducting (S) and magnetic (F) layers, as
well as normal metal layers (N); (d) the principal scheme of this model on the basis of a parallel chain of Josephson 0 and π junc-
tions.

(a)

S

F

S

S

F
N

S

S

F N

Φe

Φe

S

L
I

L

N
0

Nπ

J
C0

(b)

(d)

(c)



406

MOSCOW UNIVERSITY PHYSICS BULLETIN  Vol. 70  No. 5  2015

KLENOV et al.

method. The problem with this approach is that from
the solution of equations for the dynamics of the phase
it is possible to find only stable states that satisfy the

condition  > 0. This problem was solved by the

approximation of the obtained stable points via a
dependence of the form

(3)

The algorithm for the approximation without an
external magnetic field contained three steps.

(1) The matrix equation  was solved for M = 1,
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and ψj are obtained from the solution of a system of

differential equations (2).

(2) The square deviation for each exact solution

was calculated for the obtained  coefficients.

(3) If the total square deviation turned out to be
larger than the given accuracy value, we returned to
issue (1) with an increase in M by 1. If the deviation
turned out to be less than the given accuracy value, it
was considered that the function I(ψ) is the CPR of
the distributed contact with the given accuracy.

In the presence of an external magnetic field the
algorithm remained the same; however, in addition to
the sinusoidal harmonics, the even harmonics with
respect to the Josephson phase were also considered.

2. SIMULATION RESULTS

The performed numerical simulation made it pos-
sible to take the effect of the quasicontinuous variation

Â

Fig. 2. (a) The dependence of the amplitudes of the first two harmonics (both odd and even) on the external dimensionless f lux

for N = 80, Nπ = 40, Jc,π = –0.7 jc,0, and l = 0.001.The dashed lines illustrate similar results for CPR components of the distrib-

uted contact that was obtained on the basis of the expression Γ0 =  etc. transformed from [18]; (b) the

Josephson potential as a function of the phase and its evolution under the action of the applied flux. The dashed lines present
similar results for a two-contact interferometer that contains 0 and π junctions. The parameters of the model are specified in the

figure.
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of the Josephson phase along a spatially inhomoge-

neous structure on the CPR form into account, which

is particularly noticeable in the presence of an external

magnetic field. Figure 2a shows the calculated depen-

dences of the amplitudes of the first two harmonic

components (both odd and even) from the normalized

external f lux into the cell φe = 2π  (the parameters

were taken based on the example of the model: N = 80,

Nπ = 40, jc, π = –0.7 jc, 0 and l = 0.001, and the sizes of

the 0 and π regions of the system, d0 and dπ, are

approximately 1.25). For comparison we should men-

tion that the solution of the continuous sine-Gordon

equation with respect to the Josephson phase  –

jc(x)sin(φ) = –j (lJ is the specific inductance and j is
the current density of the power supply) by expansion

over the small parameter, viz., the deviation of the

phase from the average ψ value, to the second order of

magnitude gives the following form of the current-

phase dependence [19]:

0

eΦ
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The parameters of the simulated system that were cho-
sen for the example (the length of the distributed con-
tact is approximately 2.5λj and the condition |A2| >

A1/2, A2 < 0 is met for the amplitudes of the odd har-

monic components) correspond to the bistable
Josephson potential, for which in the absence of an
external magnetic field the minima are separated by a
barrier, Ub, which almost excludes the transitions

between stable states under the action of f luctuations.

A system with two stable states can be considered as
an elementary memory cell that holds one bit of infor-
mation. To perform the write operation in such a cell,
it is necessary to apply a certain external magnetic
flux: Fig. 2b shows the evolution of the Josephson
potential under the action of the applied f lux, as a
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Fig. 3. (a) The dependence of the amplitude of the magnetic f low pulse on its minimum duration that is necessary for the write
operation at different critical–current densities in the π region; (b) the dependences of the normalized dissipation energy for the
write operation for different amplitudes of the magnetic f lux pulse (dimensionless decay is 1 everywhere).
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result of which the system will occur in the stable +φ
state. Curves 1 and 1 ' along with 2 and 2 ' in the figure
show that on the qualitative level it is possible to
describe the behavior of the system, even using the
“ultra-concentrated” model of a two-contact interfer-
ometer containing 0 and π junctions (let the ratio of
the critical currents in such a model be the parameter
a, and the dimensionless inductance of the shoulders
be b). It is possible to conclude from the shape of
curves 3 and 3 ' that the requirements of the “effective
size of the system” for the performance of the bi-stable
state that are given by the value of the parameter b turn
out to be strongly overestimated.

