ФИЗИКА АТОМНОГО ЯДРА И ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

Изучение эффективности реконструкции и отбора фотонов и нейтральных пионов в эксперименте LHCb

И. М. Беляев¹, Е. М. Говоркова^{1,2,*a*}, В. Ю. Егорычев¹, Д. В. Саврина^{1,2}

¹ Национальный исследовательский центр «Курчатовский институт». Институт теоретической и экспериментальной физики. Россия, 117218, Москва, ул. Б. Черемушкинская, д. 25.

² Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына (НИИЯФ МГУ).

Россия, 119991, Москва, Ленинские горы, д. 1, стр. 2.

E-mail: ^{*a*} *ekaterina.govorkova@cern.ch*

Статья поступила 29.06.2015, подписана в печать 12.08.2015.

В настоящей работе описана процедура, позволяющая получить эффективность реконструкции фотонов и нейтральных пионов с использованием распадов B^+ -мезона: $B^+ \to J/\psi K^{*+}$ ($\to K^+\pi^0$) и $B^+ \to J/\psi K^+$. Эффективность реконструкции исследовалась с помощью данных, полученных в эксперименте LHCb при энергии столкновения протонов в системе центра масс 7 и 8 ТэВ и интегральной светимости 3 фб⁻¹.

Ключевые слова: физика элементарных частиц, фотоны, калориметр, LHCb. УДК: 53.089.52. PACS: 29.40.Vj.

Введение

Детектор LHCb [1] — одна из четырех основных установок, работающих на Большом адронном коллайдере (ЦЕРН, Женева). Основной целью эксперимента LHCb является изучение свойств адронов, содержащих *b*- и *с*-кварки. Физическая программа эксперимента LHCb включает, в частности, изучение большого количества распадов в конечные состояния, содержащие фотоны [3–5]. Для получения точных результатов в подобных исследованиях крайне необходимо детальное моделирование отбора и реконструкции фотонов.

Эффективность реконструкции фотонов определяется путем сравнения двух распадов В-мезонов: $B^+
ightarrow J/\psi K^+$ и $B^+
ightarrow J/\psi K^{*+}~(
ightarrow K^+\pi^0)$. Эти моды были выбраны, так как благодаря большим парциальным ширинам в этих каналах ожидается большое число сигнальных событий. Эффективность мюонного триггера в эксперименте превышает 90% [6], поэтому наличие J/ψ -мезонов, распадающихся на пару мюонов, обеспечивает высокую эффективность регистрации выбранных распадов В-мезонов. Кроме того, конечные состояния этих распадов отличаются только наличием нейтрального пиона, поэтому значительная часть систематических погрешностей сокращается в отношении (1). Поправочный коэффициент к эффективности реконструкции π^0 -мезона определяется следующим образом:

$$\eta_{\pi^0}^{\text{corr}} = \frac{N^{B^+ \to J/\psi K^{*+}} (\to K^+ \pi^0)}{N^{B^+ \to J/\psi K^+}} \cdot \frac{\varepsilon_{B^+ \to J/\psi K^+}^{\text{MC}}}{\varepsilon_{B^+ \to J/\psi K^{*+}}^{\text{MC}} (\to K^+ \pi^0)} \times \frac{\mathcal{B}(B^+ \to J/\psi K^+)}{\mathcal{B}(B^+ \to J/\psi K^{*+}} (\to K^+ \pi^0))}, \quad (1)$$

где N — это число событий, $\varepsilon^{\rm MC}$ — эффективность регистрации распадов, полученная с помощью моделирования, а отношение парциальных ширин равно [7]

$$\frac{\mathcal{B}(B^+ \to J/\psi K^+)}{\mathcal{B}(B^+ \to J/\psi K^{*+} \to K^+ \pi^0))} = \left(\frac{1}{3} \cdot (1.39 \pm 0.09)\right)^{-1}.$$
(2)

Также изучена зависимость величины поправочного коэффициента от ограничений на поперечную энергию фотонов и поперечный импульс *п*⁰-мезона.

