О Б З О Р Ы ФИЗИКА АТОМНОГО ЯДРА И ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

Нуклонные резонансы в экслюзивных реакциях фотои электророждения мезонов

Ю. А. Скородумина^{1,2,*a*}, В. Д. Буркерт³, Е. Н. Головач⁴, Р. В. Готе², Е. Л. Исупов⁴, Б. С. Ишханов^{1,4}, В. И. Мокеев^{3,4}, Г. В. Федотов^{2,4}

¹ Московский государственный университет имени М.В. Ломоносова, физический факультет,

кафедра общей ядерной физики. Россия, 119991, Москва, Ленинские горы, д. 1, стр. 2.

² Университет Южной Каролины. США, SC 29208, Коламбия.

³ Национальная ускорительная лаборатория Томаса Джефферсона.

США, VA 23606, Вирджиния, Ньюпорт-Ньюс, 12000 Jefferson Avenue, Newport News.

⁴ Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына (НИИЯФ МГУ).

Россия, 119991, Москва, Ленинские горы, д. 1, стр. 2.

E-mail: ^a skorodumina@gmail.com

Статья поступила 20.07.2015, подписана в печать 13.08.2015.

Дан обзор методов извлечения параметров нуклонных резонансов из экспериментальных данных, рассмотрены формализм описания эксклюзивных реакций фото- и электророждения мезонов на нуклонах, а также последние данные экспериментов по эксклюзивному рождению мезонов в рассеянии электронов и фотонов на протонах.

Ключевые слова: нуклонные резонансы, фото- и электророждение мезонов, спиральные амплитуды, амплитуды фото- и электровозбуждения резонансов, структурные функции.

УДК: 539.125.4. PACS: 14.20.Gk, 13.60 Le.

Введение

Квантовая хромодинамика (КХД) — фундаментальная теория сильных взаимодействий, базирующаяся на SU_C(3) неабелевой локальной симметрии, активно развивается последние 30 лет. При высоких энергиях (или малых расстояниях r < 0.1 фм) КХД является пертурбативной теорией с малой величиной безразмерного параметра кварк-глюонного взаимодействия α_s , отвечающего режиму асимптотической свободы, и имеет дело с взаимодействием точечных кварков и глюонов. Пертурбативный подход дает отличные результаты при высоких энергиях, что было неоднократно проверено в многочисленных экспериментах, где изучались инклюзивные и полуинклюзивные процессы при энергиях от десятков ГэВ до единиц ТэВ и квадратах переданных импульсов от 10 до 10000 ГэВ².

При уменьшении энергии (или увеличении r) пертурбативный подход перестает быть применим из-за быстрого роста параметра кварк-глюонного взаимодействия α_s , обусловленного антиэкранированием глюонов вследствие неабелевой симметрии КХД. При величинах α_s , сравнимых с единицей, происходит «одевание» точечных токовых кварков и калибровочных глюонов облаками виртуальных глюонов (кварк-антикварковых пар), что приводит к образованию новых объектов: одетых кварков и глюонов. При дальнейшем уменьшении энергии (*r* > 1 фм) КХД становится теорией бесцветных адронов (режим конфайнмента кварков).

Свойства одетых кварков и глюонов зависят от расстояния и кардинально отличаются от свойств точечных кварков и глюонов КХД. Одевание кварков и глюонов приводит к формированию $\approx 98\,\%$ массы адронов, в то время как механизм Хиггса отвечает формированию лишь ≈ 2 % их массы. В промежуточном диапазоне энергий (0.1 фм < r < 1 фм) важнейшую роль играет возбуждение нуклонных резонансов. Нуклон как система многих тел предоставляет идеальную возможность для исследований концепции сильного взаимодействия в непертурбативном режиме — в переходной области между конфайнментом и асимптотической свободой. Эксперименты по изучению основного и возбужденных состояний нуклона открывают доступ к исследованию эволюции динамической массы и структуры одетых кварков и глюонов с расстоянием.

В последние годы основным методом изучения возбужденных состояний нуклона являются эксперименты по рассеянию электронов и фотонов на протонах (и дейтронах). Эти эксперименты проводятся в различных лабораториях мира (JLab, ELSA, ESRF, MAMI, SPring8) и включают в себя: во-первых, исследование спектра возбужденных состояний нуклона в эксклюзивных реакциях фоторождения мезонов [1], а во-вторых, исследование структуры резонансов в реакциях эксклюзивного электророждения мезонов [2].

1. Исследования нуклонных резонансов

Нуклон как связанная система кварков и глюонов обладает спектром возбужденных состояний, так же как молекулы, атомы и атомные ядра. Эти возбужденные состояния проявляются в виде максимумов в зависимостях полных сечений поглощения реальных (рис. 1) и виртуальных (рис. 2) фотонов от величины инвариантной массы конечной адронной системы *W*.

Рис. 1. Зависимость полного сечения поглощения реальных фотонов от величин E_{γ} (нижняя шкала) и W (верхняя шкала), полученная из данных ELSA [3]

Рис. 2. Полное сечение поглощения виртуальных фотонов для различных Q^2 как функция W [4]

В инклюзивных сечениях на рис. 1 и 2 хорошо различимы 3 пика [3, 4]. Пик при величине массы конечной адронной системы W = 1.23 ГэВ называется первым резонансным максимумом и обусловлен вкладом резонанса $\Delta(1232)3/2^+$, а также совокупностью сложных нерезонансных механизмов. $\Delta(1232)3/2^+$ -резонанс — единственное изолированное состояние в спектре возбужденных состояний нуклона. Другие максимумы сечений фотопоглощения реальных и виртуальных фотонов представляют собой суперпозицию нескольких резонансов. Пик в районе 1.5 ГэВ включает в себя 4 резонанса: N(1440)1/2⁺, N(1520)3/2⁻, $N(1535)1/2^{-}$ и $\Delta(1620)1/2^{-}$. Область величин W, отвечающих вкладам этих состояний, получила название второго резонансного максимума. Пик в районе 1.7 ГэВ обусловлен вкладами 7 резонансов: N(1650)1/2⁻, N(1675)5/2⁻, N(1685)5/2⁺, $\Delta(1700)3/2^{-}$, $N(1710)1/2^{+}$, $N(1720)3/2^{+}$ и состояния-кандидата N'(1720)3/2+ [5]. Эта область величин W называется третьим резонансным максимумом. Наряду с перечисленными резонансами, в сечения фото- и электровозбуждения нуклонов также дают вклад возбужденные состояния с большими массами, однако вследствие значительной ширины они не проявляются в виде структур в зависимостях интегральных инклюзивных сечений возбуждения нуклонов от величины W.

Как уже отмечалось выше, второй и третий максимумы в полных сечениях поглощения реальных и виртуальных фотонов обусловлены вкладами нескольких нуклонных резонансов. Ширины этих резонансов, изменяющиеся в пределах от 100 до 300 МэВ, оказываются значительно больше, чем разница их масс, что приводит к их сильному перекрыванию. Кроме того, в настоящее время хорошо установлено существование резонансов с массами ГэВ $(\Delta(1905)5/2^+,$ $M_{N^*} > 1.9$ $\Delta(1910) 1/2^+$, $\Delta(1950)7/2^+$, $\Delta(2420) 11/2^+$, $N(2190)7/2^{-}$, $N(2220)9/2^+$, $N(2250)9/2^-$), ширины которых изменяются в пределах от 300 до 500 МэВ. Столь большие ширины делают невозможным наблюдение этих возбужденных состояний нуклона в виде пиков в полных сечениях поглощения реальных и виртуальных фотонов. Также необходимо отметить, что, наряду с нуклонными резонансами, существенный вклад в инклюзивные сечения вносят нерезонансные механизмы. К тому же инклюзивные реакции дают ограниченную информацию о процессе, а именно лишь значение интегрального сечения для каждого W и Q^2 . Поэтому анализ только инклюзивных реакций не позволяет извлечь надежную информацию о параметрах нуклонных резонансов.

Это приводит к необходимости исследования эксклюзивных каналов распада резонансов. В эксклюзивных реакциях измеряются кинематические характеристики всех частиц в конечном состоянии, что позволяет получить более полную информацию об интегральных и дифференциальных сечениях реакций. Нуклонные резонансы с вероятностью больше 99% распадаются за счет сильного взаимодействия с испусканием мезонов (на электромагнитные распады с испусканием фотонов приходится меньше 1%).

Исследование нуклонных резонансов начиналось с изучения рассеяния мезонов на нуклонах. Преимуществом этого метода является большое сечение взаимодействия налетающего мезона и нуклона-мишени. Этот метод, однако, имеет свои сложности, одной из которых является тот факт, что налетающая частица не является точечной и ее структура неизвестна, что приводит к существенному усложнению интерпретации экспериментальных данных. Широкое распространение получили реакции под действием пучков пионов. Результаты анализа процессов так называемого упругого пион-нуклонного рассеяния ($\pi N \rightarrow \pi N$) и зарядового обмена (например, $\pi^- p \rightarrow \pi^0 n$) до сих пор играют важную роль в спектроскопии нуклонных резонансов. Детали анализа этих реакций приведены в работах [6-9]. Однако не все резонансы могут быть обнаружены в упругом пион-нуклонном рассеянии ($\pi N \rightarrow \pi N$), так как многие резонансы распадаются с испусканием мезонов, отличных от пионов и/или с испусканием более одного мезона. Использование пучков различных долгоживущих мезонов значительно расширяет возможности спектроскопии нуклонных резонансов [10].

Исследования эксклюзивных реакций под действием реальных и виртуальных фотонов, происходящих за счет электромагнитного взаимодействия, обеспечивают предпочтительные условия для изучения возбужденных состояний нуклона по сравнению с реакциями под действием адронов, поскольку фотоны являются бесструктурными частицами, а динамика их формирования и векторы состояния хорошо описываются в квантовой электродинамике.

Эксперименты с реальными фотонами позволяют исследовать спектр возбужденных состояний нуклона. Эксперименты по электровозбуждению нуклонов позволяют изучить сечения (или другие наблюдаемые) при различных значениях виртуальности фотона Q^2 (квадрат четырехимпульса виртуального фотона, взятый с обратным знаком). Величина Q^2 соответствует пространственному масштабу, на котором проводится исследование резонанса, или, другими словами, - пространственному разрешению эксперимента. Изучение Q²-эволюции различных наблюдаемых позволяет исследовать структуру резонансного состояния. Как видно из рис. 2, форма инклюзивного сечения сильно отличается для разных виртуальностей фотона Q^2 . Так, при $Q^2 = 6$ ГэВ² максимум, соответствующий Δ -резонансу, исчезает, но второй и третий резонансные максимумы остаются. Таким образом, резонансы с различными квантовыми числами имеют разную структуру. В настоящее время вся информация о структуре возбужденных состояний нуклона получена из реакций эксклюзивного электророждения мезонов на нуклонах.

Эксперименты по фото- и электророждению мезонов на нуклоне проводятся во многих лабораториях на протяжении последних десятилетий. Использование непрерывных пучков электронов и фотонов, а также детекторов с аксептансом $\approx 4\pi$ впервые позволило выполнять измерения с высокой точностью и почти полным перекрытием фазового пространства реакций [1]. Эти эксперименты (подробнее в разд. 4) дают ценную информацию о сечениях и поляризационных наблюдаемых реакций с конечными состояниями πN , ηN , ωN , $\pi \pi N$, $K\Lambda$, $K\Sigma$.

