ФИЗИКА АТОМНОГО ЯДРА И ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

Энергии связи и стабильность тяжелых и сверхтяжелых ядер

Н. Н. Колесников

Московский государственный университет имени М.В. Ломоносова, физический факультет, кафедра теоретической физики. Россия, 119991, Москва, Ленинские горы, д. 1, стр. 2.

Статья поступила 18.04.2016, подписана в печать 17.05.2016.

Используется реалистическое безмодельное описание энергий тяжелых и сверхтяжелых ядер, на основании которого показывается, что а) заряд Z^* наиболее стабильного изобара растет пропорционально массовому числу $A\colon Z^*=aA+b$, где $a=0.355,\ b=9.3;\ б)$ энергия β -распада изобара $Q_\beta(A,Z)$ пропорциональна разности $Z-Z^*\colon Q_\beta=k(Z-Z^*)+D$, где k=1.13 МэВ, а D зависит от четности A; в) энергия α -распада изобара, независимо от четности ядра, растет пропорционально разности $Z-Z^*\colon Q_\alpha(A,Z)=Q_\alpha^*(A)+\lambda(Z-Z^*(A)),$ где $\lambda=2k(1-2a)=0.65$ МэВ; г) приведенная энергия α -распада $Q_\alpha^*(A)$ минимальна при $A=A_0=232$, причем $Q_\alpha^*(A_0)=4.9$ МэВ, а при $A\neq A_0$ линейно растет: $Q_\alpha^*(A_0)=\varepsilon|A-A_0|,$ где $\varepsilon=0.212$ МэВ при $A<A_0$ и $\varepsilon=0.0838$ МэВ при $A>A_0$. На основе полученных формул рассчитываются энергии α -распада для всех тяжелых и сверхтяжелых ядер при среднеквадратичном отклонении 0.2 МэВ. Показывается, что вблизи $A=A_0$ находится область наиболее стабильных (тяжелых и сверхтяжелых) ядер, а при A>280 — область повышенной стабильности.

 $\mathit{Kлючевые\ cnosa}$: безмодельное описание, тяжелые и сверхтяжелые ядра, энергия связи, стабильный изобар, энергии α - и β -распада.

УДК: 539.164.3, 539.165.3. PACS: 23.40.-s, 23.60.+e, 27.80.+w, 27.90.+b.

Введение

После открытия первых ядер трансфермиевых элементов естественным образом возник вопрос о границах существования сверхтяжелых ядер, прежде всего из-за угрозы спонтанного деления. Если ориентироваться на вытекающую из жидкокапельной модели (LDM) [1] зависимость периода спонтанного деления T_{sf} от параметра делимости Z^2/A , то следовало ожидать, что время жизни ядер с зарядом Z > 100 окажется меньше, чем 10^{-20} с, и, следовательно, они не должны существовать в природе. На самом деле они оказались достаточно стабильными и даже удалось получить изотопы элементов с зарядом Z до 118 с относительно большим временем жизни порядка до секунд, распадающихся к тому же не только за счет спонтанного деления, но и путем α - и β -распада. Это свидетельствовало о том, что макроскопическая модель описания тяжелых ядер [2] не является удовлетворительной. В качестве улучшенного варианта жидкокапельной модели была предложена микромакромодель (МММ) [2-5], вводящая оболочечную поправку. С другой стороны, были предложены чисто микроскопические модели типа приближения Хартри-Фока-Боголюбова (HFB-модель) [6, 7] с эффективным (например, скирмовским) потенциалом, выбираемым на основе экспериментальных масс тяжелых ядер, а также релятивистская (RMF) модель [8-10]. В рамках микромакромодели, а также при микроскопическом подходе было предсказано существование области сверхтяжелых ядер с повышенной стабильностью

(острова стабильности) с границами по числу нейтронов N=184 и по числу протонов Z=126 [6, 10] (или, возможно, Z=122, 124) либо Z=114 [2–5].

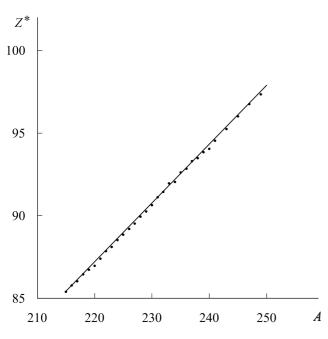
В настоящей работе в связи с рассмотрением проблемы стабильности тяжелых и сверхтяжелых ядер обсуждается также возможность существования областей повышенной стабильности. Предлагаемый ниже микроскопический подход основан на реалистическом анализе свойств ядерной энергетической поверхности тяжелых и сверхтяжелых ядер без привлечения специальных модельных соображений.