1. Детектор LHCb

Детектор LHCb представляет собой одноплечевой передний спектрометр, покрывающий диапазон псевдобыстрот 2 < η < 5. В эту область попадает примерно 40% всех рожденных в столкновениях частиц, содержащих b- и c-кварки. Детектор включает в себя трековую систему, которая состоит из вершинного детектора и трековых станций, расположенных до и после дипольного магнита [2]. Трековая система позволяет измерять импульс частиц с относительной погрешностью 0.5% для малых импульсов ($\approx 500 \text{ МэB}/c$) и до 1.0% при импульсах порядка 200 ГэВ/с. Два детектора колец черенковского излучения [8] необходимы для идентификации заряженных адронов. Калориметрическая система включает в себя детектор на основе сцинтиляционных пластин, за которым следует слой свинца, предливневый детектор, электромагнитный и адронный калориметры. Подробнее эта система описана в разд. 2. Мюоны идентифицируются с помощью системы, состоящей из чередующихся слоев железа и многопроволочных пропорциональных камер [9].

2. Реконструкция фотонов

Калориметрическая система выполняет ряд важных задач. Она обеспечивает триггер первого уровня фотонными, электронными и адронными кандидатами с большими поперечными импульсами, измеряет их энергию и положение, а также позволяет идентифицировать фотоны, электроны и адроны. Для уменьшения числа каналов считывающей электроники электромагнитный калориметр разделен на три зоны: внешнюю, среднюю и внутреннюю. Модули в каждой из зон имеют одинаковые конструкцию и размеры, однако отличаются количеством ячеек приходящихся на один модуль. Таким образом учитывается, что загрузка внешней зоны калориметра значительно меньше, чем загрузка средней и внутренней зон.

Электромагнитный калориметр построен по технологии «шашлык». Он собран из модулей, состоящих из перемежающихся слоев сцинтиллятора и свинцового поглотителя. Энергетическое разрешение электромагнитного калориметра определялось при помощи тестового пучка [12] и должно быть в согласии с проектным значением $\frac{\sigma_E}{E (GeV)} = \sqrt{\left(\frac{10\%}{\sqrt{E}}\right)^2 + (1\%)^2}$ [14].

При реконструкции событий в электромагнитном калориметре производится поиск всех локальных максимумов, т. е. ячеек, энерговыделение в которых превышает энерговыделение в любой из соседних ячеек. Под соседними подразумеваются ячейки, которые соприкасаются с данной хотя бы в одной точке. Поперечная энергия в локальном максимуме должна превышать 50 МэВ. Ячейка с максимальным энерговыделением вместе со своими соседними ячейками образует кластер. Нередко возникает ситуация, в которой одна и та же ячейка принадлежит двум разным кластерам. В таком случае ее энергия перераспределяется между этими кластерами пропорционально их полной энергии.

Отбор нейтральных кандидатов («фотонных кандидатов») производится путем сопоставления каждого кластера со всеми реконструированными треками в событии. Для этого восстановленные треки экстраполируются до поверхности калориметра. Для каждой пары трек-кластер строится двумерная функция χ^2_{2D} , учитывающая положение точки пересечения экстраполированного трека с калориметром, ковариационную матрицу ошибок этой величины, положение барицентра кластера, а также матрицу вторых моментов положения кластера размерностью 2×2 . Кластер считается нейтральным, если для всех восстановленных треков χ^2_{2D} имеет значение больше 4.

Энергия реконструированного фотона E_c может быть определена следующим образом: $E_c = \alpha \varepsilon_{\rm ECAL} + \beta \varepsilon_{\rm PS}$, где $\varepsilon_{\rm ECAL}$ — полная энергия кластера, $\varepsilon_{\rm PS}$ энергия, оставленная фотоном в предливневом детекторе. Параметры α и β учитывают возможный выход электромагнитного ливня за пределы кластера в предливневом детекторе и электромагнитном калориметре соответственно [10, 11].