На рис. 3 и 4 соответственно приведены данные ELSA [3] по эксклюзивным каналам фоторождения мезонов и данные CLAS [11] о выходах эксклюзивных каналов электророждения мезонов на нуклоне. Каналы рождения одного и двух пионов являются основными в сечении фото- и электророждения мезонов на нуклоне в резонансной области. Сумма интегральных сечений этих каналов составляет более 90% инклюзивного сечения. Пики в сечениях каналов πN и $\pi \pi N$ свидетельствуют о чувствительности этих каналов к вкладам нуклонных резонансов.

Рис. 3. Интегральные сечения эксклюзивных каналов фоторождения (данные ELSA [3]): 1 — полное сечение фотопоглощения реальных фотонов (сумма всех эксклюзивных каналов); $2 - \gamma p \rightarrow p \pi^+ \pi^-$; $3 - \gamma p \rightarrow p \pi^0$, $4 - \gamma p \rightarrow p \pi^0 \pi^0$, $5 - \gamma p \rightarrow K^+ \Lambda$, $6 - \gamma p \rightarrow p \eta$

Резонансы с массой $M_{N^*} < 1.6$ ГэВ распадаются преимущественно по каналу πN , что делает этот канал основным источником информации о низколежащих нуклонных резонансах. Двухпионный канал в этом случае служит для независимой проверки этой информации.

Большинство резонансов с массой $M_{N^*} > 1.6$ ГэВ распадаются преимущественно по каналу $\pi\pi N$, поэтому этот эксклюзивный канал является эффективным средством исследования высоколежащих нуклонных резонансов. Доли распадов многих из этих резонансов на конечные состояния πN оказываются малыми. Независимая проверка информации о пара-

Рис. 4. Выходы различных эксклюзивных каналов электророждения мезонов на протоне, измеренные на детекторе CLAS [11], проинтегрированные по всем $Q^2 < 4 \ \Gamma$ эВ². Верхняя кривая соответствует полному выходу инклюзивной реакции рассеяния электронов на протоне

метрах высоколежащих нуклонных резонансов обеспечивается исследованием каналов $K\Sigma$, $K\Lambda$, ωN .

Кроме того, каналы ηN , ωN , $K\Lambda$ позволяют выделить вклады нуклонных резонансов с изоспином T = 1/2, равным изоспину конечной адронной системы.

2. Извлечение параметров нуклонных резонансов из экспериментальных данных

Под параметрами нуклонного резонанса подразумеваются его масса, ширина, квантовые числа (J^p) , амплитуды фото- и электровозбуждения $A_{1/2}$, $A_{3/2}$ и $S_{1/2}$, парциальные адронные ширины и др. Амплитуды фото- и электровозбуждения $A_{1/2}$, $A_{3/2}$ и $S_{1/2}$ характеризуют процесс возбуждения резонанса реальными ($S_{1/2} = 0$) или виртуальными фотонами и соответствуют вершине I на рис. 5 (слева). Индексы отвечают проекции суммарного спина системы начальных частиц $\gamma_{r,v}N$ (или спина N^*) на направление импульса фотона в системе центра масс (т. е. спиральности системы начальных частиц). Амплитуды $A_{1/2}$ и $A_{3/2}$ соответствуют взаимодействию поперечно поляризованного фотона с нуклоном. Только эти амплитуды вносят вклад в фотовозбуждение нуклонных резонансов. Амплитуда $S_{1/2}$ описывает возбуждение резонансов продольно поляризованными виртуальными фотонами. Она вносит вклад лишь в электровозбуждение резонансов наряду с амплитудами для поперечных виртуальных фотонов $A_{1/2}$ и $A_{3/2}$.

Параметры нуклонных резонансов извлекаются из экспериментальных данных по наблюдаемым различных эксклюзивных реакций фото- и электророждения мезонов на нуклонах. Эксклюзивный процесс, схематически представленный на рис. 5 суперпозицией резонансных и нерезонансных вкладов, описывается комплексными амплитудами, которые могут быть использованы в различных представлениях: в виде спиральных амплитуд (helicity amplitudes) [2, 12], поперечных амплитуд (transversity amplitudes) [13], амплитуд CGLN (Chew-Goldberger-Low-Nambu) [12, 14] и т. д.

Количество независимых комплексных амплитуд, описывающих эксклюзивный процесс, зависит, во-первых, от спирального состояния начальных частиц ($\gamma_{r,v} + N$), во-вторых — от спирального состояния конечных частиц (барион + мезоны), а в-третьих - от количества частиц в конечном состоянии. Например, в случае электророждения одного псевдоскалярого мезона ($\gamma_{r,v} + N
ightarrow b + m_{
m PS}$) число возможных спиральных состояний для начальных частиц равно 6 ($\lambda_{\gamma} = 0, \pm 1, \lambda_N = \pm 1/2$), а для конечных — 2 ($\lambda_{m_{PS}} = 0$, $\lambda_b = \pm 1/2$). Это приводит к 12 возможным амплитудам процесса. Закон сохранения четности, выполняющийся в случае образования двух частиц в конечном состоянии (см. разд. 3), приводит к тому, что количество независимых амплитуд для реакции вида $\gamma_{r,v} + N \rightarrow b + m_{\rm PS}$ уменьшается до 6.

Количество комплексных амплитуд, описывающих различные эксклюзивные процессы, приведено в табл. 1.

Физические наблюдаемые, измеряемые в эксперименте: сечение σ в системе центра масс, асимметрия Σ фотонного пучка, поляризация P ядра отдачи, асимметрия T мишени, двойные поляризационные наблюдаемые типа «пучок-мишень» (E, G, H, F) и др. однозначно выражаются через комплекс-

Рис. 5. Схема процесса электророждения мезонов (*m*) на нуклоне (*N*) с разделением резонансных (слева) и нерезонансных (справа) вкладов

Начальное состояние	Конечное состояние	Количество комплексных амплитуд
-N	-N	9
7/11	<i>MIN</i>	2
$\gamma_{\rm real} + N$	барион + псевдоскалярный мезон	4
$\gamma_{virt} + N$	барион + псевдоскалярный мезон	6
$\gamma_{\rm real} + N$	барион + 2 псевдоскалярных мезона	8
$\gamma_{virt} + N$	барион + 2 псевдоскалярных мезона	12
$\gamma_{\rm real} + N$	барион + векторный мезон	12
$\gamma_{virt} + N$	барион + векторный мезон	18
		1

Количество комплексных амплитуд, описывающих различные эксклюзивные процессы [1, 2, 12, 15]

ные амплитуды. В разд. З выводится формула, связывающая дифференциальное сечение эксклюзивной реакции рождения мезонов под действием реальных и виртуальных фотонов со спиральными амплитудами, описывающими этот эксклюзивный процесс.

Чтобы получить информацию обо всех амплитудах, описывающих определенную эксклюзивную реакцию, необходимо измерить достаточное количество наблюдаемых. Так, для извлечения амплитуд процесса $\gamma_{real} + N \rightarrow$ барион + псевдоскалярный мезон достаточно измерить угловые распределения восьми определенным образом выбранных наблюдаемых [16].

Комплексные амплитуды любой эксклюзивной реакции (амплитуды процесса $\gamma_{r,v} + N \rightarrow$ барион + мезоны) представляют собой суперпозицию вкладов нуклонных резонансов и сложной совокупности нерезонансных механизмов (рис. 5).

Существуют два подхода к извлечению параметров нуклонных резонансов из экспериментальных данных.

1. Если возможно непосредственно из экспериментальных данных получить информацию о комплексных амплитудах эксклюзивной реакции, то параметры нуклонных резонансов могут быть извлечены из этих амплитуд. Применение этого метода возможно в случае, если для определенного эксклюзивного канала измерено достаточное количество наблюдаемых, причем измерения проведены с высокой точностью и в очень широком диапазоне по $W = \sqrt{s}$. Другими словами, применение этого подхода возможно лишь для эксклюзивных каналов фоторождения одного псевдоскалярного мезона [17].

Рассмотрим этот подход подробнее. Полная амплитуда реакции фоторождения псевдоскалярных мезонов представляет собой сумму резонансной и нерезонансной частей

$$T_{\text{full}}(s,t) = T_{\text{res}}(s,t) + T_{\text{bck}}(s,t),$$

$$T_{\text{res}}(s,t) = \sum_{N^*} \frac{\langle mb|T_{\text{hadr.dec.}}|N^*\rangle \langle N^*|T_{\text{e.m.}}|\gamma N\rangle}{-s - i\Gamma(W)M_{N^*} + M_{N^*}^2}.$$
 (1)

Амплитуда вклада резонансной части равна сумме вкладов всех нуклонных резонансов. Амплитуда вклада индивидуального резонанса равна произведению амплитуды фотообразования резонанса, амплитуды его адронного распада и брейт-вигнеровского пропагатора нуклонного резонанса.

Амплитуды реакции представляют собой аналитические функции Мандельстамовских переменных s, t, которые могут быть аналитически продолжены в комплексную плоскость для комплексных величин s. Как следует из формулы (1), наличие вкладов резонансов в полную амплитуду T_{full} приводит к возникновению полюсов этой амплитуды при

$$s_0 = M_{N^*}^2 - i\Gamma(W)M_{N^*}.$$

При этом нерезонансная часть амплитуды $T_{bck}(s, t)$ является аналитической функцией s, t, не имеющей сингулярностей. Таким образом, существование резонанса может быть модельно-независимо идентифицировано как полюс полной амплитуды в комплексной плоскости s. Реальная часть полюса определяется массой резонанса, а его мнимая часть содержит информацию о полной ширине распада резонанса.

Согласно формуле (1), вычет в полюсе равен произведению амплитуд фотовозбуждения и распада резонанса. Контурный интеграл от полной амплитуды реакции вдоль окружности вблизи полюса в случае отсутствия других сингулярностей связывается теоремой Коши с величиной вычета в полюсе. Так как вычет равен произведению амплитуд фотовозбуждения и распада резонанса, то в случае, когда амплитуда распада нуклонного резонанса известна (например, из пион-нуклонного рассеяния), можно получить информацию о его возбуждении. Таким образом, информация о возбуждении резонанса может быть получена из данных о полной амплитуде без модельного разделения резонансных и нерезонансных вкладов, чем минимизируется модельная зависимость результатов.

Полная амплитуда реакции также может быть разложена по парциальным волнам. Амплитуда каждой из парциальных волн зависит лишь от величины *s*. В случае если в парциальную волну вносит вклад всего один резонанс, распадающийся по одному каналу, его наличие может быть идентифицировано следующим образом: в точке, соответствующей массе резонанса, реальная часть парциальной амплитуды проходит через нуль, а ее мнимая часть имеет максимум. Если велик вклад соседних резонансов или вероятность распада исследуемого резонанса по данному каналу мала, то поведения реальных и мнимых частей амплитуды существенно исказятся и идентификация резонанса усложнится. Кроме того, погрешности экспериментальных данных и необходимость учитывать в анализе лишь конечное число парциальных амплитуд приводят к дополнительным неопределенностям и сложностям при разделении парциальных волн [1].

2. В случае когда невозможно непосредственно из экспериментальных данных получить информацию о комплексных амплитудах эксклюзивного процесса (например, в случае электророждения мезонов), информация о параметрах нуклонных резонансов может быть получена из доступных наблюдаемых в рамках моделей реакций или формализма связанных каналов (подробнее в разд. 4). В этом подходе необходимо разделять резонансные и нерезонансные вклады в амплитуду реакции. Это приводит к тому, что извлекаемые параметры нуклонных резонансов имеют дополнительные систематические неопределенности, связанные с моделью. Резонансная часть амплитуды в этом случае параметризуется брейт-вигнеровской функцией, а параметры резонансов извлекаются из условий наилучшего описания данных.