1. Энергии связи и β -распадов тяжелых ядер

Энергии связи тяжелых ядер зависят прежде всего от числа нуклонов A, а при фиксированном числе нуклонов — от соотношения между числом нейтронов и протонов, которое оптимизируется посредством β -распада. В связи с этим отметим прежде всего важный экспериментальный факт, что в области тяжелых ядер для любой пары соседних изобаров (A= const) одинаковой четности разность энергий β -распада практически постоянна в широком интервале массовых чисел ядер (от A=214 до A=254, т. е. фактически везде, где наблюдается β -распад):

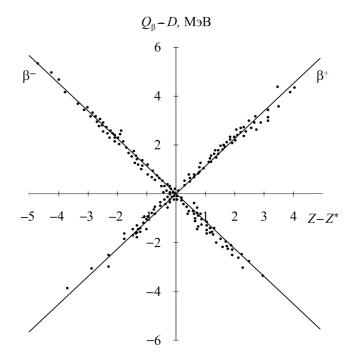
$$\frac{1}{2} \left[Q_{\beta^{\pm}}(A, Z) - Q_{\beta^{\pm}}(A, Z+2) \right] = \mp k. \tag{1}$$

Как следует из экспериментальных данных [11–14], для всех ядер этой области (при общем числе изобарных пар 84) разность (1) с хорошей точно-


стью оказывается равной k=1.13 МэВ (при среднеквадратичном отклонении $\sigma=0.03$ МэВ) [15]. Соотношение (1) оказывается справедливым при различных комбинациях Z и A, а это возможно лишь при условии, что $Q_{\beta\pm}$ является линейной функцией Z (а также A), что можно выразить посредством зависимости

$$Q_{\beta^{\pm}}(A,Z) = \pm k(Z - Z^{*}(A)) + D, \tag{2}$$

где D — константа. Для нахождения зависимости $Z^*(A)$, а также D можно исходить из равенства $Q_{\beta^+}(A,Z)=-Q_{\beta^-}(A,Z-1)$ для изобаров $(A={\rm const})$ одного и того же типа четности, т.е. фактически находить Z^* как точку пересечения ветвей β^+ - и β^- -распада (см. подробнее в [16, 17]). Найденная отсюда зависимость Z^* от A с хорошей точностью оказывается линейной, что иллюстрирует рис. 1 и выражает формула


$$Z^* = aA + b = 0.355A + 9.3,$$
 (3)

которая уточняет зависимость, найденную ранее в работах [15, 18]. Константа D зависит от четности A и равна 0.75 МэВ для A нечетных и 2.0 МэВ для A четных [17]. Зависимость (3) определяет линию β -стабильности.

 $Puc.\ 1.\ Линия\ \beta$ -стабильности $Z^*(A)$

Формулы (2) и (3) позволяют оценить энергию β -распада любого тяжелого ядра ($Z>82,\ N>126$), зная лишь его массовое число A и заряд Z. Это иллюстрирует рис. 2, где построена экспериментальная зависимость $Q_{\beta^\pm}^{\rm exp}-D$ от разности $Z-Z^*$ (см. [15, 16, 19]). Результаты расчетов представлены в виде двух пересекающихся прямых, соответствующих β^+ - и β^- -распаду, а экспериментальные значения нанесены в виде точек. Для всех энергий β -распада, содержащихся в таблицах изотопов [11, 12], среднеквадратичное отклонение вычисленных значений $Q_{\beta^\pm}^{\rm calc}-D$ от экспериментальных

Puc.~2. Зависимость Q_{eta^\pm} от $Z-Z^*$

равно 0.2 МэВ, а максимальное отклонение 0.4–0.5 МэВ. Для удобства на рис. 2 энергии приведены для ядер с четными Z, однако фактически в силу соотношений $Q_{\beta^+}(A,Z) = -Q_{\beta^-}(A,Z-1)$ и $Q_{\beta^-}(A,Z) = -Q_{\beta^+}(A,Z+1)$ рис. 2 включает энергии β^+ и β^- -распада ядер всех типов четности. Отметим, что зависимость, аналогичная рис. 2, найдена и для некоторых других областей более легких ядер [16, 19].

2. Энергии α -распада изобарных ядер

Знание энергий β -распада позволяет также установить связь между энергиями α -распада для изобарных ядер. Чтобы это показать, выразим энергию β^{\pm} -распада ядра (A,Z) через разности полных энергий ядер (A,Z) и $(A,Z\pm 1)$, между которыми происходит β -превращение. Если, в частности, $Q_{\beta^-}(A,Z)=E(A,Z)-E(A,Z+1)-E_e$, где E_e — энергия покоя электрона, то при учете зависимости (2) получается функциональное уравнение

$$E(A,Z) - E(A,Z+1) - E_e = -k(Z-Z^*(A)) + D,$$
 (4)