Калибровка электромагнитного калориметра проходит в несколько этапов. Коэффициенты усиления ФЭУ и качество работы считывающей электроники определяются при помощи системы светодиодов, установленной внутри калориметра. Последующие методы состоят в определении калибровочных коэффициентов — поправок, на которые при реконструкции следует домножать энерговыделение, измеренное в каждой ячейке, для получения правильного значения энергии частиц. При калибровке этими методами используются данные, поступающие с установки во время проведения эксперимента.

Предварительная калибровка калориметра проводится методом сглаживания потока энергии (EFlow). Основой метода служит идея о том, что распределение поперечной энергии по поверхности калориметра должно быть гладкой функцией координат [15]. Следом за этим применяется калибровка при помощи нейтральных *п*-мезонов, распадающихся на два фотона. Идея метода состоит в измерении хорошо известной величины, а именно инвариантной массы нейтрального π -мезона, полагаясь на информацию, поступающую только от калориметрической системы [20]. При этом используются только те пары фотонов, ливни от которых не накладываются друг на друга в электромагнитном калориметре [16, 17]. В 2011 и 2012 гг. точность восстановления энергии составила 2%.

3. Набор данных

В 2011 (2012) г. эксперимент LHCb набирал данные в протон-протонных столкновениях при энергии в системе центра масс, равной $\sqrt{s} = 7$ ТэВ (8 ТэВ). Полученные наборы данных соответствуют интегральной светимости 1 фб⁻¹ в 2011 г. и 2 фб⁻¹ в 2012 г. Среднее значение μ числа наблюдаемых протон-протонных столкновений на одно пересечение пучков составляет 1.5 для обоих переиодов набора данных, что в 4 раза превышает проектное значение. Мгновенная светимость *L* повышалась в течение 2011 г. до значения 4×10^{-32} см $^{-2}{\cdot}c^{-1}$ и в течение всего периода набора данных в 2012 г. оставалась на этом значении, которое в два раза превышает проектное. Превышение величин μ и \mathcal{L} над проектными значениями приводит к большей множественности, что подразумевает большее число треков и кластеров в электромагнитном калориметре и, как следствие, большее число перекрывающихся кластеров. Из-за разницы в условиях набора данных поправочные коэффициенты посчитаны отдельно для данных 2011 и 2012 гг.

4. Отбор событий

Распады $B^+ \to J/\psi K^{*+}$ (с последующим распадом $K^{*+} \to K^+ \pi^0$) и $B^+ \to J/\psi K^+$ восстанавливаются

в моде $J/\psi \rightarrow \mu^+ \mu^-$. Сигнальные B^+ -кандидаты отбираются при помощи применения ограничений на различные кинематические параметры, идентификацию частиц и на переменные, отвечающие за качество реконструкции распадов. Большинство ограничений, за исключением тех, которые относятся к отбору фотонов, одинаковы для обоих распадов B^+ -мезонов.

Из пар противоположно заряженных хорошо восстановленных треков формируются J/ψ -кандидаты. Для проверки качества восстановления треков на χ^2 -аппроксимации каждого из них накладывается ограничение $\chi^2_{\rm tr}/{\rm ndf} < 3$, где ndf — это число степей свободы. Каждый трек должен иметь поперечный импульс не менее 550 МэВ/с и быть ассоциирован с мюонной гипотезой. Мюоны отбираются путем наложения требования, что разность логарифмов правдоподобия мюонной и адронной гипотез для трека больше нуля. Также инвариантная масса мюонной пары не должна отстоять от номинальной массы

J/ψ -мезона [7] более чем на 50 МэВ/ c^2 .

Фотоны реконструируются при помощи электромагнитного калориметра [10, 11]. Для идентификации фотонов используется переменная CL, которая включает в себя информацию из калориметрической и трековой систем. Чтобы подавить фон от адронов, электронов и «слипшихся» π^0 -мезонов (вторичные фотоны которых образуют один общий кластер в ECAL), значение переменной CL должно быть больше чем 2%. Поперечный импульс фотонов должен быть больше чем 250 МэВ/с. Распады $\pi^0 \rightarrow \gamma \gamma$ реконструируются как фотонные пары с инвариантной массой, лежащей в пределах ± 30 МэВ/ c^2 вокруг номинальной массы π^0 -мезона [7].