Разные модели реакций могут использовать разные соглашения для матрицы рассеяния, что приводит к различным выражениям для инвариантных потоков частиц, облучающих мишень, и для фазовых объемов продуктов реакции, а в итоге к различным амплитудам реакций в модели. Поэтому амплитуды процесса $\gamma_{r,v}p \to N^*$ оказываются зависимыми от используемых в модели соглашений, связывающих полные амплитуды реакций с наблюдаемыми. Для устранения этой зависимости необходимо произвести нормировку амплитуд, т. е. связать их с какой-либо модельно-независимой величиной. Для этого амплитуды выражаются через параметры фото- и электровозбуждения $N^*A_{1/2}$, $A_{3/2}$, $S_{1/2}$, которые определены независимо от соглашений для матрицы рассеяния через их связь с модельно-независимыми ширинами радиационных распадов нуклонных резонансов Γ_{γ} [18]:

$$\Gamma_{\gamma}(N^* \to N\gamma) = \frac{q_{\gamma}^2}{\pi} \frac{2M_N}{(2J_{N^*} + 1)M_{N^*}} [|A_{1/2}|^2 + |A_{3/2}|^2],$$
(2)

где M_N — масса нуклона, M_{N^*} — масса нуклонного резонанса, J_{N^*} — спин резонанса, q_{γ} — модуль трехимпульса фотона в системе центра масс в резонансной точке ($W = M_{N^*}$).

Различные соглашения для амплитуд реакций приводят к различным соотношениям между параметрами $A_{1/2}$, $A_{3/2}$, $S_{1/2}$ и амплитудами процесса $\gamma_{r,v}p \rightarrow N^*$ в модели. Однако параметры $A_{1/2}$, $A_{3/2}$,

 $S_{1/2}$ (амплитуды фото- и электровозбуждения N^*) оказываются независимыми от соглашений, используемых для амплитуд реакций.

Доминирующая часть информации о параметрах нуклонных резонансов получена в рамках последнего подхода. При этом возникает вопрос, сколь надежно разделены резонансные и нерезонансные части и, следовательно, сколь надежно извлечены параметры резонансов. Исследование различных эксклюзивных каналов рождения мезонов позволяет получить модельно-независимый ответ на этот вопрос. Амплитуды фото- и электровозбуждения нуклонных резонансов $(A_{1/2}, A_{3/2}, S_{1/2})$ должны быть одинаковы для всех эксклюзивных каналов. Описание всей совокупности экспериментальных данных по основным эксклюзивным каналам фотои электророждения мезонов обеспечивает модельно-независимую проверку надежности излеченных параметров резонансов.

Как было отмечено выше, использование первого подхода требует информации о достаточном количестве измеренных наблюдаемых (например, 8 для $\gamma_{real} + N \rightarrow$ барион + псевдоскалярный мезон). Второй подход позволяет использовать информацию о меньшем числе наблюдаемых, однако увеличение их количества позволяет снизить модельную зависимость результата. Таким образом, необходимо измерение большого числа дифференциальных сечений и поляризационных асимметрий с высокой (порядка нескольких процентов) точностью. Такая информация стала доступна лишь в последнее время в экспериментах в Лаборатории Томаса Джефферсона, на установках ELSA, MAMI, GRAAL, SPring-8 (LEPS) и MIT/Bates (подробнее — в разд. 4).

3. Описание эксклюзивных реакций фотои электророждения мезонов на нуклоне

В настоящем разделе изложен формализм описания реакций фото- и электророждения мезонов на нуклоне, показанных на рис. 6.

В процессах электророждения мезонов измеряемые дифференциальные сечения являются дифференциальными сечениями рассеяния электрона на нуклоне с образованием определенного конечного адронного состояния:

$$\frac{d^{n+2}\sigma_e}{dE_{e_i}d\Omega_{e_i}d^n\tau}.$$
(3)

Здесь E_{e_i} — энергия конечного электрона в лабораторной системе, Ω_{e_i} — телесный угол конечного электрона в лабораторной системе (вместо переменных E_{e_i} и Ω_{e_i} также могут использоваться W и Q^2), $d^n \tau$ — дифференциал кинематических переменных конечного адронного состояния. Кинематические переменные конечного состояния определяются числом частиц (адронов) в конечном состоянии.

В случае двух частиц в конечном состоянии существует 8 возможных кинематических переменных

Рис. 6. Механизмы реакций фото- (слева) и электророждения (справа) мезонов (m) на нуклоне (N)

(4 компоненты четырехимпульса каждой конечной частицы). Законы сохранения импульса и энергии накладывают на них 4 условия связи, а тот факт, что конечные мезон и барион должны находится на массовой поверхности, - еще 2. Таким образом, процесс образования двух частиц в конечном состоянии описывается двумя независимыми кинематическими переменными (n = 2 в формуле (3)), которые могут быть выбраны различными способами. Например, в случае реакций электророждения в качестве кинематических переменных конечного состояния можно выбрать следующие углы в системе центра масс начальной системы $\gamma_v N$: θ — угол между направлением движения фотона и импульсом одной из конечных частиц и φ — угол между плоскостью рассеяния электрона и плоскостью реакции (плоскостью, образованной начальным нуклоном и конечными частицами).

В случае трех частиц в конечном состоянии существует 12 возможных кинематических переменных, а законы сохранения импульса и энергии, а также требование, чтобы конечные частицы находились на массовой поверхности, накладывают в сумме 7 условий связи, что сокращает количество независимых переменных до пяти (n = 5 в формуле (3)). Одним из возможных выборов этих переменных является следующий: инвариантная масса первой пары конечных частиц M_{12} , инвариантная масса второй пары конечных частиц М₂₃, а также З угла в системе центра масс начальной системы $\gamma_v N$: θ_1 — угол между направлением движения фотона и импульсом первой конечной частицы, φ_1 — угол между плоскостью рассеяния электрона и плоскостью, образованной начальным нуклоном и импульсом первой конечной частицы, и α_1 угол между двумя плоскостями: плоскостью продуктов реакции и плоскостью, образованной начальным нуклоном и первой конечной частицей.

В приближении однофотонного обмена, показанного на рис. 6 (справа), дифференциальное сечение электророждения мезонов может быть представлено в виде произведения потока виртуальных фотонов (Γ_v) на сечение соответствующего процесса под действием виртуальных фотонов:

$$\frac{d^{n+2}\sigma_e}{dE_{e_i}d\Omega_{e_i}d^n\tau} = \Gamma_v \frac{d^n\sigma_v}{d^n\tau}.$$
(4)

Необходимо иметь в виду, что сечения рассеяния электронов являются полностью модельно-независимыми величинами, измеряемыми в экспериментах. Сечения процессов под действием виртуальных фотонов не могут быть измерены, и их введение связано с модельными предположениями о динамике рассеяния электронов.

Полная информация о процессах, изображенных на рис. 6, содержится в комплексных амплитудах реакции: $\langle \lambda_f | T | \lambda_\gamma \lambda_N \rangle$, где λ_γ — спиральность фотона (±1 для реального фотона и ±1,0 для виртуального), $\lambda_N = \pm 1/2$ — спиральность начального нуклона, λ_f — спиральность конечного адронного состояния.

Комплексные амплитуды реакции фото- и электророждения мезонов могут быть факторизованы и представлены в виде произведения волнового вектора фотона (ε_{μ}) на переходной ток (J^{μ}):

$$\varepsilon_{\mu}(\lambda_{\gamma} = -1)J^{\mu}(\lambda_{N}, \lambda_{f}) = \left\langle \lambda_{f} | T | \lambda_{\gamma} = -1, \lambda_{N} \right\rangle, \quad (5)$$

$$\varepsilon_{\mu}(\lambda_{\gamma}=1)J^{\mu}(\lambda_{N},\lambda_{f}) = \left\langle \lambda_{f}|T|\lambda_{\gamma}=1,\lambda_{N}\right\rangle, \tag{6}$$

$$\varepsilon_{\mu}(\lambda_{\gamma}=0)J^{\mu}(\lambda_{N},\lambda_{f}) = \left\langle \lambda_{f}|T|\lambda_{\gamma}=0,\lambda_{N}\right\rangle.$$
(7)

Вся информация о строении адронов содержится в переходном токе J^{μ} .

Будем работать в лабораторной системе, оси координат которой выбираются следующим образом: ось z направлена вдоль трехимпульса виртуального фотона, ось x лежит в плоскости рассеяния электрона (e, e'), а ось y ей перпендикулярна [19]. В такой системе вектор четырехимпульса фотона записывается следующим образом:

$$q_{\mu} = (q_0; 0, 0, q_z) = \left(\nu; 0, 0, \sqrt{\nu^2 + Q^2}\right),$$
 (8)

где ν — энергия фотона в лабораторной системе, Q^2 — виртуальность фотона.

Векторы поляризации фотонов со спиральностями $\lambda = \pm 1,0$ определяются в лабораторной системе следующими соотношениями [20]:

$$\varepsilon_{\mu}(\lambda_{\gamma}=\pm 1) = \pm \frac{1}{\sqrt{2}}(0; 1, \pm i, 0).$$
(9)

$$\varepsilon_{\mu}(\lambda_{\gamma}=0) = \frac{1}{\sqrt{Q^2}} \left(\sqrt{\nu^2 + Q^2}; 0, 0, \nu\right). \tag{10}$$

Из (5)–(10) и требования градиентной инвариантности $q_{\mu}J^{\mu} = q_0J_0 - q_zJ_z = 0$ получаем следующую связь между спиральными амплитудами и компонентами переходного тока в лабораторной системе:

$$J_{x}(\lambda_{N},\lambda_{f}) = -\frac{\langle \lambda_{f}|T|\lambda_{\gamma}=1,\lambda_{N}\rangle - \langle \lambda_{f}|T|\lambda_{\gamma}=-1,\lambda_{N}\rangle}{\sqrt{2}},$$
(11)

$$J_{y}(\lambda_{N},\lambda_{f}) = i \frac{\langle \lambda_{f} | T | \lambda_{\gamma} = 1, \lambda_{N} \rangle + \langle \lambda_{f} | T | \lambda_{\gamma} = -1, \lambda_{N} \rangle}{\sqrt{2}},$$
(12)

$$J_{z}(\lambda_{N},\lambda_{f}) = \frac{\nu}{\sqrt{Q^{2}}} \langle \lambda_{f} | T | \lambda_{\gamma} = 0, \lambda_{N} \rangle.$$
(13)

В рассматриваемом формализме используются следующие представление матрицы рассеяния и нормировка дираковских спиноров:

$$S = I + i(2\pi)^4 T \delta(P_f - P_i), \quad U_p \overline{U_p} = 2M_N$$

Здесь I — единичный оператор, соответствующий отсутствию взаимодействия (начальное состояние не меняется), T — оператор перехода из состояния i в состояние f, P_f и P_i — полные четырехимпульсы конечных и начальных частиц соответственно.

Для такой параметризации S-матрицы и нормировки дираковских спиноров элемент фазового объема любой конечной частицы с трехимпульсом p_i и энергией E_i определяется выражением

$$\frac{d^3 \boldsymbol{p}_f}{(2\pi)^3 \cdot 2E_f}$$

В соответствии с правилами Фейнмана для КЭД амплитуда процесса, изображенного на рис. 6 (справа), может быть записана следующим образом:

$$M_{eN \to ef}(\lambda_{e_i}, \lambda_{e_j}, \lambda_N, \lambda_f) = \langle \lambda_{e_f} \lambda_f | T | \lambda_{e_i} \lambda_N \rangle =$$

= $4\pi \alpha \overline{u} (\lambda_{e_f}) \gamma^{\mu} u(\lambda_{e_i}) \frac{g^{\mu\nu}}{Q^2} J^{\nu}(\lambda_N, \lambda_f), \quad (14)$

где $j^{\mu} = \overline{u}(\lambda_{e_{f}})\gamma^{\mu}u(\lambda_{e_{i}})$ — лептонный ток; J^{ν} — адронный ток; $\frac{g^{\mu\nu}}{Q^{2}}$ — пропагатор виртуального фотона; $\lambda_{e_{i}}$, $\lambda_{e_{f}}$ — спиральности начального и конечного электрона; λ_{N} — спиральность начального нуклона; λ_{f} — спиральность конечного адронного состояния.