This method for the analysis of the dynamic char-
acteristics of the bistable Josephson system may per-
mit the optimization of the described write operation
with allowance for the effect of the quasicontinuous
change of the Josephson phase along a spatially inho-
mogeneous structure on the CPR. The systematized

results of such optimization are given in Fig 3a. As

expected, the minimum duration of the “rectangular”

pulse, τ, that is necessary for the operation is inversely

proportional to the value of the applied magnetic f lux;

the τ value also grows with the increase in the normal-

ized critical–current density in the π region, which is

associated with the increase in the amplitude of the

second odd harmonic component in the CPR and the

potential barrier, Ub, in the “initial” state. Finally, the

minimal impact duration that is required for the write

operation also increases with an increase in the decay

exponent of the plasma oscillations in the Josephson

junctions of the model α.

The change of the Josephson phase of the system in

the course of operation in accordance with the non-

stationary Josephson relationship causes a voltage

pulse on the junction and energy dissipation that is

Fig. 4. (a) The dependences of two values of the critical–current of the φ junction on the external magnetic f lux at different crit-
ical–current densities in the π region; (b) the dependences of the amplitude of the magnetic f lux pulse on its minimum duration
that is necessary for the write operation at different critical–current densities in the π region.
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associated with this voltage of the order Ec = IcΦ0/2π ×

10–19 J [20]:

 (6)

It is seen in Fig. 3b that when the duration of the
pulse increases, the dissipation energy tends to a con-
stant value, which corresponds to the complete decay
of the phase f luctuation in the system, and the pulse
amplitude affects the value of the dissipated energy
more strongly than its duration. For lower energy
release it is necessary to use long weak pulses; how-
ever, this will lead to an increase in the writing time. In
addition, systems with low modules of the critical–
current density in the π region reach a constant (and
somewhat smaller) value of the energy dissipation
faster.

The performance of the read operation is based on
the existence of two critical power-supply current val-
ues for the memory cell on the basis of the φ junction
(Fig. 4a shows the calculated dependences of these
values on the external magnetic f lux). The excess of
the first critical value, Ic1, will transfer the total

Josephson element in the resistive state, which forms
the detected voltage pulse only if it initially was in the
stable state +φ state. Figure 4b illustrates the relation-
ship between the minimum duration of the rectangular
current pulse, τ, that is necessary for performing the
read operation and the amplitude of the impact IR for

different parameters of the system, whose effect is
analogous to the write operation, which was consid-
ered in detail.

CONCLUSIONS

Thus, the optimization results show that the char-
acteristic time for the read and, of particularly impor-
tance, the write operation is determined by the
Josephson processes and, as a consequence, in many
orders of magnitude less than the writing time record
in typical cryogenic magnetic-memory cells, which
makes it possible to use the bistable φ junction as a
promising element of superfast random-access mem-
ory (RAM). It should be noted separately that the tra-
ditional opinion that Josephson π junctions are “slow”
elements is not related to reality. For S–IsF–S struc-
tures that contain an additional superconducting layer
in the region of the weak bond, the possibility of π
junctions with characteristic voltage ICRN and charac-

teristic frequency values that are close to typical for
tunnel transitions has already been demonstrated [21,
22]. Analogously, the addition of the auxiliary super-
conducting layer with the tunnel barrier I in the region
of the weak bond of structures that is shown in Fig. 1
will make it possible to solve the problem of speed. The
calculated energy dissipation in the considered pro-
cesses demonstrates the achievable high-energy effi-

( ) ' .
'

dis cE E dt
t

τ

−∞

∂ψ= α
∂∫

ciency of the memory cell: less than a unit of the char-

acteristic Josephson energy (on the order of 10–19 J)
per one operation.

This method for the analysis of charge transport in
a distributed Josephson junction with an alternating
critical–current density may make it possible to opti-
mize the characteristics of calm qubits [23, 24], semi-
flaxon Josephson oscillators [25], and perspective
Ratchet systems [26], as well.
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