Каоны реконструируются как заряженные хорошо восстановленные треки с $\chi^2_{tr}/ndf < 3$ и поперечным импульсом больше 450 МэВ/с. Отобранные треки идентифицируются как каоны с помощью переменной \mathcal{P}_K , несущей информацию из нейронной сети. Ее значение должно превышать 0.1. Инва-

Рис. 1. Распределение по инвариантной массе кандидатов $B^+ \to J/\psi K^+$ (слева) и $B^+ \to J/\psi K^{*+}$ (справа) для смоделированных данных 2011 г. (*a*, *б*) и 2012 г. (*в*, *е*). Красная сплошная кривая показывает результат описания распределения аналитической функцией. Синяя штриховая кривая соответствует вкладу от комбинаторного фона

риантная масса $K^+\pi^0$ -комбинации должна лежать в пределах \pm 75 МэВ/ c^2 около номинальной массы K^{*+} -мезона.

Из пар $J/\psi K^{(*)+}$ формируются B^+ -кандидаты. Для отбора сигнальных событий требуется, чтобы поперечный импульс B^+ -мезона был не менее З ГэВ/с. Кроме того, ограничивается время пролета B^+ -кандидатов: $c\tau > 0.2$ мм. Для улучшения разрешения по инвариантной массе B^+ -мезонов дерево распада для каждого кандидата, включающее треки вторичных частиц и положения первичной и вторичной вершин, аппроксимируется заново. При этом массы узких вторичных резонансов J/ψ и π^0 фиксируются на соответствующих номинальных значениях масс, а вектор суммы их импульсов должен совпадать с направлением из первичной во вторичную вершину.

При реконструкции распадов $B^+ \rightarrow J/\psi K^{*+}$ накладываются дополнительное ограничение на инвариантную массу комбинации $J/\psi K^+$. Ее значение должно находится вне области ± 25 МэВ/ c^2 вокруг номинальной массы B^+ -мезона. Это требование исключает возможность вклада от распада $B^+ \to J/\psi K^+$ с двумя дополнительными мягкими фотонами в сигнал от распадов $B^+ \to J/\psi K^{*+}$.

5. Сигналы

На рис. 1 представлены результаты моделирования для распределений по инвариантной массе $J/\psi K^{+-}$ и $J/\psi K^{*+}$ -комбинаций. Распределения по инвариантной массе $J/\psi K^{+-}$ и $J/\psi K^{*+}$ -комбинаций в данных представлены на рис. 2. Число сигнальных событий определяется при помощи аппроксимации распределений суммой функции Кристал Болл [22] (сигнал) и экспоненты (фон). Положения сигнальных пиков в обоих распределениях находятся в соответствии с номинальной массой B^+ -мезона [7], а разрешения находятся в согласии с величиной, полученной из моделирования. Итоговые отношения числа сигнальных событий распадов $B^+ \rightarrow J/\psi K^{*+}$ ($\rightarrow K^+ \pi^0$) и $B^+ \rightarrow J/\psi K^+$ для данных 2011 и 2012 гг.

Рис. 2. Распределение по инвариантной массе кандидатов $B^+ \to J/\psi K^+$ (слева) и $B^+ \to J/\psi K^{*+}$ (справа) для данных 2011 г. (*a*, *б*) и 2012 г. (*в*, *г*). Красная сплошная кривая показывает результат описания распределения аналитической функцией. Точечная фиолетовая и штриховая синяя кривые соответствуют вкладам от распадов B^+ -мезонов и комбинаторного фона соответственно

Рис. 3. Распределение по инвариантной массе π^0 -кандидатов

составляют

$$\frac{N_{B^+ \to J/\psi K^{*+}}^{\text{total}}}{N_{B^+ \to J/\psi K^+}^{\text{total}}} = 0.0359 \pm 0.0009,$$
(3)

$$\frac{N_{B^+ \to J/\psi K^{*+}}^{\text{total}}}{N_{B^+ \to J/\psi K^+}^{\text{total}}} = 0.0361 \pm 0.0006.$$
(4)

Распределение по инвариантной массе двух фотонов, полученное с помощью техники sPlot [19], представлено на рис. 3. В распределении хорошо виден сигнальный пик, соответствующий распадам $\pi^0 \rightarrow \gamma\gamma$. Положение пика равно 134.9±0.1 МэВ/ c^2 , что совпадает с номинальной массой нейтрального π -мезона, а разрешение пика составляет $8.3 \pm 0.1 \text{ МэВ}/c^2$.