Дифференциальные сечения эксклюзивных реакций электророждения мезонов на нуклонах связаны с амплитудами этих реакций следующим образом:

$$d^{n+2}\sigma_{e} = \frac{1}{4(k_{e}p_{N})} \frac{k^{2}dk_{e_{f}}d\Omega_{e_{f}}}{2E_{e_{f}}(2\pi)^{3}} \times \\ \times \sum_{\lambda_{e_{i}},\lambda_{e_{i}}',\lambda_{e_{f}},\lambda_{e_{f}}'} M^{*}(\lambda_{e_{i}},\lambda_{e_{f}},\lambda_{N},\lambda_{f})M(\lambda_{e_{i}},\lambda_{e_{f}},\lambda_{N},\lambda_{f}) \times \\ \times \rho_{\lambda_{e_{i}}\lambda_{e_{i}}'}\rho_{\lambda_{e_{i}}\lambda_{e_{f}}'}\rho_{\lambda_{N}\lambda_{N}'}\rho_{\lambda_{f}\lambda_{f}'}d\Phi, \quad (15)$$

где $4(k_e p_N) = 4E_{e_i}M_N$ — инвариантный поток начальных электронов; k_e — четырехимпульс начального электрона; p_N — четырехимпульс начального нуклона; $\rho_{\lambda\lambda'}$ — поляризационные матрицы плотности начальных и конечных частиц; $d\Phi$ — элемент фазового объема конечного адронного состояния, который включает в себя дифференциалы кинематических переменных конечного адронного состо-

яния $d^n \tau$ и кинематический фактор $F_{\rm ph}$, соответствующий определенному числу конечных адронов. Например, в случае двух и трех частиц в конечном состоянии элементы фазового объема $d\Phi_2$ и $d\Phi_3$ имеют следующий вид:

$$d\Phi_2 = F_{\rm ph} d^2 \tau = \frac{p}{4\pi^2 4W} d^2 \tau,$$
 (16)

$$d\Phi_3 = F_{\rm ph} d^5 \tau = \frac{1}{32W^2 (2\pi)^5} d^5 \tau.$$
(17)

В формулах (16), (17) *р* — модуль трехимпульса одной из конечных частиц, *W* — инвариантная масса конечного адронного состояния.

Для частиц со спином 1/2 поляризационные матрицы плотности имеют вид:

$$\rho = \frac{1}{2}(\widehat{I} + \boldsymbol{\sigma}\boldsymbol{P}), \qquad (18)$$

где \boldsymbol{P} — трехвектор поляризации частицы, нормированный на единицу; $\boldsymbol{\sigma} = (\sigma_1, \sigma_2, \sigma_3)$ — вектор, составленный из матриц Паули.

В дальнейшем рассмотрим простейший случай рассеяния неполяризованных электронов на неполяризованных нуклонах, при этом поляризация конечных частиц не измеряется. В этом случае поляризационные матрицы плотности для начальных частиц могут быть записаны следующим образом:

$$\rho_{\lambda_{e_i}\lambda'_{e_i}} = \rho_{\lambda_N\lambda'_N} = \frac{1}{2}\delta_{\lambda\lambda'},\tag{19}$$

где λ соответствует λ_{e_i} или λ_N . Фактор $\frac{1}{2}$ соответствует усреднению по всем возможным поляризациям начального состояния.

Матрицы плотности для неполяризизованных конечных частиц определяются символами Кронекера:

$$\rho_{\lambda_{e_j}\lambda'_{e_j}} = \rho_{\lambda_j\lambda'_j} = \delta_{\lambda\lambda'},\tag{20}$$

где λ соответствует λ_{e_i} или λ_i . В этой формуле проводится суммирование по всем возможным поляризациям конечного состояния.

В случае реакции с поляризованными частицами все усложняется, однако вычисления могут быть выполнены с поляризованными матрицами плотности, определяющимися выражением (18).

Используя выражение (14) для амплитуды рассеяния электрона на протоне, а также выражения (19) и (20) для матриц плотности, сечение (15) можно записать в факторизованном виде как произведение двух частей, одна из которых зависит только от электронных токов, а другая — только от адронных токов:

$$d^{n+2}\sigma_{e} = \frac{1}{4(k_{e}p_{N})} \frac{k^{2}dk_{e_{l}}d\Omega_{e_{l}}}{2E_{e_{l}}(2\pi)^{3}} \frac{(4\pi\alpha)^{2}}{Q^{4}} \times \frac{1}{2} \sum_{\lambda_{e_{l}}\lambda_{e_{l}}} (\overline{u}(\lambda_{e_{l}})\gamma^{\mu}u(\lambda_{e_{l}}))^{*} (\overline{u}(\lambda_{e_{l}})\gamma^{\nu}u(\lambda_{e_{l}})) \times \frac{1}{2} \sum_{\lambda_{N}\lambda_{l}} J_{\mu}^{*}J_{\nu} d\Phi. \quad (21)$$

Введем следующие обозначения: $L_{\mu\nu} = \frac{1}{2} \sum_{\lambda_{e_i} \lambda_{e_f}} (\overline{u}(\lambda_{e_f}) \gamma^{\mu} u(\lambda_{e_i}))^* (\overline{u}(\lambda_{e_f}) \gamma^{\nu} u(\lambda_{e_i})) -$ лептонный тензор; $H_{\mu\nu} = \frac{1}{2} \sum_{\lambda_N \lambda_f} J_{\mu}^* J_{\nu}$ — адронный тензор. Адронный тензор зависит от адронных токов, которые содержат в себе исследуемую в эксперименте информацию о динамике адронных процессов и структуре адронов. Лептонный тензор определяется электромагнитными процессами рождения виртуального фотона и может быть вычислен в рамках квантовой электродинамики. В этих обозначениях формула для сечения (21) записывается следующим образом:

$$d^{n+2}\sigma_e = \frac{1}{4(k_e p_N)} \frac{k^2 dk_{e_{\bar{l}}} d\Omega_{e_{\bar{l}}}}{2E_{e_{\bar{l}}}(2\pi)^3} \frac{(4\pi\alpha)^2}{Q^4} L_{\mu\nu} H^{\mu\nu} d\Phi.$$
(22)

Перейдем к вычислению лептонного тензора в рамках КЭД. Будем использовать следущие соотношения: $\overline{u} = u^{\dagger}\gamma^{0}$, $\overline{u}^{\dagger} = \gamma^{0}u$, $\gamma^{0}\gamma^{0} = 1$, $\gamma^{\mu} = \gamma^{0}\gamma^{\mu\dagger}\gamma^{0}$, $\gamma^{0\dagger} = \gamma^{0}$. Тогда

$$\begin{split} L_{\mu\nu} &= \frac{1}{2} \sum_{\lambda_{e_i}\lambda_{e_f}} (\overline{u}(\lambda_{e_f})\gamma^{\mu}u(\lambda_{e_i}))^* (\overline{u}(\lambda_{e_f})\gamma^{\nu}u(\lambda_{e_i})) = \\ &= \frac{1}{2} \sum_{\lambda_{e_i}\lambda_{e_f}} u^{\dagger}(\lambda_{e_i})\gamma^{\mu\dagger}\overline{u}^{\dagger}(\lambda_{e_f})\overline{u}(\lambda_{e_f})\gamma^{\nu}u(\lambda_{e_i}) = \\ &= \frac{1}{2} \sum_{\lambda_{e_i}\lambda_{e_f}} u^{\dagger}(\lambda_{e_i})\gamma^{0}\gamma^{0}\gamma^{\mu\dagger}\gamma^{0}u(\lambda_{e_f})\overline{u}(\lambda_{e_f})\gamma^{\nu}u(\lambda_{e_i}) = \\ &= \frac{1}{2} \sum_{\lambda_{e_i}\lambda_{e_f}} \overline{u}(\lambda_{e_i})\gamma^{0}\gamma^{\mu\dagger}\gamma^{0}u(\lambda_{e_f})\overline{u}(\lambda_{e_f})\gamma^{\nu}u(\lambda_{e_i}) = \\ &= \frac{1}{2} \sum_{\lambda_{e_i}\lambda_{e_f}} \overline{u}(\lambda_{e_i})\gamma^{\mu}u(\lambda_{e_f})\overline{u}(\lambda_{e_f})\gamma^{\nu}u(\lambda_{e_i}) = \\ &= \frac{1}{2} \sum_{\lambda_{e_i}\lambda_{e_f}} \operatorname{Tr}\left\{u(\lambda_{e_i})\overline{u}(\lambda_{e_i})\gamma^{\mu}u(\lambda_{e_f})\overline{u}(\lambda_{e_f})\gamma^{\nu}\right\} = \\ &= \frac{1}{2} \operatorname{Tr}\left\{\left(\sum_{\lambda_{e_i}} u(\lambda_{e_i})\overline{u}(\lambda_{e_i})\right)\gamma^{\mu}\left(\sum_{\lambda_{e_f}} u(\lambda_{e_f})\overline{u}(\lambda_{e_f})\right)\gamma^{\nu}\right\}$$

Для начального и конечного электронов

$$\sum_{\lambda_{e_i}} u(\lambda_{e_i})\overline{u}(\lambda_{e_i}) = \widehat{p}_{e_i} + m = \gamma^{\mu} p_{\mu}^{e_i} + m,$$

$$\sum_{\lambda_{e_i}} u(\lambda_{e_i})\overline{u}(\lambda_{e_i}) = \widehat{p}_{e_i} + m = \gamma^{\mu} p_{\mu}^{e_i} + m.$$

Тогда выражение для лептонного тензора перепишется следующим образом:

$$\begin{split} L_{\mu\nu} &= \frac{1}{2} \operatorname{Tr} \left\{ (\widehat{p}_{e_i} + m) \gamma^{\mu} (\widehat{p}_{e_j} + m) \gamma^{\nu} \right\} = \\ &= \frac{1}{2} \operatorname{Tr} \left\{ \widehat{p}_{e_i} \gamma^{\mu} \widehat{p}_{e_j} \gamma^{\nu} + m \left(\gamma^{\mu} \widehat{p}_{e_j} \gamma^{\nu} + \widehat{p}_{e_i} \gamma^{\mu} \gamma^{\nu} \right) + m^2 \gamma^{\mu} \gamma^{\nu} \right\}. \end{split}$$

Далее учтем, что

$$\begin{array}{l} {\rm Tr} \left\{ \gamma^{\mu}\gamma^{\nu} \right\} = 4g^{\mu\nu}, \\ {\rm Tr} \left\{ \gamma^{\mu}\gamma^{\nu}\gamma^{\lambda} \right\} = 0, \end{array}$$

$$\operatorname{Tr}\left\{\gamma^{\mu}\gamma^{\nu}\gamma^{\lambda}\gamma^{\rho}\right\} = 4\left(g^{\mu\nu}g^{\lambda\rho} - g^{\mu\lambda}g^{\nu\rho} + g^{\mu\rho}g^{\nu\lambda}\right).$$