из которого следует, что E(A,Z) является квадратичной функцией Z и ее можно записать как

$$E(A, Z) = E_0(A) + \frac{k}{2}(Z - Z_0(A))^2 - DZ,$$

где

$$Z_0(A) = Z^*(A) + \frac{1}{2} + \frac{E_e}{k}.$$

Энергия lpha-распада $Q_lpha(A,Z)$ ядра (A,Z) представляет собой разность

$$Q_{\alpha}(A,Z) = E(A,Z) - E(A-4,Z-2) - E_{\alpha} =$$

$$= Q_{0}(A) + \frac{k}{2} \left((Z - Z_{0}(A))^{2} - (Z - 2 - Z_{0}(A-4))^{2} \right),$$
(5)

Таблица 1 Сравнение с экспериментом [11–13] энергий α -распада Q_{α} (в МэВ), рассчитанных в соответствии с формулами (8), (9), (3), (7)

рассчитанных в соответствии с формулами (о), (о), (т)										
Z	A									
	215	216	217	218	219	220				
84 85 86 87 88 89 90	7.53 7.45 8.18 8.10 8.84 8.75 9.54 9.40	6.91 7.01 7.95 7.66 8.20 8.31 9.16 8.96 9.53 9.61	6.68 6.56 7.20 7.21 7.89 7.86 8.47 8.51 9.16 9.16 9.82 9.81	6.11 6.12 6.88 6.77 7.27 7.42 8.01 8.07 8.55 8.72 9.38 9.37 9.85 10.02	(5.50) 5.68 6.39 6.33 6.94 6.98 7.45 7.63 8.13 8.28 8.95 8.93 9.51 9.58	(6.05) 5.88 6.40 6.53 6.81 7.18 7.59 7.83 8.35 8.48 8.95 9.13				
	221	222	223	224	225	226				
86 87 88 89 90 91 92	6.46 6.74 6.88 7.39 7.86 8.04 8.63 8.69 (9.13) 9.34	5.59 5.65 5.81 6.30 6.68 6.95 7.14 7.60 8.13 8.25 8.85 8.90 (9.96) 9.55	(4.88) 5.21 5.43 5.86 5.98 6.51 6.78 7.16 7.45 7.81 8.35 8.46	(5.09) 5.41 5.79 6.06 6.32 6.71 7.31 7.36 7.63 8.01	(5,18) 5.62 5.94 6.27 6.92 6.92 7.38 7.57	4.87 5.18 5.54 5.83 6.45 6.48 6.99 7.13 7.56 7.78				
	227	228	229	230	231	232				
88 89 90 91 92 93 94	(4.36) 4.73 5.04 5.38 6.15 6.03 6.58 6.68 (7.20) 7.33	(4.76) 4.94 5.52 5.59 6.23 6.24 6.80 6.89 (7.61) 7.54	5.17 5.15 6.84 5.80 6.47 6.45 7.01 7.10 (8.11) 7.75	4.76 4.71 5.44 5.36 5.93 6.01 6.78 6.66 (7.44) 7.31	3.91 3.61 4.20 4.26 5.15 4.91 5.55 5.56 6.37 6.21	4.08 3.82 4.61 4.47 5.41 5.12 6.00 5.77 6.72 6.42				
	233	234	235	236	237	238				
91 92 93 94 95 96 97	4.34 4.32 4.91 4.97 (5.70) 5.62 6.42 6.27 (7.06) 6.92	4.87 4.83 5.36 5.47 6.27 6.13 (6.73) 6.78	3.98 4.03 4.68 4.68 5.19 5.33 5.96 5.98	4.56 4.53 5.07 5.18 5.88 5.83 (6.34) 6.48	4.23 4.39 4.96 5.04 5.75 5.69 (6.20) 6.34	4.27 4.24 4.68 4.89 5.59 5.54 6.04 6.19 6.63 6.84 7.29 7.49				
	239	240	241	242	243	244				
92 93 94 95 96 97 98 99	4.11 4.09 4.57 4.74 5.24 5.39 5.92 6.04 (6.50) 6.69	(3.92) 3.94 4.25 4.60 5.26 5.25 5.59 5.90 6.40 6.55 (7.27) 7.20	4.25 4.45 5.14 5.10 5.64 5.75 6.18 6.40 (7.03) 7.05	(4.07) 4.30 4.98 4.95 5.59 5.60 6.22 6.25 (6.96) 6.90 7.51 7.55 (7.84) 8.20	4.75 4.80 5.46 5.45 6.17 6.10 6.87 6.75 (7.40) 7.40	(3.59) 4.01 4.67 4.66 5.24 5.31 5.90 5.96 6.78 6.61 7.33 7.26				
	245	246	247	248	249	250				
94 95 96 97 98 99 100	(4.40) 4.51 5.16 5.16 5.62 5.81 6.45 6.46 7.26 7.11 7.86 7.76 (8.40) 8.41	4.93 5.01 5.48 5.66 (6.15) 6.31 6.87 6.96 (7.70) 7.61 8.37 8.26	(4.71) 4.87 5.35 5.52 5.89 6.17 (6.55) 6.82 7.44 7.47 (8.20) 8.12	(4.61) 4.72 5.16 5.37 (5.68) 6.02 6.57 6.67 (7.15) 7.32 8.00 7.97	(4.64) 4.57 5.17 5.22 5.53 5.87 6.30 6.52 6.88 7.17	(4.28) 4.43 5.27 5.08 5.61 5.73 6.13 6.38 (6.73) 7.03 7.55 7.68				
	251	252	253	254						
97 98 100 101 102	5.68 5.58 6.18 6.23 7.42 7.53 (8.05) 8.18	6.22 6.08 7.15 7.38 (7.85) 8.03 8.56 8.68	6.13 5.94 7.20 7.24 7.70 7.89 8.42 8.54	5.93 5.79 7.30 7.09 (7.80) 7.74 8.34 8.39						