6. Эффективности

Полную эффективность можно представить как произведение трех компонент — эффективности геометрического аксептанса детектора ($\varepsilon^{\text{gen \& acc}}$), эффективности реконструкции и отбора ($\varepsilon^{\text{rec \& sel}}$) и эффективности триггера ($\varepsilon^{\text{trig}}$). Тогда отношение эффективностей можно представить как

$$\frac{\varepsilon_{B^+ \to J/\psi K^+}^{\text{MC}}}{\varepsilon_{B^+ \to J/\psi}^{\text{mc}} (K^{*+} \to K^+ \pi^0)} = \frac{\varepsilon_{B^+ \to J/\psi K^+}^{\text{gen \& acc}}}{\varepsilon_{B^+ \to J/\psi}^{\text{gen \& acc}}} \times \\ \times \frac{\varepsilon_{B^+ \to J/\psi K^+}^{\text{rec \& sel}}}{\varepsilon_{B^+ \to J/\psi K^+}^{\text{rec \& sel}}} \cdot \frac{\varepsilon_{B^+ \to J/\psi K^+}^{\text{trig}}}{\varepsilon_{B^+ \to J/\psi K^+}^{\text{trig}}}.$$
 (5)

Эффективности и их отношения получены при помощи численного моделирования. Для моделирования столкновений протонов в LHCb используются программы Pythia 6 и Pythia 8 [13] с настройками, соответствующими параметрам работы эксперимента. Распады адронов описаны с помощью программы EvtGen [21], где излучение фотонов в конечном состоянии генерируется с использованием программы Photos [23]. Взаимодействие частиц с веществом детектора и отклик детектора описывается с помощью программы Geant4 [24, 26]. Отношения эффективностей регистрации распадов $B^+ \rightarrow J/\psi K^{*+}$ ($\rightarrow K^+ \pi^0$) и $B^+ \rightarrow J/\psi K^+$ для данных 2011 и 2012 г. составляют

$$\begin{split} \varepsilon^{\text{total}}_{B^+ \to J/\psi K^+} &= 13.32 \pm 0.18, \\ \hat{\varepsilon}^{\text{total}}_{B^+ \to J/\psi K^{*+}} &= 13.32 \pm 0.18, \end{split}$$

$$\frac{\varepsilon_{B^+ \to J/\psi K^+}^{\text{total}}}{\varepsilon_{B^+ \to J/\psi K^{*+}}^{\text{total}}} = 13.57 \pm 0.12, \tag{7}$$

где погрешность связана с ограниченными размерами смоделированной выборки.

7. Систематические погрешности

Так как оба канала распада имеют схожие кинематические характеристики, большинство погрешностей сокращаются в отношении. В частности, те, которые имеют отношение к реконструкции и идентификации мюонов и J/ψ -мезонов.

Систематические погрешности, связанные с выбором аппроксимирующей функции, получены с использованием альтернативных моделей для описания распределений по инвариантной массе. Следующие функции были выбраны в качестве альтернативных:

 сумма функции Стюдьента для описания сигнала и экспоненты для описания фона;

• сумма функции Новосибирск [25] для описания сигнала и экспоненты для описания фона;

• сумма функции Кристал Болл для описания сигнала и полинома второй степени для описания фона.

Для каждой альтернативной модели вычислялось отношение вкладов числа сигнальных событий. Максимальное наблюдаемое отклонение от основной модели принято за систематическую погрешность и составляет 0.2%.