Тогда лептонный тензор имеет вид

$$L_{\mu\nu} = 2p_{e_i}^{\mu}p_{e_j}^{\nu} + 2p_{e_i}^{\nu}p_{e_j}^{\mu} - g^{\mu\nu}Q^2.$$
(23)

Адронный тензор имеет следующий вид:

$$H_{\mu\nu} = \begin{pmatrix} H_{00} & H_{0x} & H_{0y} & H_{0z} \\ H_{x0} & H_{xx} & H_{xy} & H_{xz} \\ H_{y0} & H_{yx} & H_{yy} & H_{yz} \\ H_{z0} & H_{zx} & H_{zy} & H_{zz} \end{pmatrix} = \\ = \frac{1}{2} \begin{pmatrix} J_0 J_0^* & J_0 J_x^* & J_0 J_y^* & J_0 J_z^* \\ J_x J_0^* & J_x J_x^* & J_x J_y^* & J_x J_z^* \\ J_y J_0^* & J_y J_x^* & J_y J_y^* & J_y J_z^* \\ J_z J_0^* & J_z J_x^* & J_z J_y^* & J_z J_z^* \end{pmatrix}. \quad (24)$$

Перейдем теперь к сечению под действием виртуальных фотонов (формула (4)). Для начала введем следующие обозначения:

$$\varepsilon_{\mathrm{T}} = \left[1 + 2\left(1 + \frac{\nu^2}{Q^2}\right) \mathrm{tg}^2 \frac{\theta_{e_{\mathrm{f}}}}{2}\right]^{-1},\qquad(25)$$

$$\varepsilon_{\rm L} = \frac{Q^2}{\nu^2} \varepsilon_{\rm T}.$$
 (26)

В формулах (25) и (26) $\varepsilon_{\rm T}$ — степень поперечной поляризации виртуального фотона, $\varepsilon_{\rm L}$ — степень продольной поляризации виртуального фотона, $\nu = E_{e_i} - E_{e_j}$, θ_{e_j} — угол рассеяния конечного электрона в лабораторной системе.

Используя факторизацию (5), (6), (7), сечение под действием виртуальных фотонов может быть записано в следующем виде:

$$d^{n}\sigma_{v} = \frac{4\pi\alpha}{4KM_{N}} \sum_{\lambda_{\gamma}\lambda_{\gamma}'} \varepsilon_{\nu}^{*}(\lambda_{\gamma}')\varepsilon_{\mu}(\lambda_{\gamma})\rho_{\lambda_{\gamma}\lambda_{\gamma}'} \times \frac{1}{2} \sum_{\lambda_{N}\lambda_{f}} J_{\mu}^{*}(\lambda_{N}\lambda_{f})J_{\nu}(\lambda_{N}\lambda_{f}) \left[\frac{1}{2}\left(\frac{1-\varepsilon_{T}}{Q^{2}}\right)\right] d\Phi, \quad (27)$$

где $\rho_{\lambda_{\gamma}\lambda_{\gamma}}$ — поляризационная матрица плотности виртуального фотона в спиральном представлении [21]. Нормировочные факторы в квадратных скобках определены требованием, чтобы выражение (27) при $Q^2 \rightarrow 0$ переходило в сечение реакции под действием реальных фотонов. Первый сомножитель в квадратных скобках $\frac{1}{2}$ учитывает усреднение по двум начальным состояниям реального фотона со спиральностями +1 и -1. Второй сомножитель в квадратных скобках сокращается с результатом свертки лептонного и адронного тензоров в (27). Произведение $4KM_N$ — инвариантный поток фотонов, эквивалентный инвариантному потоку реальных фотонов; $K = \frac{W^2 - M_N^2}{2M_N}$ — энергия фотона в лабораторной системе при $Q^2 = 0$ (т. е. эквивалентная энергия реального фотона).

~?

Измеряемое сечение электронного рассеяния (22) удовлетворяет равенству (4), если

$$\begin{split} L_{\mu\nu} &= \sum_{\lambda_{\gamma}\lambda'_{\gamma}} \varepsilon_{\nu}^{*}(\lambda'_{\gamma})\varepsilon_{\mu}(\lambda_{\gamma})\rho_{\lambda_{\gamma}\lambda'_{\gamma}},\\ \Gamma_{v} &= \frac{\alpha}{4\pi^{2}} \frac{W^{2} - M_{N}^{2}}{Q^{2}(1 - \varepsilon_{\mathrm{T}})} \frac{E_{e_{i}}}{E_{e_{i}}M_{N}}. \end{split}$$

Согласно (4), сечение реакции под действием виртуальных фотонов может быть умножено на произвольный фактор, а поток виртуальных фотонов разделен на этот фактор, при этом измеряемое сечение электронного рассеяния останется неизменным.

Выразим сечение (27) через компоненты переходного тока. Для этого проведем свертку лептонного и адронного тензоров по индексам μ , ν . Поскольку векторы поляризации виртуального фотона $\varepsilon_{\mu}(\lambda_{\gamma})$ определены в лабораторной системе, компоненты лептонного и адронного тензоров должны быть также получены в лабораторной системе.

Тензоры $L_{\mu\nu}$ и $H_{\mu\nu}$ в общем случае содержат 16 компонент (μ , $\nu = 0$, x, y, z в формулах (23) и (24)). Однако условие калибровочной инвариантности приводит к тому, что независимыми оказываются только 9 компонент лептонного и адронного тензоров $L_{\mu\nu}$, $H_{\mu\nu}$ с μ , $\nu > 0$, а 7 компонент $L_{0\nu}$, $L_{\mu0}$ (и $H_{0\nu}$, $H_{\mu0}$) могут быть вычислены из независимых компонент. Согласно условию калибровочной инвариантности

$$\begin{aligned} q_{\mu}j^{\mu} &= q_{0}j_{0} - (\boldsymbol{q}\boldsymbol{j}) = 0 \Rightarrow j_{0} = \frac{q_{z}J_{z}}{q_{0}}, \\ q_{\mu}J^{\mu} &= q_{0}J_{0} - (\boldsymbol{q}\boldsymbol{J}) = 0 \Rightarrow J_{0} = \frac{q_{z}J_{z}}{q_{0}}. \end{aligned}$$

Здесь $q_{\mu} = (q_0, 0, 0, q_z)$ — четырехимпульс фотона.

Тогда комбинация $j_{\mu}J^{\mu}$ может быть переписана следующим образом:

$$\begin{aligned} j_{\mu}J^{\mu} &= j_{0}J_{0} - (j_{x}J_{x} + j_{y}J_{y} + j_{z}J_{z}) = \\ &= -\left(j_{x}J_{x} + j_{y}J_{y} + \left(1 - \frac{q_{z}^{2}}{q_{0}^{2}}\right)j_{z}J_{z}\right) = \\ &= -\left(j_{x}J_{x} + j_{y}J_{y} - \frac{Q^{2}}{\nu^{2}}j_{z}J_{z}\right).\end{aligned}$$

Таким образом, можно исключить из рассмотрения скалярные (0) компоненты токов в свертке тензоров и ограничиться сверткой только пространственных компонент (x, y, z), домножив продольные (z) компоненты на фактор $-\frac{Q^2}{\nu^2}$. Необходимо отметить, что существует произвол в учете этого фактора: он может быть учтен только в лептонной части свертки тензоров [22] либо как в лептонной, так и в адронной части с разным учетом знака [19, 21, 23]. Результат свертки тензоров от способа учета этого фактора не зависит.

Учтем фактор $-\frac{Q^2}{\nu^2}$ в лептонной части свертки [22]. Тогда после исключения из рассмотрения скалярных компонент лептонный тензор становится матрицей 3×3 и записывается следующим образом:

$$\mu\nu = \frac{Q^2}{1 - \varepsilon_{\rm T}} \times \begin{pmatrix} 1 + \varepsilon_{\rm T} & 0 & -\sqrt{2\varepsilon_{\rm L}(1 + \varepsilon_{\rm T})} \\ 0 & 1 - \varepsilon_{\rm T} & 0 \\ -\sqrt{2\varepsilon_{\rm L}(1 + \varepsilon_{\rm T})} & 0 & 2\varepsilon_{\rm L} \end{pmatrix}.$$
(28)

Свертка тензоров пропорциональна фактору $\frac{Q^2}{1-\varepsilon_T}$, который сокращается с фактором в квадратных скобках в формуле (27), и сечение выражается через компоненты переходного тока следующим образом:

$$\frac{d^{n}\sigma_{v}}{d^{n}\tau} = \frac{4\pi\alpha}{4KM_{N}} \sum_{\lambda_{N}\lambda_{f}} \frac{1}{2} \left\{ \frac{J_{x}^{*}J_{x} + J_{y}^{*}J_{y}}{2} + \varepsilon_{L}J_{z}^{*}J_{z} + \varepsilon_{T}\frac{J_{x}^{*}J_{x} - J_{y}^{*}J_{y}}{2} - \sqrt{2\varepsilon_{L}(1+\varepsilon_{T})}\frac{J_{x}^{*}J_{z} + J_{z}^{*}J_{x}}{2} \right\} F_{\text{ph}}.$$
(29)

Здесь $F_{\rm ph}$ — кинематический фактор фазового объема конечного адронного состояния, определяющийся количеством конечных частиц (например, формулы (16) и (17)).

Рассмотрим подробнее матрицу (28). Тензор $L_{\mu\nu}$ определяет динамику процесса формирования виртуального фотона в электронном рассеянии (рис. 6, справа). Можно определить матрицу плотности виртуального фотона ρ_{ij}^v (в представлении линейных поляризаций) следующим образом [24]:

$$\rho_{ij}^{\upsilon} = \frac{1 - \varepsilon_{\mathrm{T}}}{2Q^2} L_{ij} = \begin{pmatrix} \frac{1}{2}(1 + \varepsilon_{\mathrm{T}}) & 0 & -\frac{1}{2}\sqrt{2\varepsilon_{\mathrm{L}}(1 + \varepsilon_{\mathrm{T}})} \\ 0 & \frac{1}{2}(1 - \varepsilon_{\mathrm{T}}) & 0 \\ -\frac{1}{2}\sqrt{2\varepsilon_{\mathrm{L}}(1 + \varepsilon_{\mathrm{T}})} & 0 & \varepsilon_{\mathrm{L}} \end{pmatrix}.$$
(30)

Диагональные элементы матрицы ρ_{ij}^v определяют вероятность найти фотон в поляризованном состоянии с линейной поляризацией, направленной вдоль осей x, y, z соответственно. Параметр ε_L определяет вероятность найти фотон с поляризацией, направленной вдоль оси z, параметр ε_T определяет вероятность найти фотон с поперечной поляризацией с компонентами вдоль осей x, y.

Матрица (30) согласуется с матрицей плотности ρ_{ij}^r (i, j = x, y, z) для частично поляризованного пучка реальных фотонов с относительной поляризацией $\frac{1}{2}(1 + \varepsilon_{\rm T})$ в направлении оси x и $\frac{1}{2}(1 - \varepsilon_{\rm T})$ в направлении оси y [22, 24, 25]:

$$\rho_{ij}^{r} = \begin{pmatrix} \frac{1}{2}(1+\varepsilon_{\rm T}) & 0 & 0\\ 0 & \frac{1}{2}(1-\varepsilon_{\rm T}) & 0\\ 0 & 0 & 0 \end{pmatrix}.$$
 (31)

В случае неполяризованного реального фотона, с равными вероятностями находящегося в состо0Õ0.

яниях с линейной поляризацией вдоль осей x, y, матрицы (30) и (31) сводятся к виду $\begin{pmatrix} \frac{1}{2} & 0 & 0\\ 0 & \frac{1}{2} & 0 \end{pmatrix}$.