где $Q_0(A)=E_0(A)-E_0(A-4)-2D-E_\alpha$, E_α — энергия покоя α -частицы. Подстановка в (5) зависимости (3) приводит к соотношению

$$Q_{\alpha}(A, Z) = C + Q_0(A) + 2k(1 - 2a)(Z - aA),$$

где C — константа (выражающаяся через параметры $a,\ b,\ k$ и E_e). Отсюда

$$Q_{\alpha}(A, Z+1) - Q_{\alpha}(A, Z) = 2k(1-2a) \equiv \lambda.$$
 (6)

Соотношение (6) означает, что разность энергий α -распада соседних изобаров равна константе

$$\lambda = 2k(1 - 2a) = 0.65 \text{ M} \cdot \text{B},$$
 (7)

которая выражается через параметры k и a, определяющие энергию β -распада, причем λ не зависит от четности ядер [16].

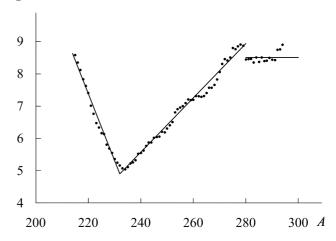
Этот вывод хорошо оправдывается для всех ядер в рассматривавшейся выше области A=214-254. Результаты сравнения с экспериментом приведены в табл. 1. В каждой ячейке таблицы первое число — экспериментальное значение Q_{α} (ненадежное — в скобках), второе число — расчетное значение с учетом формулы (7). Усредненные разности экспериментальных значений Q_{α} , приведенных в левой части каждого из столбцов таблицы, соответствуют значению λ в формуле (7), а приведенные в правой части столбцов табл. 1 расчетные значения Q_{α} (подробнее см. далее) согласуются с экспериментальными значениями Q_{α} .

Но еще важнее то, что формула (6) и значение $\lambda=0.65$ МэВ оказываются справедливыми и для более тяжелых ядер области A>254. В этой области имеются более 80 изобарных пар ядер как соседних, так и не соседних, для которых известны энергии α -распада [11, 12, 20–23]. Используя их, можно по формуле (6) вычислить λ и, как показывают расчеты, для всех таких пар среднее значение λ оказывается практически таким же (0.66 МэВ), как для ядер с A<254. Учитывая это, есть основание принять, что для всех тяжелых и сверхтяжелых ядер $\lambda=0.65$ МэВ, и вычислять в дальнейшем Q_{α} по формуле (6) при среднеквадратичном отклонении, равном 0.2 МэВ.

3. Область наибольшей стабильности тяжелых ядер

Зная энергию α -распада $Q_{\alpha}(A,Z)$ ядра (A,Z), можно на основании формулы (6) оценить энергию α -распада фиктивного ядра (A,Z^*) , лежащего на линии β -стабильности:

$$Q_{\alpha}^{*}(A) = Q_{\alpha}(A, Z) - \lambda(Z - Z^{*}). \tag{8}$$


При наличии экспериментальных значений $Q_{\alpha}(A,Z)$ для нескольких изобаров находилось среднее значение $Q_{\alpha}^*(A)$. Результаты расчета Q_{α}^* на основе экспериментальных значений Q_{α} для различных значений A представлены на рис. 3,

который дает представление о том, как меняется энергия α -распада вдоль всей области тяжелых и сверхтяжелых ядер. Как видно из рис. 3, при движении от A=214 до A=232 энергия α -распада Q_{α}^* убывает примерно линейно от 8.5 МэВ до ≈ 5 МэВ, после чего Q_{α}^* возрастает до величины 9 МэВ и при этом, хотя изменение Q_{α}^* происходит не так быстро, как это было при его убывании, оно оказывается также примерно линейным. Однако (см. рис. 3) $Q_{\alpha}^*(A)$ становится при A>280 практически постоянной величиной. Это можно выразить сглаженными формулами

$$Q_{\alpha}^{*}(A) = \begin{cases} Q_{\alpha}^{0} + 0.212|A - A_{0}|, & 214 < A \leq A_{0}, \\ Q_{\alpha}^{0} + 0.0838|A - A_{0}|, & A_{0} < A \leq 280, \\ Q_{\alpha}^{1}, & A > 280, \end{cases}$$
(9)