Систематическая погрешность при определении эффективности триггера для распадов B^+ -мезонов в конечные состояния, содержащие J/ψ -мезон, изучена ранее [4] и составляет 1.1%. Погрешность, связанная с ограниченными размерами смоделированной выборки, меняется в пределах от 0.8 до 4.5% в зависимости от ограничений на поперечную энергию фотонов и поперечный импульс пионов. Соответствующая погрешность присваивается отдельно в каждом бине по поперечной энергии фотонов.

Систематическая погрешность при определении эффективности геометрического аксептанса детектора возникает из-за различных условий набора данных. Ее величина составляет 1.4% для 2011 г. и 0.2% для 2012 г.

Возможная систематическая погрешность, связанная с выбором значений ограничений при отборе событий, была оценена путем варьирования ограничений отбора. Ее значение оказалось пренебрежимо мало.

Были оценены возможные вклады от распадов $B^+ \to J/\psi \pi^+$ и $B^+ \to J/\psi \rho^+$ ($\rho^+ \to \pi^+ \pi^0$) в случае,

Таблица 1

Вклады в систематическую погрешность к поправочному коэффициенту.

Итоговая погрешность вычисляется как корень квадратный из суммы квадратов отдельных вкладов

из суммы квадратов отдельных вкл	Ia,
----------------------------------	-----

Источник	Погреш 2011 г. √s = 7 ТэВ	иность, % 2012 г. √s = 8 ТэВ
Аппроксимирующая функция Эффективность триггера Эффективность аксептанса	0.2 1.1 1.4 0.2	
Суммарная систематическая погрешность	1.8	1.1

когда пион был неверно идентифицирован как каон. Величины таких вкладов были пренебрежимо малыми.

Итоговые систематические погрешности представлены в табл. 1. Полная систематическая погрешность составила 1.8 % для данных 2011 г. и 1.1 % для данных 2012 г.

8. Поправочный коэффициент

Поправочный коэффициент рассчитан в соответствии с (1). Для данных 2011 и 2012 гг. соответственно его величина составляет

$$\eta_{\pi^0}^{\text{corr}} = (103.2 \pm 2.6 \text{ (stat)} \pm 2.3 \text{ (syst)} \pm 6.7 \text{ (B)}) \%,$$
(8)
$$\eta_{\pi^0}^{\text{corr}} = (105.9 \pm 1.8 \text{ (stat)} \pm 1.6 \text{ (syst)} \pm 6.9 \text{ (B)}) \%,$$
(9)

где третья погрешность связана с неопределенностью известного отношения парциальных ширин распадов $B^+ \rightarrow J/\psi K^{*+}$ и $B^+ \rightarrow J/\psi K^+$ [7].

8.1. Зависимость поправочного коэффициента от $\mathbf{E}^{T}(\gamma)$

Поправочный коэффициент к эффективности реконструкции фотонов $\eta_{\gamma}^{\rm corr}$ получен для четырех различных интервалов по поперечной энергии фотонов.

Для этого поправочный коэффициент $\eta_{\pi^0}^{\text{согг}}$ представлен как произведение $\eta_{\gamma}^{\text{согг}}$ для первого и второго фотонов. Это приводит к десяти поправочным коэффициентам для эффективности реконструкции π^0 -мезонов, в зависимости от комбинации интервалов, в которые попали вторичные фотоны. Полученная система уравнений решается методом χ^2 . Во время этой процедуры учитываются только статистические погрешности. Систематические погрешности оцениваются с помощью упрощенного моделирования. Полученные значения $\eta_{\gamma}^{\text{согг}}$ представлены на рис. 4 и указаны в табл. 2.

Таблица 2

E_{γ}^{T} , ГэВ/ c	$\eta_\gamma^{ m corr}$, %, 2011 г.	$\eta_\gamma^{ m corr}$, %, 2012 г.
250-350	$96.5\pm4.5\pm4.1$	$102.0 \pm 3.9 \pm 3.5$
350-500	$96.1 \pm 3.2 \pm 3.4$	$98.2 \pm 2.3 \pm 3.3$
500-700	$93.5 \pm 2.5 \pm 3.3$	$95.4 \pm 1.9 \pm 3.2$
> 700	$104.5 \pm 1.7 \pm 3.6$	$103.8 \pm 1.1 \pm 3.4$