В процессе электронного рассеяния *є*т отлично от 0. Образующийся виртуальный фотон поляризован в поперечной плоскости, вследствие чего возникает φ -зависимость сечения. Согласно (25) и (26), если $\varepsilon_T \neq 0$, то и $\varepsilon_L \neq 0$, поэтому формирование поперечного виртуального фотона неизбежно приводит к формированию фотона с продольной поляризацией. В матрице (30) появляются недиагональные элементы, что свидетельствует о том, что виртуальный фотон всегда находится в смешанном состоянии. Это смешанное состояние не может быть описано волновой функцией, а может быть описано лишь поляризационной матрицей плотности. Таким образом, в экспериментах с неполяризованным пучком электронов всегда формируется поляризованный фотон, степень поляризации которого определяется кинематикой реакции и хорошо контролируется в эксперименте. Это обстоятельство значительно расширяет возможности доступа к механизмам исследуемых процессов в реакциях рассеяния электронов.

Определим φ -зависимость сечения в формуле (29). Амплитуда $\langle \lambda_{f} | T | \lambda_{\gamma} \lambda_{N} \rangle$ процесса образования конечного адронного состояния λ_{f} может быть факторизована в виде

$$\langle \lambda_f | T | \lambda_\gamma \lambda_N \rangle = \langle \lambda_f | T | \lambda_\gamma \lambda_N \rangle_0 e^{i(\lambda_\gamma - \lambda_N)\varphi}, \qquad (32)$$

где $\langle \lambda_j | T | \lambda_\gamma \lambda_N \rangle_0$ вычислен при угле $\varphi = 0$. Подставим выражения (11), (12), (13) в формулу (29) и выразим каждый член в фигурных скобках в формуле (29) через соответствующие $\langle \lambda_j | T | \lambda_\gamma \lambda_N \rangle_0$, согласно (32). Для краткости записи будем обозначать

$$egin{aligned} &\langle\lambda_{\dot{f}}|T|\lambda_{\gamma}=-1\lambda_{N}
angle_{0}=M_{0}^{-1}(\lambda_{N},\lambda_{f}),\ &\langle\lambda_{\dot{f}}|T|\lambda_{\gamma}=+1\lambda_{N}
angle_{0}=M_{0}^{+1}(\lambda_{N},\lambda_{f}),\ &\langle\lambda_{\dot{f}}|T|\lambda_{\gamma}=0\lambda_{N}
angle_{0}=M_{0}^{0}(\lambda_{N},\lambda_{f}). \end{aligned}$$

Первые два члена в фигурных скобках формулы (29) дают не зависящий от угла φ вклад в сечение эксклюзивной реакции и записываются следующим образом:

$$\begin{split} \sigma_{\mathrm{T}} + \varepsilon_{\mathrm{L}} \sigma_{\mathrm{L}} &= \frac{1}{2} \sum_{\lambda_{N}, \lambda_{f}} \left[M_{0}^{-1} (\lambda_{N}, \lambda_{f})^{2} + M_{0}^{+1} (\lambda_{N}, \lambda_{f})^{2} \right] + \\ &+ \varepsilon_{\mathrm{L}} \frac{\nu^{2}}{Q^{2}} \sum_{\lambda_{N}, \lambda_{f}} M_{0}^{0} (\lambda_{N}, \lambda_{f})^{2}. \end{split}$$

Третий член в фигурных скобках формулы (29) обусловлен интерференцией амплитуд с различными состояниями поперечно поляризованных фотонов ($\lambda_{\gamma} = \pm 1$), обозначается «TT» (transverse-transverse) и записывается следующим образом:

$$\varepsilon_{\mathrm{T}}(\sigma_{\mathrm{TT}}\cos 2\varphi + \sigma_{\mathrm{TT}}'\sin 2\varphi) =$$

= $\varepsilon_{\mathrm{T}} \bigg[-\operatorname{Re} \sum_{\lambda_{N}\lambda_{j}} M_{0}^{-1}(\lambda_{N},\lambda_{j})^{*} M_{0}^{+1}(\lambda_{N},\lambda_{j})\cos 2\varphi +$

+ Im
$$\sum_{\lambda_N \lambda_j} M_0^{-1}(\lambda_N, \lambda_j)^* M_0^{+1}(\lambda_N, \lambda_j) \sin 2\varphi \bigg].$$

Четвертый член в фигурных скобках формулы (29) обусловлен интерференцией амплитуд с продольно ($\lambda_{\gamma} = 0$) и поперечно ($\lambda_{\gamma} = \pm 1$) поляризованными виртуальными фотонами, обозначается «TL» (transverse-longitudinal) и записывается следующим образом:

$$\sqrt{2\varepsilon_{\rm L}(1+\varepsilon_{\rm T})}(\sigma_{\rm TL}\cos\varphi+\sigma_{\rm TL}'\sin\varphi) = \sqrt{2\varepsilon_{\rm L}(1+\varepsilon_{\rm T})} \times \\ \times \frac{\nu}{\sqrt{2Q^2}} \left[-\operatorname{Re}\sum_{\lambda_N\lambda_j} (M_0^0(\lambda_N,\lambda_j)M_0^{-1}(\lambda_N,\lambda_j)^* - \\ -M_0^0(\lambda_N,\lambda_j)^*M_0^{-1}(\lambda_N,\lambda_j))\cos\varphi + \\ +\operatorname{Im}\sum_{\lambda_N\lambda_j} (M_0^0(\lambda_N,\lambda_j)M_0^{-1}(\lambda_N,\lambda_j)^* - \\ -M_0^0(\lambda_N,\lambda_j)^*M_0^{-1}(\lambda_N,\lambda_j))\sin\varphi \right].$$

Тогда формула для сечения приобретает вид

$$\frac{d^{n}\sigma_{v}}{d^{n}\tau} = \frac{4\pi\alpha}{4KM_{N}} \times \frac{1}{2} \sum_{\lambda_{N}\lambda_{f}} \left\{ \sigma_{T} + \varepsilon_{L}\sigma_{L} + \varepsilon_{T}(\sigma_{TT}\cos 2\varphi + \sigma_{TT}'\sin 2\varphi) + \sqrt{2\varepsilon_{L}(1+\varepsilon_{T})}(\sigma_{TL}\cos\varphi + \sigma_{TL}'\sin\varphi) \right\} F_{\text{ph}}.$$
 (33)

Таким образом, дифференциальное сечение любой реакции эксклюзивного электророждения содержит φ -зависимые и φ -независимые части. Последние определяются произведением амплитуд электророждения под действием фотона с одинаковыми спиральными состояниями, а φ -зависимые части сечения определяются интерференцией амплитуд электророждения мезонов с разными спиральными состояниями фотона.

Функции $\sigma_{\rm T}$, $\sigma_{\rm L}$, $\sigma_{\rm TT}$, $\sigma_{\rm TT}'$, $\sigma_{\rm TL}'$ и $\sigma_{\rm TL}'$ получили название структурных функций эксклюзивного рождения мезонов. Они зависят от переменных W и Q^2 (или E_{e_i} и Ω_{e_i}) и всех кинематических переменных конечного состояния, за исключением φ . Используя различия в φ -зависимостях различных частей дифференциального сечения, можно извлечь из измеренных сечений все перечисленные выше структурные функции.

Если проинтегрировать выражение (33) по φ , то все интерференционные вклады (третий и четвертый члены в фигурных скобках, соответствующие $\sigma_{\rm TT}$, $\sigma'_{\rm TT}$ и $\sigma_{\rm TL}$, $\sigma'_{\rm TL}$), исчезнут, останется лишь неполяризованная часть сечения (первые два члена в фигурных скобках, соответствующие $\sigma_{\rm T} + \varepsilon_{\rm L} \sigma_{\rm L}$). Наличие продольной поляризации фотонов не приводит к φ -зависимостям сечений, так как вектор их поляризации направлен вдоль оси z. Интегрирование сечения по φ отвечает усреднению по поляризационным состояниям виртуального фотона.

Рассмотрим наиболее простые реакции рождения системы из двух частиц *m*_{PS}*b* (псевдоскалярный мезон — барион) на нуклоне *N* под действием

реальных или виртуальных фотонов. К их числу относятся следующие реакции:

$$\begin{split} \gamma_{r,v} + N &\to \pi + N, \\ \gamma_{r,v} + N &\to \eta + N, \\ \gamma_{r,v} + N &\to K + \Lambda, \\ \gamma_{r,v} + N &\to K + \Sigma. \end{split}$$

В электромагнитных и сильных взаимодействиях выполняется закон сохранения четности. Это налагает следующее условие на амплитуды реакций в случае двух частиц в конечном состоянии [26]:

$$\begin{aligned} \langle \lambda_{\rm m_{PS}} \lambda_b | T | \lambda_\gamma \lambda_N \rangle &= \eta_{\rm m_{PS}} \eta_b \eta_\gamma \eta_N \times \\ \times (-1)^{S_{\rm m_{PS}} + S_b - S\gamma - S_N} \langle -\lambda_{\rm m_{PS}} - \lambda_b | T | - \lambda_\gamma - \lambda_N \rangle, \quad (34) \end{aligned}$$

где η_i , S_i и λ_i — внутренняя четность, спин и спиральность частицы *i* соответственно.

Формула (34) применима только к реакциям с двумя частицами в конечном состоянии. Следствием этой формулы является тот факт, что σ'_{TT} и σ'_{TL} (члены при $\sin 2\varphi$ и $\sin \varphi$ соответственно) тождественно обнуляются, что приводит к известной φ -зависимости сечения ($\sim A + B \cos \varphi + C \cos 2\varphi$). В случае большего числа частиц в конечном состоянии (например, в случае реакции $\gamma_{r,v} + N \rightarrow m_{PS} + m_{PS} + b$) необходимо учитывать все члены формулы.

Также необходимо отметить тот факт, что σ'_{TT} и σ'_{TL} обнуляются при интегрировании по углу α_1 (угол между плоскостью продуктов реакции и плоскостью, образованной начальным нуклоном и первой конечной частицей).

Формализм описания реакций электророждения при $Q^2 \rightarrow 0$ должен переходить в формализм описания реакции фоторождения. Рассмотрим поведение (29) при $Q^2 \rightarrow 0$. В этом пределе $\varepsilon_L \rightarrow 0$. Для описания процессов под действием неполяризованного пучка реальных фотонов нужно положить $\varepsilon_T = 0$. Тогда (29) сводится к выражению

$$\frac{d^{n}\sigma_{r}}{d^{n}\tau} = \frac{4\pi\alpha}{4k_{\gamma}M_{N}}\frac{1}{2}\frac{1}{2}\sum_{\lambda_{\gamma},\lambda_{N},\lambda_{j}}|\langle\lambda_{\gamma}\lambda_{N}|T|\lambda_{j}\rangle|^{2}F_{\text{ph}}.$$
 (35)

Величина $4k_{\gamma}M_N$ представляет собой инвариантный поток реальных фотонов, k_{γ} — энергия реального фотона. Два фактора $\frac{1}{2}$ отвечают усреднению по двум спиральным состояниям реального фотона ± 1 и двум спиральным состояниям начального протона $\pm \frac{1}{2}$.

Формула (35) совпадает с выражением, связывающим сечение эксклюзивных каналов фоторождения мезонов с амплитудами процессов, полученным в рамках общих принципов теории поля [20].