где $Q_{\alpha}^0=4.9\,$ МэВ, $Q_{\alpha}^1=8.7\,$ МэВ, $A_0=232.$ Как видно из рис. 3, а также из формулы (9), для ядер области $A\simeq 232$, лежащих вблизи или на линии β -стабильности, энергия α -распада Q_{α} минимальна, кроме того, для ядер этой области минимальна также энергия β -распада Q_{β} (см. (2), (3)). Это означает, что эта область (где, в частности, находятся наиболее долгоживущие изотопы урана и тория) является областью наибольшей стабильности всех тяжелых и сверхтяжелых ядер по отношению как к α -, так и к β -распаду. Ее можно назвать (полу)островом наибольшей стабильности тяжелых ядер, так как при удалении отсюда во всех направлениях, например при увеличении числа нуклонов или при их уменьшении, либо при отходе от линии β -стабильности, стабильность ядер уменьшается, причем точка $Q_{lpha}^0=4.9\,$ МэВ, $A_0=232\,$ является центром этой области.

 Q_{α}^{*} , МэВ

Puc.~3.~ Зависимость приведенной энергии lpha-распада Q_lpha^* от A

На этом фоне особый интерес вызывает область A>280, в которой энергия Q_{α} оказывается ниже, чем для более легких ядер, а следовательно, эту область можно рассматривать как область повышенной стабильности.

4. Энергии α -распада актинидных ядер

Использование формул (6)–(9) позволяет рассчитать энергии α -распада всех актинидных ядер, тяжелых и сверхтяжелых. Расчет Q_{α} производился по формуле

$$Q_{\alpha}(A, Z) = Q_{\alpha}^*(A) + \lambda(Z - Z^*(A)),$$

вытекающей из (8), причем $Q^*_{\alpha}(A)$ бралась из (9), а Z^* — из (3).

В табл. 1 результаты расчетов сопоставляются с экспериментом для ядер области A < 255, а в табл. 2 расчеты сравниваются с энергиями α -распада сверхтяжелых ядер, полученных в последних экспериментах. Как видно из табл. 1 и 2, результаты расчетов находятся в хорошем соответствии с экспериментом: в большинстве случаев расхождение не превышает $0.3~\mathrm{MpB}$, причем среднеквадратичное отклонение от эксперимента составляет $0.2~\mathrm{MpB}$.

Учитывая это, будем полагать, что расхождение между нашими расчетами и экспериментом, по величине превышающее 0.4 МэВ, является следствием неучета эффектов заполнения некоторых нейтрон-

ных и протонных (под)оболочек. В частности, отклонение результатов расчета Q_{α} от экспериментальной величины на 0.53 ± 0.01 МэВ, наблюдающееся в табл. 1 при A=223 (а также на меньшую величину при других A), у изотопов Ra можно отнести к эффекту подоболочки Z=88. Аналогично, в табл. 2 отклонение расчетной энергии Q_{α} от экспериментального значения на 0.85 ± 0.05 МэВ при A=269 (и на несколько меньшую величину при A=270-273) у ядер с числом нейтронов N=161 можно отнести к эффекту соответствующей нейтронной (под)оболочки.

Табл. 3 суммирует результаты расчета Q_{α} не только для ядер, включенных в табл. 1 и 2, но и для некоторого числа ядер промежуточной области, а также для самых тяжелых ядер. Сопоставление экспериментальных данных, содержащихся в обзорах [11–14], а также в [20], с расчетами Q_{α} в табл. 3 показывает общее хорошее согласие, а расхождение в пределах 0.4–0.6~ МэВ, наблюдающееся у ядер с числом нейтронов N=152~ (конкретно у ядер 256 Rf и 257 Db), можно рассматривать как эффект подоболочки N=152.