Рис. 4. Коэффициенты $\eta_{\gamma}^{\text{согг}}$ для данных 2011 г. (а) и 2012 г. (б) в бинах по поперечной энергии фотонов

8.2. Зависимость поправочного коэффициента от $p^{T}(\pi^{0})$

Также изучалась зависимость поправочного коэффициента $\eta_{\pi^0}^{\text{согг}}$ от поперечного импульса нейтральных пионов. Для этого спектр по поперечному импульсу нейтральных пионов разбит на несколько бинов для каждого из которых получен поправочный коэффициент. Размеры бинов выбраны так, чтобы в каждом бине было значительное число кандидатов. Полученные значения для $\eta_{\pi^0}^{\text{согг}}$ указаны в табл. 3 для данных 2011 г. и в табл. 4 для данных 2012 г.

Таблица З

Коэффициенты $\eta_{\pi^0}^{\rm corr}$ для данных 2011 г. в бинах по поперечному импульсу пионов. Первая погрешность — статистическая, вторая — систематическая, а третья связана с неопределенностью известного отношения парциальных ширин распадов $B^+ \to J/\psi K^{*+}$ и $B^+ \to J/\psi K^+$

$p_{\pi^0}^T$, ГэВ/с	$\eta^{ m corr}_{\pi^0}$, %
0.5 -1.0	$93.9 \pm 7.8 \pm 2.5 \pm 6.1$
1.0 -1.25	$92.1 \pm 5.0 \pm 2.4 \pm 5.9$
1.25-1.5	$94.9 \pm 4.3 \pm 2.3 \pm 6.1$
1.5 -2.0	$99.5 \pm 3.2 \pm 3.7 \pm 6.4$
> 2.0	$117.2 \pm 3.7 \pm 2.6 \pm 7.6$

Таблица 4

Коэффициенты $\eta_{\pi^0}^{\text{согr}}$ для данных 2012 г. в бинах по поперечному импульсу пионов. Первая погрешность — статистическая, вторая — систематическая, а третья связана с неопределенностью известного отношения парциальных ширин распадов $B^+ \to J/\psi K^{*+}$ и $B^+ \to J/\psi K^+$

$p_{\pi^0}^T$, ГэВ/ c	$\eta^{ m corr}_{\pi^0}$, %
0.5 -1.0	$89.7 \pm 5.9 \pm 1.6 \pm 5.8$
1.0 -1.25	$90.6 \pm 3.4 \pm 1.5 \pm 5.9$
1.25-1.5	$94.9 \pm 3.1 \pm 1.6 \pm 6.1$
1.5 -2.0	$104.8 \pm 2.3 \pm 1.5 \pm 6.8$
> 2.0	$116.4 \pm 2.6 \pm 1.6 \pm 7.5$

Заключение

С использованием данных соответствующих 3 фб⁻¹, набранных экспериментом LHCb в 2011 и 2012 гг., получены поправочные коэффициенты к эффективности реконструкции и отбора нейтральных пионов и фотонов. Коэффициенты получены путем измерения отношения числа событий $B^+ \to J/\psi K^{*+}$ ($\to K^+ \pi^0$) к $B^+ \to J/\psi K^+$. Также изучена зависимость коэффициентов от поперечной энергии фотонов и поперечного импульса нейтрального π -мезона.

Авторы выражают благодарность проф. А. В. Борисову за обсуждения и помощь в подготовке статьи.