Таким образом, при $Q^2 \rightarrow 0$ сечение эксклюзивных реакций электророждения мезонов на неполяризованном нуклоне под действием неполяризованных электронов переходит в сечение реакций под действием реальных неполяризованных фотонов на неполяризованном нуклоне. Это свидетельствует об универсальности развитого формализма описания эксклюзивных реакций под действием реальных и виртуальных фотонов.

4. Эксперименты по фото- и электророждению мезонов на свободных протонах

В этом разделе приводится обзор последних данных по наблюдаемым различных эксклюзивных реакций фото- и электророждения мезонов на протонах [1, 2], а также обсуждается возможность извлечения информации о возбужденных состояниях нуклона из этих данных.

4.1. Фоторождение мезонов

Эксперименты с фотонными пучками [1] проводятся в Лаборатории Томаса Джефферсона (JLab) на детекторе CLAS в городе Ньюпорт-Ньюс (США), на различных установках на ускорителе ELSA (Crystal Barrel - CB-ELSA, CB-ELSA/TAPS, SAPHIR) в Бонне (Германия), на ускорителе MAMI (Crystal Ball, TAPS) в Майнце (Германия), в Гренобле (Франция) на установке GRAAL, а также на ускорителе SPrng-8 (LEPS) в Осаке (Япония). В JLab, ELSA и MAMI для получения фотонного пучка используется техника тормозного излучения, а на установках GRAAL и SPring-8 (LEPS) — техника обратного комптоновского рассеяния. Основная часть информации по наблюдаемым различных эксклюзивных каналов фоторождения мезонов в резонансной области получена из данных детектора CLAS (табл. 2).

В табл. 2: Y_{ij} — моменты разложения по сферическим функциям $Y_{l,m}$ углового распределения $\pi^+\pi^ (i, j = 0, 1, 2, 3, 4, i \leq j); \frac{d^2\sigma_l}{dtdM_{\pi\pi}}$ — дифференциальное сечение парциальных волн $l; \frac{d^2\sigma_{l0,\pm}}{dtdM_{\pi\pi}}$ — дифференциальное сечение для парциальной волны l со спиральностью пионов $\lambda_{\pi\pi} = 0, \pm 1; \rho_{ij}^0$ — элементы матрицы плотности $(i = 0, 1, j = 0, \pm 1, |i| \leq |j|); Y(\pm)$ — выход асимметрии фотонного пучка; C_x, C_z — асимметрии поляризованного гиперона отдачи; P_{Σ} — поляризация Σ -бариона.

В настоящее время накоплена обширная информация о дифференциальных сечениях реакций $\gamma p \rightarrow \pi^0 p$ и $\gamma p \rightarrow \pi^+ n$ [28]. Среди поляризационных наблюдаемых этих реакций наиболее изучена асимметрия пучка Σ (GRAAL, ELSA). Кроме того, доступна некоторая информация об асимметриях Tс поляризованной мишенью, поляризациях P барионов отдачи [28] и о некоторых двойных поляризационных наблюдаемых. В 2012 г. CB-ELSA/TAPS предоставила первые данные о двойной поляризационной наблюдаемой G для конечного состояния $\pi^0 p$.

О дифференциальных сечениях реакции $\gamma p \rightarrow \eta p$ также накоплено много информации с высокой статистикой. Измерения поляризационных наблюдаемых с необходимой для физического анализа точностью в этом канале существуют только для асиммет-

Таблица 2 Данные коллаборации CLAS по наблюдаемым эксклюзивных каналов фоторождения мезонов с конечными состояниями $\pi N, \pi \pi N, \eta N, K \Sigma, K \Lambda$ [27]

Наблюдаемые	Конечное состояние	₩, ГэВ	
$\frac{d\sigma}{d\Omega}$	$\pi^0 p$	1.5-2.5	
$\frac{d\sigma}{d\Omega}$	$\pi^+ n$	2.1-2.5	
$\frac{d\sigma}{d\Omega}$	ηp	0.8-2.8	
$T_{ij}, \ \frac{d^2\sigma_l}{dt dM_{\pi\pi}}, \ \frac{d^2\sigma_{l0,\pm}}{dt dM_{\pi\pi}}, \ \rho_{ij}^0, \ \frac{d\sigma}{dt}$	$\pi^+\pi^-p$	2.6-2.8	
$Y(\pm)$	$\pi^+\pi^-p$	1.4-2.3	
$\frac{d\sigma}{d\cos(\theta_K^{\rm cm})}$	$K^+\Sigma^0, K^+\Lambda$	1.7-2.5	
C_x, C_z	$K^+\Sigma^0,~K^+\Lambda$	1.8-2.5	
$\frac{d\sigma}{d\cos(\theta_K^{cm})}, P_{\Sigma}$	$K^+\Sigma^0, K^+\Lambda$	1.7-2.8	

рии пучка Σ (CB-ELSA/TAPS, GRAAL). Некоторые другие наблюдаемые, в том числе двойные поляризационные, скоро будут доступны из данных ELSA и CLAS.

Последнее время большое внимание уделяется исследованиям реакций $\gamma p \to K^+ Y$ ($Y = \Sigma^0, \Lambda$). Дифференциальные сечения для конечных состояний $K^+\Lambda$ и $K^+\Sigma^0$ были измерены с хорошей статистикой на установках CLAS, ELSA/SAPHIR, GRAAL и LEPS. Шагом вперед в изучении этих каналов стали данные об асимметриях отдачи $C_{x,z}$ (CLAS) и $O_{x,z}$ (GRAAL). Кроме того, на установке GRAAL получена информация об асимметрии мишени T.

Сечения фоторождения двух нейтральных пионов на протоне извлекались в лабораториях ELSA, GRAAL, MAMI. Реакция $\gamma n \to \pi^0 \pi^0 n$ изучалась на установке GRAAL. Фоторождение двух заряженных пионов изучалось на SAPHIR, а также на детекторе CLAS. Данных о поляризационных наблюдаемых для этих каналов очень мало. В MAMI была измерена асимметрия циркулярно-поляризованного пучка I^{\odot} для реакций $\gamma p \pi^+ \pi^- p$, $\pi^+ \pi^0 n$ и $\pi^0 \pi^0 p$, а также асимметрия P_z^{\odot} для конечного состояния $\pi^+ \pi^- p$. Кроме того, некоторая информация об асимметрии линейно-поляризованного пучка фотонов Σ для этой реакции доступна из экспериментов GRAAL.

Реакция $\gamma p \rightarrow \pi^0 \eta p$ изучалась в лабораториях GRAAL, MAMI и ELSA. Опубликованные результаты включают сечения и первые данные о асимметриях пучка с круговой и линейной поляризацией.

В работах [17, 29] исследовались возможности извлечения амплитуд эксклюзивных реакций фоторождения псевдоскалярных мезонов на нуклонах из накопленной экспериментальной информации о наблюдаемых этих реакций. В этих работах было показано, что совместный анализ опубликованных и ожидаемых данных по сечениям и поляризационным асимметриям позволит извлечь амплитуды реакций, при этом точность извлечения будет возрастать с увеличением числа вовлеченных в анализ наблюдаемых.

Определив амплитуды эксклюзивного фоторождения мезонов, можно получить информацию о спектре возбужденных состояний нуклона из положения полюсов амплитуд в комплексной плоскости $W = \sqrt{s}$ (подробнее — в разд. 2). На рис. 7 приведен спектр возбужденных состояний нуклона. Центры полос соответствуют массам известных возбужденных состояний, а вертикальный размер полос — их ширинам. Рамками выделены состояния, обнаруженные за последние годы [30, 31].

Дальнейшее накопление информации о дифференциальных сечениях и поляризационных наблюдаемых эксклюзивных реакций фоторождения мезонов позволит завершить поиск новых барионных состояний, так называемых «missing» резонансов, предсказываемых кварковыми моделями [12] и результатами расчетов спектра N^* в рамках LQCD [32, 33].

4.2. Электророждение мезонов

Эксперименты с пучками электронов [2] проводятся в Лаборатории Томаса Джефферсона (JLab) в США, на установке МАМІ в Майнце и MIT/Bates в США.

Эксперименты MAMI и MIT/Bates были ограничены в основном реакцией $ep \rightarrow e\pi^0 p$ в области Δ (1232)-резонанса при $Q^2 < 0.2 \ \Gamma \Rightarrow B^2$. В этих экспериментах были измерены дифференциальные сечения, асимметрия продольно-поляризованного пучка

Рис. 7. Спектр возбужденных состояний нуклона. Центры полос соответствуют массам известных возбужденных состояний, а вертикальный размер полос — их ширинам. Рамками выделены состояния, обнаруженные за последние годы [30, 31]

таолица о

Наблюдаемые	Конечное состояние	Q^2 , Гэ B^2	<i>W</i> , ГэВ
$\frac{d\sigma}{d\Omega}$	$\pi^0 p, \pi^+ n$	0.16-0.36	1.1-1.4
$rac{d\sigma}{d\Omega}$	$\pi^0 p$	0.4-1.8	1.1-1.7
$\frac{d\sigma}{d\Omega}$	$\pi^0 p$	3.0-6.0	1.1-1.4
A _{LT'}	$\pi^0 p$	0.4, 0.65	1.1-1.7
$A_t, A_{\rm et}$	$\pi^0 p$	0.25, 0.39, 0.61	1.1-1.6
$rac{d\sigma}{d\Omega}$	$\pi^+ n$	0.3-0.6	1.1-1.6
$\frac{d\sigma}{d\Omega}, A_{\rm LT'}$	$\pi^+ n$	1.7-4.5	1.1-1.7
A _{LT'}	$\pi^+ n$	0.4, 0.65	1.1-1.7
$\frac{d\sigma}{d\Omega}$	ηρ	0.38-1.39	1.5-1.9
$\frac{d\sigma}{d\Omega}$	ηρ	0.17-3.1	1.5-2.3
$rac{d\sigma}{dM_{ m inv}^{ij}}, rac{d\sigma}{d\psi_i}, rac{d\sigma}{d\varphi_i}, rac{d\sigma}{d(-\cos(heta_i))}$	$\pi^+\pi^-p$	0.5-1.1	1.4-1.9
$\frac{d\sigma}{dM_{\rm inv}^{ij}}, \frac{d\sigma}{d\psi_i}, \frac{d\sigma}{d\varphi_i}, \frac{d\sigma}{d(-\cos(\theta_i))}$	$\pi^+\pi^-p$	1.1-1.5	1.4-2.1
σ	$\pi^+\pi^-p$	0.65-1.3	1.4-2.1
$\frac{d\sigma}{dM_{inv}^{ij}}, \frac{d\sigma}{d\psi_i}, \frac{d\sigma}{d\varphi_i}, \frac{d\sigma}{d(-\cos(\theta_i))}, \sigma, A_i, B_i, C_i$	$\pi^+\pi^-p$	0.2-0.6	1.3-1.6
$\sigma, \sigma_{\mathrm{TT}}, \sigma_{\mathrm{TL}}, \frac{\sigma_{\mathrm{L}}}{\sigma_{\mathrm{T}}}, \frac{d\sigma}{d\Omega}$	$K^+\Sigma^0$	0.65 - 2.55	1.7-2.3
$\sigma, \sigma_{\mathrm{TT}}, \sigma_{\mathrm{TL}}, \sigma_{\mathrm{LT}'}, \frac{\sigma_{\mathrm{L}}}{\sigma_{\mathrm{T}}}, \frac{d\sigma}{d\Omega}$	$K^+\Lambda$	0.65-2.55	1.7-2.4

Данные коллаборации CLAS по наблюдаемым эксклюзивных каналов электророждения мезонов с конечными состояниями πN , $\pi \pi N$, ηN , $K\Sigma$, $K\Lambda$ [27]

 $A_{\rm LT'}$, структурные функции, а также поляризация конечного протона P. Некоторая информация о дифференциальных сечениях этой реакции также доступна из данных JLab/Hall-A и JLab/Hall-C.