Таблица 2 Сравнение расчетов энергии Q_{α} (в МэВ) сверхтяжелых элементов с результатами последних экспериментов [20–24]

A	Z	N	Эксп.	Вычисл.	A	Z	N	Эксп.	Вычисл.
294	118	176	11.81(6)	11.51	278	109	169	9.68(19)	9.41
293	117	176	11.17(8)	11.10	278	111	167	10.85(8)	10.71
293	116	177	10.69(6)	10.45	278	113	165	11.68(19)	12.01
292	116	176	10.80(7)	10.68	277	110	167	10.54(4)	10.21
291	116	175	10.89(7)	10.91	277	112	165	11.43(4)	11.51
290	116	174	10.80(7)	11.14	276	109	167	9.85(6)	9.71
290	115	175	10.09(40)	10.49	275	108	167	9.44(6)	9.20
289	115	174	10.45(9)	10.72	275	109	166	10.48(9)	9.85
289	114	175	9.98(5)	10.07	274	107	167	8.94(10)	8.70
288	115	173	10.61(6)	10.95	274	111	163	11.15(8)	11.30
288	114	174	10.08(6)	10.30	274	109	165	9.90(10)	10.00
287	115	172	10.74(9)	11.18	273	108	165	9.59(6)	9.50
287	114	173	10.16(6)	10.53	273	110	163	11.20(10)	10.80
286	113	173	9.77(10)	10.11	272	107	165	9.19(8)	8.99
286	114	172	10.33(6)	10.76	272	111	161	10.99(9)	11.59
285	113	172	9.88(8)	10.34	271	106	165	8.67(8)	8.49
285	112	173	9.28(5)	9.69	271	110	161	10.74(7)	11.09
284	113	171	10.13(6)	10.57	270	105	165	S.F.	7.99
284	112	172	≤9.81	9.92	270	107	163	9.06(8)	9.29
283	112	171	9.62(6)	10.15	270	109	161	10.03(8)	10.59
283	113	170	10.26(10)	10.80	270	110	160	11.03(8)	11.24
282	112	170	≤10.69	10.38	270	108	162	9.30(3)	9.94
282	113	169	10.78(8)	11.03	269	106	163	8.57(10)	8.78
282	111	171	9.14(10)	9.73	269	108	161	9.23(8)	10.08
281	110	171	≤ 9.10	9.31	269	110	159	11.11(8)	11.38
281	112	169	10.31(4)	10.61	268	105	163	S.F.	8.28
280	111	169	9.87(6)	10.42	267	107	160	8.83(9)	9.73
279	110	169	9.84(6)	9.91	267	108	159	10.12(7)	10.38
279	111	168	10.52(10)	10.56					

 ${\tt Таблица} \ \ 3$ Энергии ${\it Q}_{\alpha}$ (в МэВ), рассчитанные в соответствии с формулой (9)

7	N									
Z	151	152	153	154	155	156	157	158	159	160
112										12.24
111					12.47	12.33	12.18	12.03	11.87	11.74
110				12.12	11.97	11.82	11.68	11.53	11.38	11.24
109			11.76	11.62	11.47	11.32	11.17	11.03	10.88	10.73
108		11.41	11.26	11.11	10.97	10.82	10.67	10.52	10.38	10.23
107	11.05	10.90	10.76	10.61	10.46	10.32	10.17	10.02	9.87	9.73
106	10.55	10.40	10.25	10.11	9.96	9.81	9.67	9.52	9.37	9.22
105	10.04	9.90	9.75	9.60	9.46	9.31	9.16	9.02	8.87	8.72
104	9.54	9.39	9.25	9.10	8.95	8.81	8.66	8.51	8.37	8.22
103	9.04	8.89	8.74	8.60	8.45	8.30	8.16	8.01	7.86	7.72
102	8.54	8.39	8.24	8.09	7.95	7.80	7.65	7.51	7.36	7.21
101	8.03	7.89	7.74	7.59	7.44	7.30	7.15	7.00	6.86	6.71
100	7.53	7.38	7.24	7.09	6.94	6.79	6.65	6.50	6.35	6.21
99	7.03	6.88	6.73	6.59	6.44	6.29	6.14	6.00	5.85	
	161	162	163	164	165	166	167	168	169	170
117										12.48
116									12.29	12.06
115								12.10	11.87	11.64
114						12.37	11.91	11.68	11.45	11.22
113						11.86	11.71	11.26	11.03	10.80
112	12.10	11.95	11.80	11.66	11.51	11.36	11.21	11.07	10.61	10.38
111	11.60	11.45	11.30	11.15	11.01	10.86	10.71	10.56	10.42	9.96
110	11.09	10.94	10.80	10.65	10.50	10.36	10.21	10.06	9.91	9.77
109	10.59	10.44	10.29	10.15	10.00	9.82	9.71	9.56	9.41	9.26
108	10.08	9.94	9.79	9.64	9.50	9.35	9.20	9.06	8.91	8.76
107	9.58	9.43	9.29	9.14	8.99	8.85	8.70	8.55	8.41	8.26
106	9.08	8.93	8.78	8.64	8.49	8.34	8.20	8.05	7.90	7.76
105	8.57	8.43	8.28	8.13	7.99					
104	8.07 7.57	7.92 7.42	7.78 7.27	7.63	7.48					
103 102	7.07	6.92	6.77	7.13	6.98					
102	6.56	6.42	0.77							
101	171	172	173	174	175	176	177	178	179	180
100										
120	13.51	13.28	13.05	12.81	12.58	12.35	12.12	11.89	11.66	11.43
119 118	13.09 12.67	12.86 12.44	12.63	12.40	12.16	11.93	11.70 11.28	11.47	11.24 10.82	11.01
117	12.07	12.44	12.21	11.98 11.56	11.75	11.51 11.10	10.86	11.05 10.63	10.82	10.59 10.17
117	11.83	11.60	11.79 11.37	11.36	11.33 10.91	10.68	10.86	10.63	9.98	9.75
115	11.65	11.00	10.95	10.72	10.91	10.08	10.44	9.80	9.96	9.73
113	10.99	10.76	10.93	10.72	10.49	9.84	9.61	9.38	9.30	8.91
113	10.55	10.76	10.33	9.88	9.65	9.42	9.19	8.96	8.73	8.50
112	10.37	9.92	9.69	9.46	9.23	9.00	8.77	8.54	0.70	0.00
111	9.73	9.50	9.27	9.04	8.81	8.58	5.77	0.01		
110	9.31	9.08	8.85	8.62	8.39	0.00				
109	9.12	8.66	8.43	8.20	3.30					
108	8.61	8.47	5.10	3.20						
107	8.11									
106	7.61									
							<u> </u>			