Список литературы

- 1. *LHCb Collab.* (*Alves A.* et al.) // JINST. 2008. **3**. S. 08005.
- 2. *LHCb Collab.* (*Arink R.* et al.) // JINST. 2014. **9**. P. 01002.
- LHCb Collab. (Aaij R. et al.) // Nucl. Phys. B. 2014.
 886. P. 665.
- LHCb Collab. (Aaij R. et al.) // Nucl. Phys. B. 2012.
 867. P. 547.
- LHCb Collab. (Aaij R. et al.) // J. High Energy Phys. 2014. 1. P. 24.
- 6. Head T. // JINST. 2014. 9. C. 09015.
- PDG Collab. (Olive K.A. et al.) // Chin. Phys. C. 2014. 38.
- LHCb RICH Group (Adinolfi M. et al.) // Eur. Phys. J. C 2012. 73. P. 2431.
- 29. LHCb Collab. (Alves Jr. et al.) // JINST. 2013. 8. P. 10020.
- 10. Deschamps O., Machefert F., Schune M.-H. et al. // CERN-LHCb-2003-091.
- 11. Terrier H., Belyaev I. // CERN-LHCb-2003-092.
- 12. Arefev A., Barsuk S., Belyaev I. et al. // CERN-LHCB-2007-149.
- Sjöstrand T., Mrenna S., Skands P. // JHEP. 2006. 5. P. 26.
- 14. Adeva B., Adinolfi M., Ajaltouni Z.J. et al. // CERN-LHCC-2000-0036.
- 15. Voronchev K., Belyaev I. // CERN-LHCb-2006-051.
- 16. Puig A., Savrina D., Graciani R., Belyaev I. // LHCb-PROC-2011-027.
- 17. Perret P. // arXiv: 1407.4289.
- LHCb Collab. (Aaij R. et al.) // Phys. Rev. 2012. D85. P. 112013.
- Pivk M., Le Diberder Francois R. // Nucl. Instrum. Meth. 2005. A555. P. 356.
- 20. Savrina D., Egorychev V. // CERN-THESIS-2013-229.
- Lange D.J. // Nucl. Instrum. Meth. A. 2001. 462. P. 152.
- 22. Skwarnicki T. // DESY-F31-86-02.
- 23. Golonka P., Was Z. // Eur. Phys. J. C. 2006. 45. P. 97.
- 24. *GEANT4 Collab.* (*Agostinelli S.* et al.) // Nucl. Instrum. Meth. A. 2003. **506**. P. 250.
- BaBar Collab. (Lees J.P. et al.) // Phys. Rev. 2011.
 D84. P. 112007.
- GEANT4 Collab. (Allison J. et al.) // IEEE Trans. Nucl. Sci. 2006. 53. P. 270.

ФИЗИКА АТОМНОГО ЯДРА И ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

I. M. Belyaev¹, E. M. Govorkova^{1,2,a}, V. Yu. Egorychev¹, D. V. Savrina^{1,2}

¹Institute of Theoretical and Experimental Physics, National Research Centre «Kurchatov Institute», Moscow 117218, Russia. ²Skobeltsyn Institute of Nuclear Physics (MSU SINP), Lomonosov Moscow State University, Moscow 119991, Russia. E-mail: ^aekaterina.govorkova@cern.ch.

The reconstruction efficiency of photons and neutral pions is measured using the relative yields of reconstructed $B^+ \rightarrow J/\psi K^{*+}$ ($\rightarrow K^+ \pi^0$) and $B^+ \rightarrow J/\psi K^+$ decays. The efficiency is studied using the data set, corresponding to an integrated luminosity of 3 fb⁻¹, collected by the LHCb experiment in proton–proton collisions at the centre-of-mass energies of 7 and 8 TeV.

Keywords: particle physics, photons, calorimeter, LHCb. PACS: 29.40.Vj. *Received 29 June 2015*.

English version: Moscow University Physics Bulletin 6(2015).

Сведения об авторах

- 1. Беляев Иван Михайлович канд. физ.-мат. наук, ст. науч. сотрудник; тел.: (499) 127-08-35, e-mail: ivan.belyaev@itep.ru.
- 2. Говоркова Екатерина Максимовна лаборант ИТЭФ, техник-программист; e-mail: ekaterina.govorkova@cern.ch.
- 3. Егорычев Виктор Юрьевич канд. физ.-мат. наук, нач. отделения; тел.: (499) 127-08-35, e-mail: victor.egorychev@cern.ch.
- 4. Саврина Дарья Викторовна канд. физ.-мат. наук, мл. науч. сотрудник ИТЭФ, науч. сотрудник НИИЯФ МГУ; e-mail: daria.savrina@cern.ch.