В JLab/Hall-А были получены 16 функций отклика для реакции $ep \rightarrow e\pi^0 p$, 12 из них были измерены впервые. Из данных JLab/Hall-С доступна некоторая информация о дифференциальных сечениях реакции $ep \rightarrow e\eta p$.

Большая часть новых данных получена на детекторе CLAS (JLab/Hall-B). Наблюдаемые, измеренные в экспериментах на детекторе CLAS для различных эксклюзивных каналов электророждения мезонов, приведены в табл. 3.

В табл. 3: $A_{\text{LT}'}$ — асимметрия продольно-поляризованного пучка для реакции $ep \rightarrow e\pi N$; A_t и A_{et} — асимметрии мишени и пучок-мишень, M_{inv}^{ij} — инвариантная масса пары конечных частиц $(i, j = \pi^+, \pi^-, p); A_i, B_i, C_i$ — структурные функции конечных частиц (неполяризованная, TT, LT соответственно) $(i = \pi^+, \pi^-, p)$.

В настоящее время развито несколько моделей для извлечения амплитуд электровозбуждения нуклонных резонансов из независимого анализа наблюдаемых эксклюзивных каналов электророждения мезонов на протонах с конечными состояниями π^+n , $\pi^0 p$ [34, 35], ηp [36], $\pi^+\pi^-p$ [18, 37]. Группой Argonne–Osaka развивается подход для извлечения амплитуд электровозбуждения N^* из глобального анализа всех имеющихся данных для восьми каналов электророждения мезонов на протонах с конечными состояниями π^+n , $\pi^0 p$, ηp , $\pi^+\pi^-p$, $\pi^+\pi^0 n$, $\pi^0\pi^0 p$, $K\Lambda$, $K\Sigma$ в методе связанных каналов [38].

Анализ данных CLAS по реакциям электророждения одиночных пионов и пар заряженных пионов на протонах позволил впервые получить информацию об амплитудах электровозбуждения почти всех хорошо установленных нуклонных резонансов в области W < 1.8 ГэВ. Амплитуды электровозбуждения N^* определены при $Q^2 < 5.0$ ГэВ² для каналов πN и при $Q^2 < 1.5 \ \Gamma
ightarrow B^2$ для канала $\pi^+\pi^-p$. На рис. 8 для примера приведены зависимости некоторых амплитуд электровозбуждения трех резонансов от виртуальности фотона Q^2 , полученные из анализа наблюдаемых этих двух реакций. Хорошее согласие результатов анализа двух основных каналов электророждения мезонов с абсолютно различными нерезонансными вкладами свидетельствует о надежности извлечения амплитуд электровозбуждения N^* в рамках моделей реакций [18, 34, 35, 37].

Детальная информация о Q^2 -эволюции амплитуд электровозбуждения большого числа возбужденных состояний нуклона открывает качественно новые возможности для изучения структуры барионов и для исследования всей совокупности проявлений механизмов сильного взаимодействия в непертурбативной области.

Заключение

Эксклюзивные реакции фото- и электророждения мезонов предоставляют уникальную возможность для изучения возбужденных состояний нуклона. Обширная информация о наблюдаемых этих реакций, накопленная за последние годы, а также ожидаемая в ближайшее время позволят сделать шаг вперед в изучении спектра и структуры нуклонных резонансов, что в свою очередь существенно расширит современные представления о строении адронов и механизмах фундаментальных процессов.

Изучение динамики сильных взаимодействий на расстояниях, отвечающих переходу между конфайнментом и асимптотической свободой кварков, является одним из важнейших направлений современной физики. Исследования структуры нуклона и его возбужденных состояний дадут ответы на ключевые вопросы Стандартной Модели, остающиеся до сих пор открытыми: о механизмах формирования доминирующей части массы адронов и природе кварк-глюонного конфайнмента.

Рис. 8. Q^2 -зависимость амплитуд электровозбуждения трех резонансов, полученная из данных по электророждению одиночных пионов (серые круги [34], черные круги [35]) и пар заряженных пионов (черные квадраты [37], белые квадраты — предварительные расчеты 2015 г.) на протоне. Слева — амплитуда $A_{1/2}$ для резонанса $N(1440)1/2^+$. В центре — амплитуда $S_{1/2}$ для резонанса $N(1680)5/2^+$. Справа — амплитуда $A_{3/2}$ для $N(1520)3/2^-$

Список литературы

- 1. Crede V., Roberts W. // Rept. Prog. Phys. 2013. 76. 076301.
- 2. Aznauryan I.G., Burkert V.D. // Prog. Part. Nucl. Phys. 2012. 67. P. 1.
- 3. http://tpcsf.ihep.ac.cn/nstar2009/A214/4.19-AM/Beck_NSTAR_2009_web.pdf.
- 4. Foster F., Hughes G. // Rept. Prog. Phys. 1983. 46. P. 1445.
- 5. Ripani M., Burkert V.D., Mokeev V. et al. // 2003. hep-ex/0304034.
- 6. Cutkosky R.E., Forsyth C.P., Hendrick R.E., Kelly R.L. // Phys. Rev. D. 1979. 20. P. 2804.
- 7. Höhler G., Kaiser F., Koch R., Pietarinen E. // Phys. Dat. 1979. 12, N 1. P. 1.
- 8. Koch R. // Nucl. Phys. 1986. A448. P. 707.
- 9. Vrana T.P., Dytman S.A., Lee T.S.H. // Phys. Rep. 2000. **328**. P. 182.
- 10. Briscoe W.J., Döring M., Haberzettl H. et al. // 2015. arXiv:1503.07763 [hep-ph].
- 11. Mecking B.A. et al. // Nucl. Instrum. Meth. 2003. A503. P. 513.
- 12. Krusche B., Schadmand S. // Prog. Part. Nucl. Phys. 2003. 51. P. 399.
- 13. Barker I.S., Donnachie A., Storrow J.K. // Nucl. Phys. 1975. **B95**. P. 347.
- 14. Chew G.F., Goldberger M.L., Low F.E., Nambu Y. // Phys. Rev. 1957. 106. P. 1345.
- 15. Kloet W.M, Tabakin F. // Phys. Rev. 2000. C61. 015501.
- 16. Chiang W.T., Tabakin F. // Phys. Rev. 1997. C55. P. 2054.
- 17. Sandorfi A.M., Hoblit S., Kamano H., Lee T.-S.H. // J. Phys. 2011. G38. 053001.

- 18. Mokeev V.I., Burkert V.D., Elouadrhiri L., Fedotov G.V. et al. (CLAS Coll.) // Phys. Rev. 2012. C86. 035203
- 19. Nozawa S., Lee T.-S.H. // Nucl. Phys. 1990. A513. P. 511; 543.
- 20. Хелзен Ф., Мартин А. Кварки и лептоны. М., 1987.
- 21. Schilling K., Wolf G. // Nucl. Phys. 1973. B61. P. 381.
- 22. Amaldi E., Fubini S., Furlan G. Pion-Electroproduction // Springer Tracts in Modern Physics. 1979. Vol. 83.
- 23. Akerlof C.W., Ash W.W., Berkelman K., Lichtenstein C.A. // Phys. Rev. 1967. 163. P. 1482.
- 24. Boffi S., Giusti C., Pacati F.D., Radici M. Electromagnetic Response of Atomic Nuclei. 1996.
- 25. Burhop E.H.S. High Energy Phisics. 1972. Vol. 5.
- 26. Берестецкий В.Б., Лифшиц Е.М., Питаевский Л.П. Квантовая электродинамика. М., 1974.
- 27. CLAS Physics Data Base.
- 28. http://gwdac.phys.gwu.edu/
- 29. Sandorfi A.M. // J. Phys. Conf. Ser. 2013. 424. 012001.
- 30. Anisovich A.V., Beck R., Klempt E. et al. // Eur. Phys. J. 2012. A48. P. 15.
- 31. Burkert V.D. // EPJ Web Conf. 2012. 37. 01017.
- 32. Dudek J.J., Edwards R.G. // Phys. Rev. 2012. D85. 054016.
- 33. Edwards R.G., Dudek J.J., Richards D.G., Wallace S.J. // Phys. Rev. 2011. D84. 074508.
- 34. Aznauryan I.G. et al. (CLAS Collaboration) // Phys. Rev. 2009. C80. 055203.
- 35. Park K., Aznauryan I.G., Burkert V.D. et al. (CLAS Collaboration) // Phys. Rev. 2015. C91. 045203.
- 36. Aznauryan I.G. et al. (CLAS Collaboration) // Phys. Rev. 2003. C68. 065204.
- 37. Mokeev V.I., Burkert V.D., Lee T.-S.H. et al. // Phys. Rev. 2009. C80. 045212.
- 38. Kamano H., Nakamura S.X., Lee T.-S. H., Sato T. // Phys. Rev. 2013. C88. 035209.

Nucleon resonances in exclusive reactions of photo- and rlectroproduction of mesons Yu. A. Skorodumina^{1,2,a}, V. D. Burkert³, E. N. Golovach⁴, R. W. Gothe², E. L. Isupov⁴, **B. S.** Ishkhanov^{1,4}, V. I. Mokeev^{3,4}, G. V. Fedotov^{2,4}

¹Department of General Nuclear Physics, Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia.

- ² Department of Physics and Astronomy, University of South Carolina, Columbia, SC 29208, USA.
- ³ Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA.

⁴ Skobel'tsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991, Russia. E-mail: ^a skorodumina@gmail.com.

Methods for extracting nucleon resonance parameters from experimental data are reviewed. The formalism for the description of exclusive reactions of meson photo- and electroproduction off nucleons is discussed. Recent experimental data on exclusive meson production in the scattering of electrons and photons off protons are analyzed.

Keywords: nucleon resonances, meson photo- and electroproduction, helicity amplitudes, amplitudes of photo- and electroexcitation of resonances, structure functions.

PACS: 14.20.Gk, 13.60 Le.

Received 20 July 2015.

English version: Moscow University Physics Bulletin 6(2015).

Сведения об авторах

- 1. Скородумина Юлия Андреевна аспирантка; e-mail: skorodumina@gmail.com.
- 2. Буркерт Волкер Дитмар директор экспериментального зала В Лаборатории им. Томаса Джефферсона (Burkert Volker Dietmar, Hall B Leader at the JLab); e-mail: burkert@jlab.org.
- 3. Головач Евгений Николаевич канд. физ.-мат. наук, ст. науч. сотрудник; тел.: (495) 939-25-58, e-mail: golovach@jlab.org.
- 4. Готе Ральф Вальтер полный профессор Университета Южной Каролины, США (Gothe Ralf Walter, Full Professor at the University of South Carolina, USA); e-mail: rwgothe@gmail.com.
- 5. Исупов Евгений Леонидович канд. физ.-мат. наук, ст. науч. сотрудник; тел.: (495) 939-25-58, e-mail: e.l.isupov@gmail.com. 6. Ишханов Борис Саркисович доктор физ.-мат. наук, профессор, зав. кафедрой; тел.: (495) 939-50-95,
- e-mail: bsi@depni.sinp.msu.ru.
- 7. Мокеев Виктор Иванович науч. сотрудник Лаборатории им. Томаса Джефферсона (Hall B, JLab); e-mail: mokeev@jlab.org.
- 8. Федотов Глеб Владимирович канд. физ.-мат. наук, ст. науч. сотрудник; тел.: (495) 939-25-58, e-mail: glebfedotov@gmail.com.