Таблица 3, включающая результаты расчета энергий Q_{α} для ядер с числом протонов до Z=120 и числом нейтронов до N=180, наиболее удобна для прогнозирования свойств сверхтяжелых ядер, в частности для изотопов элементов с Z=119

и Z=120, наиболее близких к известным. В качестве примера укажем, что, как следует из табл. 3 (на основании формул (2), (3), (8), (9)), ядро $^{300}120$ должно испытывать α - и β -распад с энергиями $Q_{\alpha}=11.43$ МэВ и $Q_{\beta}=6.75$ МэВ с временами

жизни (если оценку производить на основании формул работы [26]) соответственно $T_{\alpha}=2.1\cdot 10^{-2}$ с и $T_{\beta}=2.7\cdot 10^{-2}$ с.

Заключение

Как следует из предыдущего, использование линии β -стабильности и основанных на ней формул (2), (3), (6), (7), (9) позволяет рассчитать энергии α - и β -распада для всех тяжелых и сверхтяжелых ядер при среднеквадратичном отклонении от эксперимента 0.2 МэВ (и максимальной ошибке 0.85 МэВ для 269 Hs). Заметим, что при этом используется минимальное (равное девяти) число параметров. Небольшие отклонения от эксперимента, в частности в табл. 1, 2 и 3, а также от линейной зависимости Q_{α} от Z на рис. 3 (при A=220, 250, 260, 270, 280) можно отнести к эффектам указанных выше нейтронных и протонных подоболочек.

Субмагические числа и характер подоболочек в тяжелых ядрах (о чем шла речь выше) естественно связать с поведением элементарных частиц: нейтронов и протонов. При этом можно исходить из идеи, подсказанной многочастичной моделью ядерных оболочек [27, 28] и подкрепленной систематикой энергий связи тяжелых ядер [17, 26] о том, что в пределах некоторых областей ядер — там, где происходит заполнение определенных состояний нейтронов и протонов, энергии связи нейтронов B_n и энергии связи протонов B_p должны меняться пропорционально числу нейтронов N и числу протонов Z. Анализ экспериментальных данных [20–24], проводившийся с целью выделения областей линейной зависимости энергий связи нейтронов и протонов в работах [16, 25], показал, что такое выделение возможно, и это позволяет не только установить числа Z и N, при которых происходят скачки энергий B_n и B_p (т. е. проявляются оболочечные эффекты), но и исследовать эффекты четности и их связь с оболочечными эффектами [16, 25].

Автор выражает благодарность Б. С. Ишханову за интерес к работе и поддержку, Ю. Ц. Оганесяну и В. К. Утенкову за самую свежую информацию об экспериментальных работах в ЛЯР ОИЯИ по проблеме СТЭ, а также участникам семинаров в ЛТФ и ЛЯР в ОИЯИ.

Список литературы

- Myers W.D., Swiatecki W. // Nucl. Phys. 1966. 41.
 P. 1.
- Möller P., Nix J.R. // J. Phys. G. Nucl. Part. Phys. 1994. 20. P. 1681.
- 3. Sobicziewsky A. // Phys. Part. Nucl. 1994. 25. P. 119.
- 4. Strutinsky V.M. // Nucl. Phys. A. 1967. 45. P. 420.
- Patyk Z., Sobiczievski A. // Nucl. Phys. A. 1991. 533.
 P. 132.
- 6. Skyrm T.H.R. // Phil. Mag. Nucl. Phys. 1958. 2. P. 615.
- Vautherin D., Brink D.M. // Phys. Rev. C. 1972. 5.
 P. 526.
- 8. Ring P. // Progr. Part. Nucl. Phys. 1996. 37. P. 193.
- 9. Sobicziewski A., Pomorski K. // Progr. Part. Nucl. Phys. 2007. **58**. P. 292.
- Berger J.F., Girod M., Gogny D. // Nucl. Phys. A. 1984.
 428. P. 23.
- 11. Firestone P.B. et al. Table of Isotopes. 8th ed. N.Y., 1996.
- 12. Wapstra H., Audi G. // Nucl. Phys. A. 1985. 252. P. 55.
- 13. Audi G. et al. // Nucl. Phys. A. 2003. 729. P. 337.
- Gupta M., Barrows T.W. // Nucl. Data Sheets. 2005.
 196. P. 251.
- 15. *Колесников Н.Н.* // Препринт 8/2008. Физич. ф-т МГУ. М., 2008.
- 16. *Колесников Н.Н.* // Вестн. Моск. ун-та. Физ. Астрон. 1966. № 6. С. 76.
- 17. *Колесников Н.Н., Демин А.Г.* // Сообщение ОИЯИ P6-9420. М., 1975.
- 18. Колесников Н.Н. // ЖЭТФ. 1956. **30**. С. 889.
- 19. Колесников Н.Н. // Изв. АН СССР. Сер. физ. 1985. **49**. С. 2144.
- Oganesian Yu. Ts. // J. Phys. G. Nucl. Part. Phys. 2007.
 P. R165.
- Oganesian Yu.Ts. et al. // Phys. Rev. Lett. 2010. 104.
 P. 142502.
- Oganesian Yu.Ts. et al. // Phys. Rev. C. 2007. 76.
 P. 011601.
- Oganesian Yu.Ts. et al. // Phys. Rev. C. 2011. 83.
 P. 054315.
- 24. Ellison P.A.E. et al. // Phys. Rev. Lett. 2010. 105. P. 182701.
- 25. Kolesnikov N.N. arXiv:1202.5340 [hep-ph]. 2012.
- 26. Kolesnikov N.N., Demin A.G., Cherepanov E.A. // Communication of the JINR. D 4-80-572. Dubna, 1980.
- 27. Talmi I., de Shalit A. // Phys. Rev. 1958. 108. P. 378.
- 28. Talmi I. // Rev. Mod. Phys. 1954. 34. P. 120.

The binding energies and stability of heavy and superheavy nuclei

N. N. Kolesnikov

Department of Theoretical Physics, Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia.

E-mail: borisov@phys.msu.ru.

A realistic model-free description of the energies of heavy and superheavy nuclei is proposed. It is shown that: (a) the charge Z^* of the most stable isobar increases proportionally to the mass number $A: Z^* = aA + b$, where a = 0.355, b = 9.3; (b) the energy of β -decay of isobar $Q_{\beta}(A, Z)$ increases as a linear function of difference $Z - Z^*: Q_{\beta} = k(Z - Z^*) + D$, where k = 1.13 MeV and D depends of nuclear parity; (c) the energy of α -decay of isobars increases independently of parity in proportion to the difference $Z - Z^*$:

 $Q_{\alpha}(A,Z)=Q_{\alpha}^*(A)+\lambda(Z-Z^*(A))$, where $\lambda=2k(1-2a)=0.65$ MeV; (d) the reduced energy of α -decay, $Q_{\alpha}^*(A)$, is minimal at $A=A_0=232$, where $Q_{\alpha}^*(A_0)=4.9$ MeV, and linearly increases at $A\neq A_0$, then $Q_{\alpha}^*(A_0)=\varepsilon|A-A_0|$, where $\varepsilon=0.212$ MeV at $A<A_0$ and $\varepsilon=0.0838$ MeV at $A>A_0$. Using the obtained formulas, the energies of α -decay are calculated for all heavy and superheavy nuclei with root mean square deviation of 0.2 MeV. It is shown that the region near $A=A_0$ is the domain of most stable (heavy and superheavy) nuclei, and the region A>280 is the domain of increased stability.

Keywords: model-free description, heavy and superheavy nuclei, binding energy, stable isobar, energies of α - and β -decay.

PACS: 23.40.-s, 23.60.+e, 27.80.+w, 27.90.+b.

Received 18 April 2016.

English version: Moscow University Physics Bulletin. 2016. 71, No. 4. Pp. 381-388.

Сведения об авторе

Колесников Николаей Николаевич (1924–2015) — канд. физ.-мат. наук, доцент. *Представитель автора*: Борисов Анатолий Викторович — доктор физ.-мат. наук, профессор; тел.: (495) 939-31-77, e-mail: borisov@phys.msu.ru.